henticated Crypt
onsumable Toke

Ghada Almashaqbeh

University of Connecticut

CSCML 2024

Password Authentication

orrect

| want to password,

e login... come in!
o O

, MH Password p

e Passwords are widely adopted for user authentication in practice.

e Can we bootstrap a strongly-secure setting based on them?
o This has been extensively studied for key exchange (PAKE).
o Other instances include signatures, secret sharing, and

encryption

Password-authenticated Cryptography

| want to execute
this cryptographic
functionality ...

, MH Password p, then continue. >

\

Some (locked)
functionality F
(MPC, delegation,
signature, etc.)

)

A unified notion in which knowing a password allows executing

cryptographic functionalities.

e Resistant to exhaustive search over the password space.

o without strong trust assumptions (such as interacting with a

trusted entity or trusted hardware).

This work

New Models: PAD and PAMPC

e Password-authenticated delegation (PAD):
o A party delegates her cryptographic power to another such that
knowing a password permits exercising the delegation.
e Password-authenticated multiparty computation (PAMPC):
o Participation, and hence, the MPC protocol execution, requires
knowing a password.

e In both cases, an outsider can make a few password guesses.

Motivation

Consumable Tokens

e Self-destructed and unclonable memory gadgets.
o Offers limited number of data retrievals.
m Each retrieval consumes part of the token.
o After n retrievals, the whole token is destructed.
e Recently, they have been instantiated using unclonable polymers,

in particular, proteins.”

Can we utilize consumable tokens to realize PAD and PAMPC?

*G. Almashaqgbeh, R. Canetti, Y. Erlich, J. Gershoni. T. Malkin, |. Pe’er, A. Roitburd-Berman, and E. Tromer, Unclonable Polymers
and Their Cryptographic Applications, in Eurocrypt 2022.

Contributions

{A formalization of the PAD and PAMPC models.

{Consumable token-based constructions.

{Open qguestions and future work directions.

Detour: Consumable Memory Tokens

e Storing digital data in the form of protein material.
o Inspired by DNA synthesis.
e Proteins provide additional features:
o Proteins are unclonable; given a protein sample we cannot
replicate it or get the genetic information out of it.
o [Reading] proteins is destructive; sequencing a protein to
retrieve the digital message, is destructive.
e The construction relies on these features to build consumable

memory tokens.

Data Storage

Synthesize m >—

header antibodies

k
protein-m (or key)

. . . \ & :
Mix with decoy proteins 6., e\
@\Q/
e

Data Retrieval

To retrieve m, first purify

6— Q - e\ —

AN S D=
er

then read the sequence

ik
6 IIHW> j |u:> SYRGAA ... |ﬂ:> m

Amino acids

The Model

e Extension: Partial retrievable memory.
o Storing multiple messages such that only a subset of them can
be retrieved but not all of them.
e Limitations:
o Non-negligible soundness error.
o Power gap between the honest party and the adversary.
m For each one honest retrieval query, the adversary can

perform n queries.

10

Applications

Bounded-query Digital lockers
Password p € P and message m
¢ = Enc,(m)

(1,n)-time programs

OR

One input

'-\/\

n inputs

-

One output

-

n outputs

ie{l,.

.,n} : pi € P, Dec, (c)

° @B

11

Applications

| Bounded-query Digital lockers

Password p € P and message m
¢ = Enc,(m)

(1,n)-time programs

OR

One input

'-\/\

n inputs

-

One output

-

n outputs

ie{l,.

.,n} : pi € P, Dec, (c)

° @B

12

Contributions

{A formalization of the PAD and PAMPC models.

{Consumable token-based constructions.

{Open qguestions and future work directions.

13

The PAD Model

Functionality Frap

Fpap is parameterized by a security parameter k, a circuit class C,, and a positive
integer n.

Delegate: Upon receiving the command (Delegate, P>, C, p) from party P; (the
delegator), where P» is the delegatee, C' € Cy, and p is a password, if this is not
the first activation, then do nothing. Otherwise:
— Send (Delegate, P, P>) to the adversary.
— Upon receiving (OK) from the adversary, store (C,p,j = 0,hflag = 1), and
output (Delegate, P1) to Ps.

Evaluate: Upon receiving input (Evaluate,p’, z) from P, where z € {0,1}*: if no
stored state exists, end activation. Else, retrieve (C, p, j, hflag), if j > 0, then end
activation. Otherwise, increment j, and if p’ = p output (C(z)) to Pa.

Corrupt-evaluate: Upon receiving the command (Corrupt-evaluate,p’, z) from
the adversary, if no stored state exists, end activation. Else:
— Retrieve (C, p, j, hflag).
— If hflag = 1 and j > 0, or j = n, then end activation. Else, increment j, set
hflag = 0, and if p’ = p send (C(x)) to the adversary.

14

The PAD Model

Functionality Frap

Fpap is parameterized by a security parameter k, a circuit class C,, and a positive
integer n.

Delegate: Upon receiving the command (Delegate, P>, C, p) from party P; (the

the first activation, then do nothing. Otherwise:
— Send (Delegate, P, P>) to the adversary.
— Upon receiving (OK) from the adversary, store (C,p,j = 0,hflag = 1), and
output (Delegate, P1) to Ps.

