
CacheCash: A Cryptocurrency-based
Decentralized Content Delivery Network

Ghada Almashaqbeh
Columbia University

Ph.D Thesis Defense
May 2019

Outline

➢ Background, Motivation, and Problem Statement.

➢ Building blocks.

○ ABC.

○ CAPnet.

○ MicroCash.

➢ Putting it all together: CacheCash.

➢ Security and performance analysis.

➢ Future directions.

➢ Conclusion.

2

Online Content Distribution
● Dramatic growth over the past decade.

○ Video streaming accounts for ~60% of today’s Internet traffic,

projected to exceed 80% by 2022.

● Usually, infrastructure-based content delivery networks (CDNs) are used

to distribute the load.

○ Through CDN providers, e.g., Akamai.

● Drawbacks:

○ Impose costly and complex business relationships.

○ Require overprovisioning bandwidth to handle peak demands.

○ Issues related to reachability, delays to set up new service, etc.

3

Decentralized CDNs

● Utilize P2P data transfers to build dynamic CDNs.

● Allow anyone to join as a cache and distribute content to others.

● Advantages:

○ Offer a lower service cost.

○ Create robust and flexible CDN service.

○ Extend network coverage of traditional CDNs.

○ Scale easier with demand.

○ When managed carefully, provide a good quality of service.

4

But #1 ...

5

Limited peer
availability/free

riding

Provide monetary
incentives

Centralized
payment services

 and/or
trusted publishers Cryptocurrencies

Cryptocurrencies and Blockchain Technology

● An emerging economic force that received a huge interest.

● Started with Bitcoin in 2009.

○ Currently there are 2149 cryptocurrencies*.

○ Total capital market exceeding $180 billion.

● Early systems focused on providing a virtual currency exchange medium.

○ Distributed.

○ Publicly verifiable.

○ No need for real identities.

*https://coinmarketcap.com/

6
...

https://coinmarketcap.com/

Cryptocurrency-Based Distributed Services

● Provide a service on top of the currency exchange medium.

○ E.g., computation outsourcing (Golem), File storage (Filecoin).

● Create an open access, distributed market.

○ Any party can join to serve others in order to collect cryptocurrency tokens.

● The mining itself could be tied to the amount of service put into the

system.

● Several economic aspects:

○ Lower service cost than centralized approaches.

○ A step forward on the “useful mining” path.

○ Utility tokens vs. store of value tokens.

7

Let’s build a distributed bandwidth market then!

But #2 ...

Fair exchange
between

untrusted parties is
impossible

Cache accounting
attacks

Micropayments

This T
hesis

(ABC, C
APnet,

 MicroCa
sh,

Cache
Cash)

Non-goal:
**Digital rights
management.
**Preserving user’s
privacy.

Roadmap

10

Cryptocurrency-
focused threat

modeling framework

ABC

A defense against
cache accounting

attacks

CAPnet

Practical concurrent
micropayment scheme

MicroCash

Combine CAPnet and
MicroCash in the

design of the
service-payment

exchange protocol

CacheCash

Design guided by a
thorough threat model

built using ABC

ABC: Asset-Based Cryptocurrency-focused
Threat Modeling Framework

Background
● Threat modeling is an essential step in secure systems design.

○ Explore threat space and identify potential attack scenarios.

○ Helps in both guiding the system design and evaluating security in the

after-design stages.

● Traditional approaches do not fit cryptocurrency-based systems.

○ Do not scale.

○ Do not explicitly account for attackers’ financial motivation or

collusion between these attackers.

○ Do not explicitly consider the new threat types cryptocurrencies

introduce.

12

What is ABC?

● A systematic threat modeling framework geared toward
cryptocurrency-based systems.
○ Its tools are useful for any distributed system.

● Helps system designers to consider:

○ Financial motivation of attackers.
○ New asset types in cryptocurrencies.
○ System-specific threat categories.
○ Collusion.

■ Using a new tool called a collusion matrix that also manages the

complexity of the threat space.

● Acknowledges that financial incentives can play a major role in other

steps in the design process.

13

14

A Collusion Matrix Example

What is ABC?

● A systematic threat modeling framework geared toward
cryptocurrency-based systems.
○ Its tools are useful for any distributed system.

● Helps system designers to consider:

○ Financial motivation of attackers.
○ New asset types in cryptocurrencies.
○ System-specific threat categories.
○ Collusion.

■ Using a new tool called a collusion matrix that also manages the

complexity of the threat space.

● Acknowledges that financial incentives can play a major role in other

steps in the design process.

