Cybersecurity and Society – Blockchain Technology –

Ghada Almashaqbeh

Computer Science and Engineering Dept., UConn

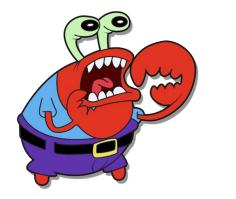
The UConn E² Program, Summer 2022

About Me

- Columbia (PhD in CS, 2019) ⇒ Entrepreneur (CacheCash, NuCypher) ⇒ UConn (Assistant Prof., 2020)
- Research interest:
 - Cryptography (theory and applied)
 - Security and privacy
 - Distributed systems (blockchain-based ones)
- More: <u>https://ghadaalmashaqbeh.github.io/</u>
- Email: <u>ghada@uconn.edu</u>

Outline

- Motivation
- Decentralized resource markets
- Criminal smart contracts

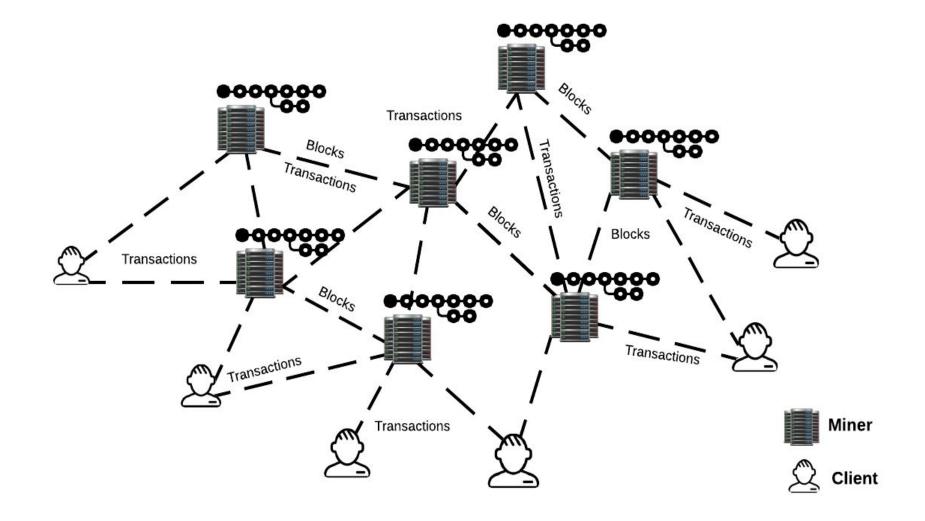

What is cybersecurity? Does it impact you/society?

Heard about blockchains? Do they impact you/society?

Once Upon A Time

Centralized Currency

Decentralized Currency


History

- A whitepaper posted online in 2008: "Bitcoin: A Peer-to-Peer Electronic Cash System," by Satoshi Nakamoto.
- Described a distributed cryptocurrency system not regulated by any government.
- The system went live on January 2009.
- Now "Satoshi Nakamoto" is only associated with certain public keys on Bitcoin blockchain.
 - She/He/They was/were active on forums/emails/etc. until 2010.
- Currently there are hundreds of cryptocurrencies (<u>https://coinmarketcap.com/</u>).

Cryptocurrencies in A Nutshell

- The use of cryptographic primitives and distributed consensus protocols to secure virtual money creation and flow between various parties.
- Main components:
 - Players: miners and clients.
 - Transactions: messages exchanged.
 - Blockchain: an append only log.
 - Mining: extending the blockchain.
 - Consensus: agreeing on the current state of the Blockchain.

Cryptocurrencies Pictorially

Is it only about currency exchange?

- Interest has shifted towards providing a decentralized service on top of this medium.
- Lately blockchains on their own (without involving any currency) are used in several applications.
 - Mainly to support transparency and public verifiability.
 - Examples include healthcare, business management, and supply chains.

Decentralized Resource Markets

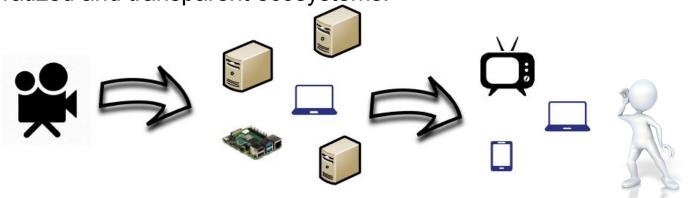
Traditional Service Systems

Central Management

Traditional Service Systems

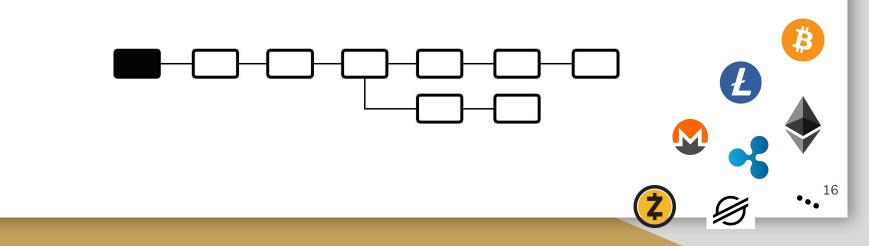
Central Management

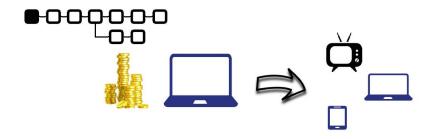
Drawbacks:


- Costly and complex business relationships.
- Over-provisioning service needs.
- Issues related to reachability, visibility, flexibility, etc.

