CAPnet: A Defense Against Cache
Accounting Attacks on Content Distribution
Networks

Ghada Almashagbeh!, Kevin Kelley?, Allison Bishop'3, Justin Cappos*

IColumbia, ?CacheCash, *Proof Trading, *NYU

IEEE CNS 2019, DC, USA

Outline

e Background.

o Motivation and problem statement.
o« CAPnet design.

e Security analysis.

e Performance evaluation.

e Conclusion.

prime
video
N Y(]ll

Online Content Distribution =2 f

nuiv

NETFLIX

o Dramatic growth over the past decade.
o Video streaming accounts for ~60% of today's Internet traffic,
projected to exceed 80% by 2022.
e Usually, infrastructure-based content delivery networks (CDNs) are used
to distribute the load.
o Through CDN providers, e.g., Akamai.
o« Drawbacks:
o Impose costly and complex business relationships.

o Require overprovisioning bandwidth to handle peak demands.

o Issues related to reachability, delays to set up new service, etc.

Peer-Assisted CDNs

o Utilize peer-to-peer data transfers to supplement traditional CDNs.
e Allow anyone to join and distribute content to others.

e Advantages:

o Offer a lower service cost.

o Create robust and flexible CDN service. " ~ CDN Network ™ < -
o Extend network coverage of traditional CDNs. // \\

o Scale easier with demand. '\ /
S

D P2P network

But ... Cache Accounting Attacks

e Clients collude with caches pretending to be

served.
Publisher Client

e This allows caches to collect rewards without .. e m—) (e
the movie?

doing any actual work. * 74

e Also, causes problems in network resource

Good job
caches!

management. o0 —
e Confirmed by an empirical study on the w

Maze file system and Akamai Netsession.

"

S
)

Caches

Previous Solutions

e Do not work in typical P2P networks where untrusted, anonymous nodes
serve as caches.
o Rely on activity reports originated by the peers themselves.
= Such logs can be fabricated.
o Assume the knowledge of the peer computational power and link
delay.
s Caches cannot be trusted to report such data correctly.

o Require all nodes who owns a copy of the content to solve a puzzle.

s Do not work with static content.

Our Solution - CAPnet

e Lets untrusted caches join peer-assisted

CDNs.
Did you retrieve
e Introduces a novel lightweight cache Q‘ the:mosie?
accountability puzzle that must be solved
using the retrieved content. Solve s
e Allows a publisher to set a bound on the .‘ g

amount of bandwidth an attacker must

expend when solving the puzzle.

System and Threat Model

Target peer-assisted CDNs consisting of publishers, clients, and caches.
o A publisher acts as dispatcher assigning caches to serve content requests.

When a cache joins a publisher’s network:

o It obtains a full copy of the content, which is divided into data chunks of equal

size.

o It shares a master secret key with the publisher.
A client can request n chunks per request.
o Hence, CAPnet's puzzle is solved over only n chunks (not the whole object).

A publisher monitors caches’ IPs to detect Sybils.

We work in the random oracle model and in the ideal cipher model.

CAPnet Design

S @ Double encrypt
queS‘ 1 4 15t chunk
@ Generate puzzle @W:

and select n

caches v ““\k @ Double encrypt
qest “\k nth chunk
Verify Solution @Q\e(\ o n oY
o i V

Decrypt each data chunk
(using completion mask).

. Solve puzzle, and decrypt
each data chunk (using
session key).

Cache Accountability Puzzle Design

Data Chunk 1 Data Chunk 2 Data Chunk 3 Data Chunk 4
_yr| piece? ‘6\
gpece)+~ BN\
piece 1 1=ne V22— N7
2 e - S,
R Lo piece6 | N%e ;
\\‘\‘l(P 4 \))) v piece4 - — — 1
o, 7 |
> i N
PRt 7\
/e@é'e Al piece2 [— '-3=H(L2 Il Epi 4 /,\A\\'s\\ A piece 8 I o
/fp\\ = | (P'eCe 2» s 3
piece 5 ’\S,’f = ~| piece3 | |
b |
L5 = H(L4 || E(piece 4))
Puzzle challenge = H(L,) Puzzle solution = L,

10

Puzzle Solving and Verification

e Puzzle Solving.
o Same as generation, however, a client does not know the starting
piece.
o lIttries pieces from the first data chunk until the solution is found.
o Puzzle verification.
o A publisher can generate a secret token using a secret PRF.
o Encrypt this token using the puzzle solution, and send ciphertext to
client.
o Aclient decrypts once it solves the puzzle and send the token back to

the publisher.