15

ABC and CacheCash

● Used to build a thorough threat model covering MicroCash, Bitcoin, and

the service module of CacheCash.

● Total of 15 collusion matrices.

○ 651 threat cases reduced to 32 distilled cases.

● These threat models guided the design of both MicroCash and

CacheCash.

○ Among them, revealed the case of cache accounting attacks, for

which we designed CAPnet as a mitigation.

16

CAPnet: A Defense Against Cache Accounting
Attacks

Background

● Cache accounting attacks: Clients collude

with caches pretending to be served.

○ Caches can collect rewards without doing

any actual work.
■ Confirmed by an empirical study on the Maze

file system and Akamai Netsession.

● Previous solutions: Do not work in typical

P2P networks.

○ Either rely on activity reports from the peers

themselves.

○ Or assume the knowledge of peer

computational power and link delay.

18

CAPnet

● Lets untrusted caches join peer-assisted

CDNs.

● Introduces a novel lightweight cache

accountability puzzle that must be solved

using the retrieved content.

● Allows a publisher to set a bound on the

amount of bandwidth an attacker must

expend when solving the puzzle.

19

Cache Accountability Puzzle Design

20

Puzzle challenge = H(L9) Puzzle solution = L9

CAPnet ensures that caches perform the

requested work, but how to reward them for this

work?

21

MicroCash: Practical Concurrent Processing of
Micropayments

Micropayments

● Payments of micro values (pennies or fractions of pennies).
● Several potential applications.

○ Ad-free web surfing, online gaming, and rewarding peers in
peer-assisted services.

○ In CacheCash, a cache is paid per data chunk it serves.
● Drawbacks; high transaction fees and large log size.

23

“Micropayments are back, at least in theory,
thanks to P2P” *

*Clay Shirky, The Case Against Micropayments, http://www.openp2p.com/pub/a/p2p/2000/12/19/micropayments.html

http://www.openp2p.com/pub/a/p2p/2000/12/19/micropayments.html

Probabilistic Micropayments

● A solution to aggregate tiny payments.
● Dated back to Wheeler [W96] and Rivest [R97].

24

● Cryptocurrencies are utilized to build decentralized probabilistic
micropayment schemes.

● Prior work: MICROPAY [PS15] and DAM [CGL+17]
○ Sequential, interactive lottery protocol, computationally-heavy.

MicroCash

addresses these

limitations!!

MicroCash in a Nutshell

25

Two escrows:
payment and penalty.

Produce lottery draw
outcome for each

round.

Lottery does not require
any interaction with the

customer.

One round of
communication.

Keep each ticket until
its lottery draw time.

Winning tickets must
be claimed before

they expire.

Escrows

26

● Payment escrow:

○ To allow payment concurrency, the payment escrow balance must

cover all winning tickets with high probability (1- ε).

● Penalty escrow:

○ Equals at least the additional utility gain a malicious customer obtains

over an honest.

○ Intuitively, it is the expected amount of payments a customer would

pay for (m-1) merchants (at max ticket issuance rate) during the

cheating detection period.

● Cannot be withdrawn by the owner customer.

○ Escrows can be spent using a restricted set of transactions.

Payment Escrow

27

● Ticket winning events are independent.

● Number of winning tickets can be modeled as a binomial random

variable.

Penalty Escrow I

28

Penalty Escrow II

29

- Putting It All Together -

CacheCash

CacheCash
● A decentralized CDN system designed to address many of the limitations

of previous solutions.

○ Creates a distributed, trustless bandwidth market.

○ Devises a novel service-payment exchange protocol that reduces the

risks caused by malicious actors.

■ Pays a cache two lottery tickets per chunk instead of one, and ties and the

currency value of these tickets together.

● Secure.

○ Employs cryptographic and financial approaches.

● Efficient.

○ Introduces several performance optimization techniques, and utilizes

computationally-light primitives and protocols.
31

CacheCash Pictorially

32

Service Setup

33

● Publisher side:

○ Advertises to recruit caches.

○ Creates payment and penalty escrow that list a set of beneficiary

caches and payment setup parameters.

● Cache side:

○ Contacts a publisher to join its network.

○ Retrieves a copy of the content.

○ Shares a master secret key with the publisher.

● Miner side:

○ Processes the escrow creation transaction.

○ Creates a state for the new escrow to track its status.

Content Distribution

34

Starts as soon as the
escrow is confirmed on

the blockchain

Request n data
chunks

A ticket bundle contains:
- Cache contact info.
- Puzzle challenge.
- n tktr tickets.
- n tktL1 tickets.
- Masked tktL2 tickets.
- Masked kin,j
- A bundle signature.

