# Bet and Attack: Incentive Compatible Collaborative Attacks Using Smart Contracts

**Zahra Motaqy**<sup>1</sup> Ghada Almashaqbeh<sup>1</sup> Behnam Bahrak<sup>2</sup> Naser Yazdani<sup>2</sup>

<sup>1</sup>UConn, <sup>2</sup>University of Tehran

GameSec 2021

# Blockchain, Smart Contract, and Oracle



# Criminal Smart Contract I

### Solo Attacker on Real-World Target



### Criminal Smart Contract II

### Collaborative Attack on Blockchain / Cryptocurrency



### Criminal Smart Contract III

### Collaborative Attack on Real-World Target



### Criminal Smart Contract III

Collaborative Attack on Real-World Target



• How to measure each attacker's contribution?

### Criminal Smart Contract III

#### Collaborative Attack on Real-World Target



- How to measure each attacker's contribution?
- When the Attack is successful?

# Attack Model

# Use case: Distributed Denial of Service attacks

 Phase I: Design and Deployment of CSC



# Attack Model

# Use case: Distributed Denial of Service attacks

- Phase I: Design and Deployment of CSC
- Phase II: The Attack



# Attack Model

## Use case: Distributed Denial of Service attacks

- Phase I: Design and Deployment of CSC
- Phase II: The Attack
- Phase III: Reward Allocation



# Blockchain is (pseudo) anonymous I

 Attackers will create multiple address (bets) if it get them more reward



# Blockchain is (pseudo) anonymous I

- Attackers will create multiple address (bets) if it get them more reward
- Private information
- The number of attackers n
- The amount of their individual bets beti



# Blockchain is (pseudo) anonymous II

• First, in game model we assume they have bet honestly (under one address (one bet)



# Blockchain is (pseudo) anonymous II

- First, in game model we assume they have bet honestly (under one address (one bet)
- Then, in incentive mechanism model we show why they will bet honestly



### Game Model I

#### Interdependent Attackers Game (IAG)

- e<sub>th</sub>: the total traffic needed for a successful attack
- $\omega_S$ : the award of the sponsor
- $bet_i$ : the bet value of the  $i^{th}$  attacker  $bet_{tot} = \sum_{i \in N} bet_i$
- $t_i = \frac{bet_i}{\omega_S}$ : the private information that  $i^{th}$  attacker has and it represents his type

# Game Model II

Interdependent Attackers Game (IAG)

#### Choice Variable

-  $e_i$ : the relative contribution of the  $i^{th}$  attacker in  $e_{th}$ 

$$e_{tot} = \sum_{i \in N} e_i$$

# Game Model II

Interdependent Attackers Game (IAG)

#### Choice Variable

-  $e_i$ : the relative contribution of the  $i^{th}$  attacker in  $e_{th}$   $e_{tot} = \sum_{i \in N} e_i$ 

#### Model Parameters

- N: the attackers set (|N| = n)
- E: the set of all action profile  $\hat{e} = (e_1, \dots, e_n)$
- T: the set of all type profiles  $\hat{t}=(t_1,\ldots,t_n)$

### Game Model III

• Reward Allocation Function (linear with respect to  $e_i$ )

$$R(bet_i, e_{tot}) = M \cdot e_{tot} \cdot \frac{bet_i}{bet_{tot}}$$
 (1)

$$R(t_i, e_{tot}) = M \cdot t_i \cdot e_{tot} \cdot \left(\frac{bet_{tot}}{\omega_S}\right)^{-1}$$

### Game Model III

• Reward Allocation Function (linear with respect to  $e_i$ )

$$R(bet_i, e_{tot}) = M \cdot e_{tot} \cdot \frac{bet_i}{bet_{tot}}$$
 (1)

$$R(t_i, e_{tot}) = M \cdot t_i \cdot e_{tot} \cdot \left(\frac{bet_{tot}}{\omega_S}\right)^{-1}$$

• Cost Function (convex with respect to  $e_i$ )

$$C(e_i) = \alpha \cdot \frac{\exp(e_i) - 1}{e_{max} - e_i} \qquad \forall i = 1, \dots, n$$
 (2)

### Game Model III

• Reward Allocation Function (linear with respect to  $e_i$ )

$$R(bet_i, e_{tot}) = M \cdot e_{tot} \cdot \frac{bet_i}{bet_{tot}}$$
 (1)

$$R(t_i, e_{tot}) = M \cdot t_i \cdot e_{tot} \cdot \left(\frac{bet_{tot}}{\omega_S}\right)^{-1}$$

Cost Function (convex with respect to e<sub>i</sub>)

$$C(e_i) = \alpha \cdot \frac{\exp(e_i) - 1}{e_{max} - e_i} \qquad \forall i = 1, \dots, n$$
 (2)

Utility Function (concave with a unique maximum)

$$U(t_i, e_i, e_{tot}) = R(t_i, e_{tot}) - C(e_i) - t_i \cdot \omega_S$$
(3)