11

Security Analysis |

e Define a 6-bound, which is ratio between the number of pieces a puzzle
solver retrieve and the total number of pieces in the requested chunks.
o E.g.,0.9-bound means that a solver would expends a bandwidth cost
sufficient to retrieve 90% of the content before solving the puzzle.
e A publisher can configure the number of puzzle rounds to achieve a

specific bound.

o Also, needs to configure the piece size.

12

Security Analysis I

e Adclientis colluding with a set of malicious caches, Cm, of size m <n.
o The goal is to solve the puzzle while retrieving the least amount of
data.
e We have a two-entity model:
o The client always retrieve data chunks from honest caches.
o A malicious cache pools data from other caches in Cm.
o One will be the puzzle solver and one will be the piece provider.
e We assume a strong adversary that knows the frequency distribution of
all pieces in all data chunks.
e Set piece size <= hash size/m
e Using simulation, we determine the number of puzzle rounds based on
the desired 6-bound.

13

Parameter Setup - An Example

1 MB chunk size, 16-byte piece size, n = 6 caches.

Client as solver

Either

Cache as solver

S

=

1

2

3

4

5

0.87+0.03

0.78+0.06

0.71+0.08

0.45+0.06

0.21+0.03

0.91+0.04

0.86+0.06

0.82+0.08

0.52+0.06

0.24+0.04

0.93+0.04

0.9+0.05

0.87+0.07

0.57 +£0.05

0.26+0.04

0.94+0.03

0.92+0.05

0.91+0.06

0.59+0.05

0.28+0.03

0.95+0.03

0.94+0.04

0.93+0.04

0.6+0.05

0.29+0.03

0.96+0.03

0.95+0.04

0.94+0.04

0.61+0.04

0.29+0.03

0.96+0.02

0.95+0.02

0.95+0.04

0.62+0.04

0.3+0.03

0.97+0.02

0.96+0.03

0.95+0.03

0.63+0.03

0.3+0.02

\DOO\]C\UI-IBMNHm

0.97+0.02

0.97+0.03

0.9640.03

0.63+0.03

0.3+0.02

[—
=

et | | et | e | e | et | et [et | et | e

0.97+0.02

0.97+0.03

0.97+0.03

0.64+0.03

0.31+0.02

O O O O O O O] O O O] &

14

Performance Evaluation

e« Benchmarks to evaluate puzzle generation and solving rate.
o Represented in terms of content bitrate.

o Study the effect of puzzle rounds (or 6 bound), chunk size, and piece size.

15

CAPnet Efficiency - Generator

8 T T T T T T T
10 ® 256KB 4 512KB « 1MB * 2MB
= 7 e |
2 7 B8 *,//* * * =
é a
L0
3 ° * =
8 3 ¢
#» 5- ‘;2,.
1
5 L a——— d # 2
S a4t ®
: :
3 = 7 0
- ° — o
—%-n=10 == *
2 L 1 L 1 Il Il 1 0
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 2 4 6 8 10
0-Bound No. of Caches
5

® 16 bytes 4 32bytes

s S— ¥ ! A publisher can generate puzzles

g \ — T 1] sufficient to serve 870,000 clients
g watching the same 1080p video
5 2 concurrently.
5
0
2 4 6 8 10 16

No. of Caches

CAPnet Efficiency - Solver

1000 ‘ | ; ; ; ‘ : 25 ® 256KB 4~ 512KB » 1TMB * 2MB

_ 800 o e ———————
s
= = 150
:c-; 600 _‘;
- 1
P 400 @ 100
g g
uo, 200 - 8 50

0 ‘ ' ' ‘ | | ' 0

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 2 4 6 8 10

¢-Bound No. of Caches
250 ® 16 bytes 4 32bytes
N .
4 . x P A client can solve puzzles

S S === T— S | sufficient to retrieve 34 1080p
S 150 videos concurrently.
g
g 100
=
8 50

° 2 4 6 8 10 17

No. of Caches

Conclusion

o« CAPnetis a low-overhead defense mechanism against cache accounting
attacks.
e Its core module is a cache accountability puzzle that clients solves before
caches are given credit.
o Publishers process small number of pieces, while clients process
large amount of the content (based on the &-bound).
o Highly efficient, it allows publishers to serve content, and clients to

retrieve content, at a high bitrate.

18