Generate outer and
inner layer encryption

keys.

Payment Processing

35

● A cache keeps each lottery ticket until the lottery draw time of that ticket.

● It observes the lottery draw outcome to determine whether this is a

winning ticket (same as in MicroCash).

● The two-ticket model changes how payment value is computed:

○ A winning tktL2 increases the (cumulative) counter a cache owns by 1.

○ A winning tktL1 allows a cache to claim currency from the publisher’s

escrow, with value f(z) = az

● It also requires deriving new bounds for the balances of the payment and

penalty escrows.

Payment Escrow

36

● Ticket winning events are independent.

● Number of winning tickets can be modeled as a binomial random

variable.

● We apply a Chernoff bound and round slicing to reduce the required

amount of funds while achieving the 1- ε coverage rule.

Penalty Escrow I

37

Penalty Escrow II

38

CacheCash Security Properties

39

● Addresses service corruption.

○ Done financially, serving invalid chunks prevents unmasking tktL2.

● Defends against cache accounting attacks and other payment related

threats.

○ By the security of CAPnet and MicroCash.

○ The case of a cache collecting only tktL1 is handled financially.

● Handles service theft attacks.

○ Devise financial techniques to deal with ticket duplication, issuing

invalid payments, and not paying out tktL2.

● Models the service as a repeated game between the same set of parties.

● Analyzes publisher collusion case and caches collusion case.

○ Compare the utility gain of a malicious publisher (cache) to an honest

one.

● Cache Collusion, devise a suitable payment function, f(z) = az such that:

● Publisher Collusion, caches give higher priority to an honest publisher

clients than a malicious one.

○ Eventually leave its network.

Financial Defenses

40

CacheCash Efficiency

41

** A modest publisher can handle requests
at a rate sufficient to serve 315,780 clients
watching the same 1080p video
concurrently.

** A modest client is able to retrieve
content at a rate of 122 Mbps (watch 24
1080p videos concurrently).

** Bandwidth overhead is less than 0.1%

Last Stop

Future Directions

43

● Optimize service price and collateral cost.

○ Devise a payment function with a slower growth rate.

○ Modify the lottery protocol in a way that reduces the needed

payment escrow balance.

● Preserve user privacy.

● Fault tolerance and cache selection.

● Full system implementation and deployment.

Conclusion

44

● Cryptocurrencies have provided new templates for reshaping large-scale

distributed systems and services.

● CacheCash targets online content distribution.
○ Creates a distributed bandwidth market.

○ Though this idea has been around for a long time, all prior solutions suffered from

various drawbacks that restrained practicality.

● CacheCash addresses these drawbacks by introducing several building

blocks.

○ ABC, CAPnet, MicroCash, financial defenses, etc.

● Benchmark results show that modest machines can serve/retrieve

content at a high bitrate with minimal bandwidth overhead.

References

[R97] Ronald Rivest.1997. Electronic lottery tickets as micropayments. In International
Conference on Financial Cryptography. Springer, 307–314.

[W96] David Wheeler. 1996. Transactions using bets. In International Workshop on Security
Protocols. Springer, 89–92.

[PS15] Pass, Rafael, Abhi Shelat. "Micropayments for decentralized currencies." In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 207-218. ACM, 2015.

[CGL+17] Chiesa, Alessandro, Matthew Green, Jingcheng Liu, Peihan Miao, Ian Miers, and Pratyush
Mishra. "Decentralized Anonymous Micropayments." In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pp. 609-642. Springer, Cham, 2017.

46

Limitations of Existing Solutions

47

System CDN-specific Decentralized Trustless
Publishers

Incentive
Type

Sponsoring
content
retrieval for
clients

Address
cache
accounting
attacks

KARMA [1] ✔ ✔ ✔ Bandwidth ✘ N/A

Floodgate [2] ✔ ✔ ✘ Monetary ✔ N/A

Dandelion [3] ✔ ✔ ✘ Hybrid ✔ N/A

Hincent [4] ✔ ✘ ✔ Hybrid ✔ N/A

Storj [5] &
Filecoin [6]

✘ ✔ ✔ Monetary ✘ N/A

Torcoin [7] &
Mysterium [8]

✘ ✔ ✔ Monetary ✘ N/A

Gringotts [9] ✔ Partial ✔ Monetary ✔ N/A

NIOS [10] ✔ Partial ✔ Monetary ✔ Requires a
trusted CDN
node

CacheCash ✔ ✔ ✔ Monetary ✔ ✔

Thesis Statement

Design a secure, efficient, and low cost

decentralized CDN service that addresses the

previous challenges.