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - からぐ

Best-response strategy of a rational player in IAG

$$S^*(t_i, \hat{e}_{-i}) = \underset{e_i \in [0,1]}{\text{arg max}} \ U(t_i, e_i, \ \hat{e}_{-i})$$
(4)

•

$$-\alpha \cdot \frac{\exp(e_i)}{e_{max} - e_i} - c \cdot \frac{\exp(e_i) - 1}{(e_{max} - e_i)^2} + \frac{\omega_S \cdot t_i \cdot (\omega_S + bet_{tot})}{bet_{tot}} = 0 \quad (5)$$

Best-response strategy of a rational player in IAG

$$S^*(t_i, \hat{e}_{-i}) = \arg\max_{e_i \in [0,1]} U(t_i, e_i, \hat{e}_{-i})$$
 (4)

•

$$-\alpha \cdot \frac{\exp(e_i)}{e_{max} - e_i} - c \cdot \frac{\exp(e_i) - 1}{(e_{max} - e_i)^2} + \frac{\omega_S \cdot t_i \cdot (\omega_S + bet_{tot})}{bet_{tot}} = 0 \quad (5)$$

The only parameters (other than  $t_i$ ) that determine  $S^*(t_i) = e_i^*$  are the cost of the required attack traffic  $\alpha$  and the quantity  $\frac{bet_{tot}}{\omega_S}$ 

 $S^*(t_i)$  is a strongly dominant strategy that is the best response regardless of  $\hat{e}_{-i}$ 

#### Theorem

IAG has a Strong Dominant Strategy Equilibrium

#### Now we know

The contribution of each attacker with type  $t_i$ :  $S^*(t_i) = e_i^*$ 

#### Now we know

The contribution of each attacker with type  $t_i$ :  $S^*(t_i) = e_i^*$ 

#### We want to know

The attack result and the payments in the equilibrium of the game

- $\sum_{i \in N} S^*(t_i) = e_{tot}^*$
- $p_i(\hat{t}) = R(t_i, AR(\hat{t})) t_i \cdot \omega_S$

#### Now we know

The contribution of each attacker with type  $t_i$ :  $S^*(t_i) = e_i^*$ 

#### We want to know

The attack result and the payments in the equilibrium of the game

• 
$$\sum_{i \in N} S^*(t_i) = e_{tot}^*$$

• 
$$p_i(\hat{t}) = R(t_i, AR(\hat{t})) - t_i \cdot \omega_S$$

#### We need to know

Attacker's true bets

#### Now we know

The contribution of each attacker with type  $t_i$ :  $S^*(t_i) = e_i^*$ 

#### We want to know

The attack result and the payments in the equilibrium of the game

• 
$$\sum_{i \in N} S^*(t_i) = e_{tot}^*$$

• 
$$p_i(\hat{t}) = R(t_i, AR(\hat{t})) - t_i \cdot \omega_S$$

#### We need to know

Attacker's true bets

Will attackers bet honestly?

#### Mechanism Formulation

•  $AR(\hat{t}) = \sum_{i \in N} S^*(t_i) = \sum_{i \in N} e_i^* = e_{tot}^*$ : Attack Result Function

Zahra Motaqy (UConn)

#### **Mechanism Formulation**

- $AR(\hat{t}) = \sum_{i \in N} S^*(t_i) = \sum_{i \in N} e^*_i = e^*_{tot}$ : Attack Result Function
- $G: T \rightarrow O$ : Outcome Function,  $o = (e_{tot}^*, \hat{p})$ non-monetary part

#### **Mechanism Formulation**

- $AR(\hat{t}) = \sum_{i \in N} S^*(t_i) = \sum_{i \in N} e_i^* = e_{tot}^*$ : Attack Result Function
- $G: T \rightarrow O$ : Outcome Function,  $o = (e_{tot}^*, \hat{p})$  non-monetary part
- $V(e_{tot}^{\star}, t_i) = V(t_i) = -(C(S^{\star}(t_i)) + k \cdot \delta)$ : Valuation Function

#### **Mechanism Formulation**

- $AR(\hat{t}) = \sum_{i \in N} S^*(t_i) = \sum_{i \in N} e_i^* = e_{tot}^*$ : Attack Result Function
- $G: T \rightarrow O$ : Outcome Function,  $o = (e_{tot}^*, \hat{p})$  non-monetary part
- $V(e_{tot}^{\star}, t_i) = V(t_i) = -(C(S^{\star}(t_i)) + k \cdot \delta)$ : Valuation Function
- $U(t_i,o) = V(t_i) + p_i$

#### Theorem,

The proposed direct mechanism modeling our CSC-based collaborative attacks is Dominant Strategy Incentive Compatible.

#### Numerical Simulation

Under some mild conditions on the attack cost and total amount of bets, the proposed incentive mechanism provides *individual rationality* and *fair allocation of rewards* 

### Conclusion

#### Main Result - CSC-based Collaborative Attack

The attack sponsor can design a **cheat-proof** and **budget-balanced** mechanism to encourage collaboration of selfish rational attackers.

#### Side Result

The sponsor can predict and adapt the attack result, i.e., determine under what conditions attackers will participate in the attack.

# Thank you!

Questions?