smartFHE: Privacy-Preserving Smart Contracts from Fully Homomorphic Encryption

Ravital Solomon¹, Rick Weber¹, **Ghada Almashaqbeh**²

¹Sunscreen, ²University of Connecticut

EuroS&P 2023

Big Dreams ...

Blockchain

Limited functionality

No privacy

Solutions Went Different Directions

Solutions Went Different Directions

Functionality

Solutions Went Different Directions

Ethereum was Born in 2015

Bigger Dreams ...

Privacy-preserving Smart Contracts?

More Initiatives

Hawk

Zether Kachina

Zexe Ekiden

Zkay Arbitrum

More Initiatives, But

Hawk

Zether

Kachina

Zexe

Ekiden

Zkay

Arbitrum

Limited Functionality!

Overload users!

ZKP-based Approach (Not Us)

Off-chain Private Computing

Zero Knowledge Proofs (ZKPs)

Our Goal

On-chain Private Computing

Fully Homomorphic Encryption (FHE) + Zero Knowledge Proof (ZKPs)

A formal notion for privacy-preserving smart contracts (PPSCs) capturing arbitrary computation with I/O privacy.

A formal notion for privacy-preserving smart contracts (PPSCs) capturing arbitrary computation with I/O privacy.

smartFHE framework: the first scheme to use FHE in the blockchain model!

A formal notion for privacy-preserving smart contracts (PPSCs) capturing arbitrary computation with I/O privacy.

smartFHE framework: the first scheme to use FHE in the blockchain model!

smartFHE instantiation.

A formal notion for privacy-preserving smart contracts (PPSCs) capturing arbitrary computation with I/O privacy.

smartFHE framework: the first scheme to use FHE in the blockchain model!

smartFHE instantiation.

Formal security proofs and implementation/benchmarks
- The first library for short-discrete log proofs

smartFHE Framework

- Privacy extensions for a public smart contract-enabled blockchain, e.g., Ethereum
- Flexible and modular.
- Supports:
 - Private and public payments
 - Private and public smart contracts
- A user can have public and private accounts

smartFHE Framework

- Network protocol operations:
 - Private accounts: FHE keypairs and signature keypairs. Encrypted balance.
 - Private payments:
 - o Shield
 - o PrivTransfer
 - o Deshield
 - Private smart contracts: contract-dependent, translated into FHE operations.

Several Challenges

- Working with FHE
- Combining FHE with ZKP
- Concurrency

smartFHE Instantiation

FHE: BFV scheme

ZKPs: Short discrete-log proofs + Bulletproofs

Signatures: ECDSA and/or Falcon

Implementation

Existing libraries:

- Microsoft SEAL for BFV
- Dalek for Bulletproofs
- OpenSSL for ECDSA

New library:

- First implementation of short-discrete log proofs with Apple Metal GPU-accelerated code.
- Benchmarks on Apple M2 Max with 64GB RAM

Results - Benchmarks

TABLE 1: Setup times (one time cost)

Performed by	Operation	d = 1024	d = 2048	d = 4096
User	KeyGen	0.216 ms	0.375 ms	36.5 ms
System	ZKP setup	0.8 s	2.06 s	5.7 s

TABLE 2: Private transaction costs for smartFHE's instantiation—user side.

	Operation	Time (s)	Size (KB)
	$Shield(tx_{shield})$	0.0002	0.101
d = 1024	$Deshield(tx_{deshield})$	1.89	2.47
	$PrivTransfer(tx_{privtransf})$	3.57	20.03
d = 2048	$Shield(tx_{shield})$	0.0002	0.101
	$Deshield(tx_{deshield})$	3.58	2.53
	$PrivTransfer(tx_{privtransf})$	10.7	64.76
d = 4096	$Shield(tx_{shield})$	0.0002	0.101
	$Deshield(tx_{deshield})$	11.17	2.66
	$PrivTransfer(tx_{privtransf})$	23.89	180.1

Results - Benchmarks

TABLE 3: Private transaction costs for smartFHE's instantiation—miner side.

	Operation	Time (s)
d = 1024	VerifyShield	0.00017
	VerifyDeshield	0.92
	VerifyPrivTransfer	1.95
d = 2048	VerifyShield	0.00017
	VerifyDeshield	1.92
	VerifyPrivTransfer	6.37
d = 4096	VerifyShield	0.00017
	VerifyDeshield	6.42
	VerifyPrivTransfer	14.77

Results - Comparison

TABLE 4: Base private transaction costs for Veri-zexe.

no. of inputs × no. of outputs	User genera- tion time (s)	Miner verifica- tion time (ms)	Size (KB)
2×2	27.82	13.21	4.82
3 × 3	54.9	13.14	4.88
4×4	59	13.15	4.95
8 × 8	121	13.15	5.2

smartHE allows a user to issue payments at a rate 1.16x - 7.79x faster than Veri-zexe

Results - Applications

TABLE 5: Private smart contract application costs.

Application	Per user generation time (s)	Miner verifica- tion/computing time (s)	Size (KB) per user
AMM	6.4	3.58	33.53
(d = 2048)			
AMM	20.88	12.64	91.4
(d = 4096)			
Mean/variance	20.89	62.9	91.45
(d = 4096)			
Chi-squared	23.89	44.39	26.95
(d = 4096)			

Conclusion and Future Work

This work

- A privacy-preserving smart contract framework (and instantiation) from FHE and ZKP
- Formal treatment
- Implementation/testing

Future work

- Look into instantiations using other FHE/ZKP schemes
- Addressing anonymity
- Handling storage cost

Thank you!

Questions?