Decentralized Services

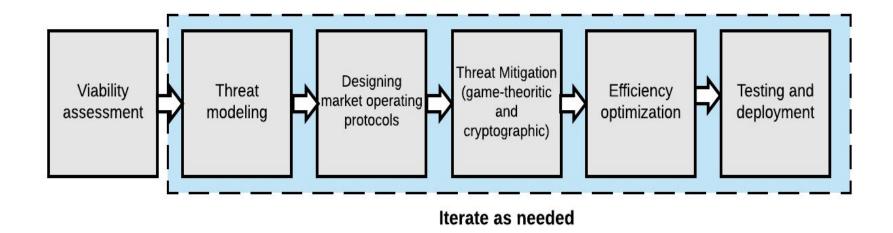
• Utilize P2P-based models to build dynamic systems.


Advantages:


- Flexible services.
- Easier to scale with demand.
- Extended reachability and lower latency.
- Democratized and transparent ecosystems.

Cryptocurrencies and their blockchains ⇒ support payments, accountability,

and governance in a fully decentralized way

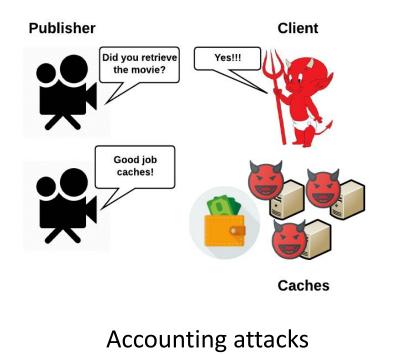


Problem solved?!

Open access work model, large scale system with monetary incentives ...

A Design Framework for Distributed Resource Markets

Threat Modeling


- An essential step to investigate all potential security risks.
 - A guiding design map, as well as a tool for assessing security.

Unique Issues in Distributed Resource Markets

Fair exchange is impossible

Cryptographic and Economic Security Measures

- Dealing with monetary incentives is challenging!
- Financially-motivated threats require economic mitigation techniques.
 - E.g., Detect and punish, service pricing.
- Usually rely on assuming rational players.

Optimize for Efficiency

- Seeking a practical adoption?
 - Testing and deployment.
 - Exploit every opportunity to boost system's performance.
 - Look for the right trade-off between security and efficiency.

These markets are about crowdsourcing for benign purposes:

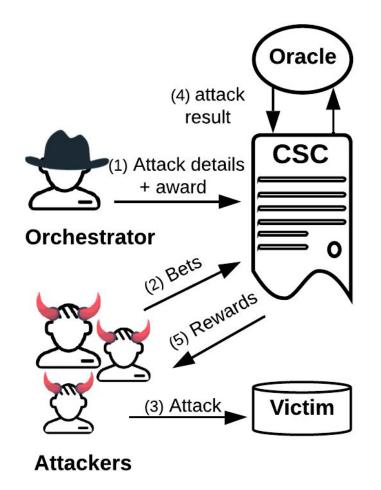
Creating equitable and transparent services

Criminal Smart Contracts

What is a smart contract?

- Simply an arbitrary program deployed by a user on a blockchain
- Miners will execute the code on demand
- Anyone can see the code and anyone can invoke that code
- So they are a form of decentralized computer programs!

Ethereum was born


- The second biggest cryptocurrency after Bitcoin
- Launched in 2015
- View the miners as a global virtual computer to execute smart contracts. It is called Ethereum virtual machine (or EVM)
- These smart contracts are called dApps, and they are the core component of the Web 3.0 movement

Smart Contracts for Governance

- Encode all rules of a crowdsourcing activity.
 - So markets discussed earlier can utilize that.
- But attackers can utilize that as well:
 - A contract orchestrates an attack against real world targets.
 - Ransomware, denial of service, leaking secret documents, etc.

Criminal Smart Contracts

- Oracles play an important role
- A betting framework to allow collaboration of trustless attackers
- Incentive-based approach

Defending against CSCs is still an open problem

Conclusion

- Cybersecurity is crucial for daily life activities.
- Emerging technologies create new opportunities, but also new attacks.
- Continuous efforts are needed to keep our 'digital' society safe.

