
CAPnet: A Defense Against Cache
Accounting Attacks on Content Distribution

Networks

IEEE CNS 2019, DC, USA

Ghada Almashaqbeh1, Kevin Kelley2, Allison Bishop1,3, Justin Cappos4

1Columbia, 2CacheCash, 3Proof Trading, 4NYU

Outline

● Background.

● Motivation and problem statement.

● CAPnet design.

● Security analysis.

● Performance evaluation.

● Conclusion.

2

Online Content Distribution
● Dramatic growth over the past decade.

○ Video streaming accounts for ~60% of today’s Internet traffic,

projected to exceed 80% by 2022.

● Usually, infrastructure-based content delivery networks (CDNs) are used

to distribute the load.

○ Through CDN providers, e.g., Akamai.

● Drawbacks:

○ Impose costly and complex business relationships.

○ Require overprovisioning bandwidth to handle peak demands.

○ Issues related to reachability, delays to set up new service, etc.

3

Peer-Assisted CDNs

● Utilize peer-to-peer data transfers to supplement traditional CDNs.

● Allow anyone to join and distribute content to others.

● Advantages:

○ Offer a lower service cost.

○ Create robust and flexible CDN service.

○ Extend network coverage of traditional CDNs.

○ Scale easier with demand.

4

But … Cache Accounting Attacks

● Clients collude with caches pretending to be

served.

● This allows caches to collect rewards without

doing any actual work.

● Also, causes problems in network resource

management.

● Confirmed by an empirical study on the

Maze file system and Akamai Netsession.

5

Previous Solutions

● Do not work in typical P2P networks where untrusted, anonymous nodes

serve as caches.

○ Rely on activity reports originated by the peers themselves.

■ Such logs can be fabricated.

○ Assume the knowledge of the peer computational power and link

delay.

■ Caches cannot be trusted to report such data correctly.

○ Require all nodes who owns a copy of the content to solve a puzzle.

■ Do not work with static content.

6

Our Solution - CAPnet

● Lets untrusted caches join peer-assisted

CDNs.

● Introduces a novel lightweight cache

accountability puzzle that must be solved

using the retrieved content.

● Allows a publisher to set a bound on the

amount of bandwidth an attacker must

expend when solving the puzzle.

7

System and Threat Model

● Target peer-assisted CDNs consisting of publishers, clients, and caches.

○ A publisher acts as dispatcher assigning caches to serve content requests.

● When a cache joins a publisher’s network:

○ It obtains a full copy of the content, which is divided into data chunks of equal

size.

○ It shares a master secret key with the publisher.

● A client can request n chunks per request.

○ Hence, CAPnet’s puzzle is solved over only n chunks (not the whole object).

● A publisher monitors caches’ IPs to detect Sybils.

● We work in the random oracle model and in the ideal cipher model.

8

CAPnet Design

9

Cache Accountability Puzzle Design

10

Puzzle challenge = H(L9) Puzzle solution = L9

Puzzle Solving and Verification

● Puzzle Solving.

○ Same as generation, however, a client does not know the starting

piece.

○ It tries pieces from the first data chunk until the solution is found.

● Puzzle verification.

○ A publisher can generate a secret token using a secret PRF.

○ Encrypt this token using the puzzle solution, and send ciphertext to

client.

○ A client decrypts once it solves the puzzle and send the token back to

the publisher.

11

Security Analysis I

12

● Define a δ-bound, which is ratio between the number of pieces a puzzle

solver retrieve and the total number of pieces in the requested chunks.

○ E.g., 0.9-bound means that a solver would expends a bandwidth cost

sufficient to retrieve 90% of the content before solving the puzzle.

● A publisher can configure the number of puzzle rounds to achieve a

specific bound.

○ Also, needs to configure the piece size.

Security Analysis II

13

● A client is colluding with a set of malicious caches, Cm, of size m < n.

○ The goal is to solve the puzzle while retrieving the least amount of

data.

● We have a two-entity model:

○ The client always retrieve data chunks from honest caches.

○ A malicious cache pools data from other caches in Cm.

○ One will be the puzzle solver and one will be the piece provider.

● We assume a strong adversary that knows the frequency distribution of

all pieces in all data chunks.

● Set piece size <= hash size/m

● Using simulation, we determine the number of puzzle rounds based on

the desired δ-bound.

Parameter Setup - An Example

14

● 1 MB chunk size, 16-byte piece size, n = 6 caches.

Performance Evaluation

15

● Benchmarks to evaluate puzzle generation and solving rate.

○ Represented in terms of content bitrate.

● Study the effect of puzzle rounds (or δ bound), chunk size, and piece size.

CAPnet Efficiency - Generator

16

A publisher can generate puzzles
sufficient to serve 870,000 clients
watching the same 1080p video
concurrently.

CAPnet Efficiency - Solver

17

A client can solve puzzles
sufficient to retrieve 34 1080p
videos concurrently.

Conclusion

18

● CAPnet is a low-overhead defense mechanism against cache accounting

attacks.

● Its core module is a cache accountability puzzle that clients solves before

caches are given credit.

○ Publishers process small number of pieces, while clients process

large amount of the content (based on the δ-bound).

● Highly efficient, it allows publishers to serve content, and clients to

retrieve content, at a high bitrate.

19

