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o Dramatic growth over the past decade.
o Video streaming accounts for ~60% of today's Internet traffic,
projected to exceed 80% by 2022.
e Usually, infrastructure-based content delivery networks (CDNs) are used
to distribute the load.
o Through CDN providers, e.g., Akamai.
o« Drawbacks:
o Impose costly and complex business relationships.

o Require overprovisioning bandwidth to handle peak demands.

o Issues related to reachability, delays to set up new service, etc.




Peer-Assisted CDNs

o Utilize peer-to-peer data transfers to supplement traditional CDNs.
e Allow anyone to join and distribute content to others.

e Advantages:

o Offer a lower service cost.

o Create robust and flexible CDN service. " ~ CDN Network ™ < -
o Extend network coverage of traditional CDNs. // \\

o Scale easier with demand. '\ /
S
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But ... Cache Accounting Attacks

e Clients collude with caches pretending to be

served.
Publisher Client

e This allows caches to collect rewards without .. e m— ) (e
the movie?

doing any actual work. * 74

e Also, causes problems in network resource
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management. o0 —
e Confirmed by an empirical study on the w

Maze file system and Akamai Netsession.
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Previous Solutions

e Do not work in typical P2P networks where untrusted, anonymous nodes
serve as caches.
o Rely on activity reports originated by the peers themselves.
= Such logs can be fabricated.
o Assume the knowledge of the peer computational power and link
delay.
s Caches cannot be trusted to report such data correctly.

o Require all nodes who owns a copy of the content to solve a puzzle.

s Do not work with static content.




Our Solution - CAPnet

e Lets untrusted caches join peer-assisted

CDNs.
Did you retrieve
e Introduces a novel lightweight cache Q‘ the:mosie?
accountability puzzle that must be solved
using the retrieved content. Solve s
e Allows a publisher to set a bound on the .‘ g

amount of bandwidth an attacker must

expend when solving the puzzle.




System and Threat Model

Target peer-assisted CDNs consisting of publishers, clients, and caches.
o A publisher acts as dispatcher assigning caches to serve content requests.

When a cache joins a publisher’s network:

o It obtains a full copy of the content, which is divided into data chunks of equal

size.

o It shares a master secret key with the publisher.
A client can request n chunks per request.
o Hence, CAPnet's puzzle is solved over only n chunks (not the whole object).

A publisher monitors caches’ IPs to detect Sybils.

We work in the random oracle model and in the ideal cipher model.




CAPnet Design
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Cache Accountability Puzzle Design
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Puzzle Solving and Verification

e Puzzle Solving.
o Same as generation, however, a client does not know the starting
piece.
o lIttries pieces from the first data chunk until the solution is found.
o Puzzle verification.
o A publisher can generate a secret token using a secret PRF.
o Encrypt this token using the puzzle solution, and send ciphertext to
client.
o Aclient decrypts once it solves the puzzle and send the token back to

the publisher.
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Security Analysis |

e Define a 6-bound, which is ratio between the number of pieces a puzzle
solver retrieve and the total number of pieces in the requested chunks.
o E.g.,0.9-bound means that a solver would expends a bandwidth cost
sufficient to retrieve 90% of the content before solving the puzzle.
e A publisher can configure the number of puzzle rounds to achieve a

specific bound.

o Also, needs to configure the piece size.

12




Security Analysis I

e Adclientis colluding with a set of malicious caches, Cm, of size m <n.
o The goal is to solve the puzzle while retrieving the least amount of
data.
e We have a two-entity model:
o The client always retrieve data chunks from honest caches.
o A malicious cache pools data from other caches in Cm.
o One will be the puzzle solver and one will be the piece provider.
e We assume a strong adversary that knows the frequency distribution of
all pieces in all data chunks.
e Set piece size <= hash size/m
e Using simulation, we determine the number of puzzle rounds based on
the desired 6-bound.
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Parameter Setup - An Example

1 MB chunk size, 16-byte piece size, n = 6 caches.

Client as solver

Either

Cache as solver
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Performance Evaluation

e« Benchmarks to evaluate puzzle generation and solving rate.
o Represented in terms of content bitrate.

o Study the effect of puzzle rounds (or 6 bound), chunk size, and piece size.
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CAPnet Efficiency - Generator
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CAPnet Efficiency - Solver
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Conclusion

o« CAPnetis a low-overhead defense mechanism against cache accounting
attacks.
e Its core module is a cache accountability puzzle that clients solves before
caches are given credit.
o Publishers process small number of pieces, while clients process
large amount of the content (based on the &-bound).
o Highly efficient, it allows publishers to serve content, and clients to

retrieve content, at a high bitrate.
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