Evaluate: Upon receiving input (Evaluate,p’, z) from P, where z € {0,1}*: if no

stored state exists, end activation. Else, retrieve (C, p, j, hflag), if j > 0, then end
activation. Otherwise, increment j, and if p’ = p output (C(z)) to Pa.

Corrupt-evaluate: Upon receiving the command (Corrupt-evaluate,p’, z) from
the adversary, if no stored state exists, end activation. Else:

— Retrieve (C, p, j, hflag).

— If hflag = 1 and j > 0, or j = n, then end activation. Else, increment j, set

hflag = 0, and if p’ = p send (C(x)) to the adversary.

15

Constructions |

e Generic construction that realizes any cryptographic capability.

e Combines bounded-query digital lockers and (1,n)-time programs.

o They set of keys used for the (1,n)-time program consumable
tokens is generated using the output of a PRG.

o The PRG seed s is stored in the digital locker, without the
password the key set cannot be generated.

e Downside: requires i0.

16

Constructions I

e Customized constructions.

o Basic idea: Encrypt the delegation information and store the
decryption key in a bounded-query digital locker.
o PAD for Signatures:

m (Tokenized) proxy signatures = send encrypted tokens =

p is needed to retrieve the decryption key and access the

tokens.

m Another construction based on Chameleon hash functions.

17

The PAMPC Model

Functionality Fpanpc

Frampc is parameterized by a security parameter s, a positive integer n. Upon
initiation, a counter ctr and a compute flag cflag are initialized to 0, and Fpampc
is supplied with a password p € P and function f : {{0,1}*}* — {0,1}", where P
is the password space and w is a positive integer.

Compute: Upon receiving the command (Compute, P;, z;,p;) from party P;,
where z; € {0,1}* and p; is a password, if this is not the first activation from
P;, then do nothing. Otherwise:
— Send (Compute, P;) to the adversary.
— Upon receiving (OK) from the adversary, store (P;,x;,pi,j = 1,hflag, = 1)
and increment ctr by 1.
— If ctr = w, then if p; = p for all ¢ € {1,...,w} and cflag = 0, set cflag =1 and
output f(x1,...,%w) to Pi,..., Py, else, do nothing.

Corrupt-compute: Upon receiving the command (Corrupt-compute, P;, z;,p;)
from the adversary, if there is a state stored for P;, retrieve (P;,z;,pi, j, hflag,),
else create state (P;, L, 1,7 =0, hflag, = 0). If hflag, = 1 then end activation, else:
— If 5 = n, then end activation. Else, increment ctr if j = 0, increment j and
update the state of P; with z; and p;.
— Ifctr = w, then if p;, = pforalli € {1,...,w} and cflag = 0, then set cflag =1
and output f(z1,...,2Zw) to Pi,..., Py, else do nothing.

18

The PAMPC Model

Functionality Fpanpc

Frampc is parameterized by a security parameter s, a positive integer n. Upon
initiation, a counter ctr and a compute flag cflag are initialized to 0, and Fpampc
is supplied with a password p € P and function f : {{0,1}*}* — {0,1}", where P
is the password space and w is a positive integer.

where z; € {0,1}" and p; is a password, if this is not the first activation from
P;, then do nothing. Otherwise:
— Send (Compute, P;) to the adversary.
— Upon receiving (OK) from the adversary, store (P;,x;,pi,j = 1,hflag, = 1)
and increment ctr by 1.
— If ctr = w, then if p; = p for all ¢ € {1,...,w} and cflag = 0, set cflag =1 and

output f(x1,...,%w) to Pi,..., Py, else, do nothing.

Corrupt-compute: Upon receiving the command (Corrupt-compute, P;, z;,p;)
from the adversary, if there is a state stored for P;, retrieve (P;,z;,pi, j, hflag,),
else create state (P;, L, 1,7 =0, hflag, = 0). If hflag, = 1 then end activation, else:
update the state of P, with z; andp;. 7777
— Ifctr = w, then if p;, = pforalli € {1,...,w} and cflag = 0, then set cflag =1
and output f(z1,...,2Zw) to Pi,..., Py, else do nothing.

19

Constructions |

e Password-authenticated two-party non-interactive MPC.
o A password-authenticated non-interactive oblivious transfer +
Garbled circuits.
m \We formalize a model for this new OT notion and show a

construction using consumable tokens.

o P2 needs the password to retrieve the input labels of her input.

e Secure against semi-honest adversaries; malicious adversaries

are problematic due to the power gap.

o Malicious insider (i.e., corrupt P2) = not secure

o Malicious outsider (i.e., does not know p) = depends on when p is guessed.

20

Constructions I

e Password-authenticated interactive MPC.
o Secret sharing-based MPC.
o A party sends a share of her input in a bounded-query digital
locker.
o Knowing p is needed to retrieve the shares needed to perform
the MPC protocol.

e Secure against malicious (insider and outsider) adversaries.

21

Conclusion and Future Work Directions

e T[his work.

o New models of password-authenticated cryptography —

delegation and MPC.
o Examined the power of consumable tokens in realizing these

notions.
o The power gap in these tokens impacted construction security.

e Future work.

o Combine unclonable polymers with other technologies, such
as quantum computing, to close the gap.

22

Thank you!

Questions?

ghada@uconn.edu
https://ghadaalmashagbeh.qithub.io/

mailto:ghada@uconn.edu
https://ghadaalmashaqbeh.github.io/