48

Distribute content without
alteration.
Pay caches as promised.
Ensure that caches has
earned their payments.

Optimize performance in
terms of bandwidth and
computation overhead.

Lower service cost than
traditional solutions.

No centralized entity,
and does not place trust
in anyone.

Non-goal:
**Digital rights
management.
**Preserving user’s
privacy.

More ABC

49

ABC Steps

50

Define all
scenarios that
attackers may
follow to pursue
their goals.

Threat Scenario
Enumeration

and Reduction

Prioritize threat
cases and design
mitigation
techniques to
secure the
system.

Risk Assessment
and Threat
Mitigation

Outline system
use cases,
modules,
participant roles,
its assets, etc.

System Model
Characterization

Define broad
threat categories
that must be
investigated.

Threat Category
Identification

Threat Category Identification Example

51

Step 2: Running Example Application

Target
Attacker

Client Server Client and Server

External

Clients cannot be
targets because
they do not serve
others.

Servers and external
cannot attack because
they do not ask/pay for
service.

Reduced to the case
of attacking servers
only, clients do not
serve others (cannot
be targets).

Server

Server and
External

Client (1) Refuse to pay after
receiving the service.
(2) Issue invalid
payments.

Client and External Reduced to the case of
an attacker client. A
client does not become
stronger when colluding
with other servers or
external entities.

Server and Client

Client, Server, and
External

Service Theft Threat Collusion Matrix

User Study - ABC vs. STRIDE
● Recruited 53 participants (mainly security masters students).

○ 5 pilot run, two groups of 24 subjects (one tested STRIDE, one tested

ABC).

● Asked to build a threat model for a cryptocurrency-based file storage and

retrieval network called ArchiveCoin.

● Each session spanned 3 hours.

○ Overview of cryptocurrencies.

○ A tutorial for ABC or STRIDE.

○ Overview of ArchiveCoin.

○ Threat model building.

53

Results - Financial Aspects and Collusion

54

● For financial threat in question (service theft of file retrieval):

○ STRIDE 13%, ABC 71%.

● For collusion: none in STRIDE, while 45% in ABC.

Results - Accuracy

55

● Computed precision, recall, and total score.

○ Precision -- STRIDE 0.48, ABC 0.57

○ Recall -- STRIDE 0.4, ABC 0.48

○ Total scores (normalized).

■ STRIDE avg 0.5, ABC avg 0.64

Use Cases
● Applied ABC to three real world systems.

○ Bitcoin - well established system.

○ Filecoin - close to launch.

○ CacheCash - our system, under development.

● We developed ABC while working on CacheCash when we realized that

none of traditional frameworks suited our needs.

56

Use Cases - Outcome

● All known threats to Bitcoin were mapped to the collusion matrices ABC

produced.

● Revealed 3 unaddressed threats in the public design of Filecoin.

● ABC was useful for CacheCash in both pre-design threat modeling step,

and after-design security analysis.
57

Aspect Bitcoin Filecoin CacheCash

ABC steps covered Steps 1-3 Seps 1-3 Steps 1-4

Completion time (hr) 10 47 Not tracked

No. of collusion matrices 5 14 9

Threat cases total 105 882 525

Distilled threat cases 10 35 22

More CAPnet

58

CAPnet Work Model

59

Security Analysis

60

● Define a δ-bound, the ratio between the number of pieces a puzzle solver

retrieves out of the total number of pieces in the requested chunks.

○ E.g., 0.9-bound means that 90% of the content will be retrieved in

order to solve the puzzle.

● A publisher can set a specific bound by configuring the number of puzzle

rounds.

○ Also, needs to configure the piece size.

● Simulation-based analysis while assuming a full knowledge of piece

selection frequency.

Security Analysis II

61

● We assume a strong adversary that knows the frequency distribution of

all pieces in all data chunks.

● A client is colluding with a set of malicious caches, Cm, of size m < n.

● One will be the puzzle solver and one will be the piece provider.

● A client always retrieve chunks from honest caches.

● Set piece size <= hash size/m

● Using simulation, we determine the number of puzzle rounds based on

the desired δ-bound.

Parameter Setup - An Example

62

● 1 MB chunk size, 16-byte piece size, n = 6 caches.

Performance Evaluation

63

● Benchmarks to evaluate puzzle generation and solving rate.

○ Represented in terms of content bitrate.

● Study the effect of puzzle rounds (or δ bound), chunk size, and piece size.

CAPnet Efficiency - Generator

64

A publisher can generate puzzles
sufficient to serve 870,000 clients
watching the same 1080p video
concurrently.

CAPnet Efficiency - Solver

65

A client can solve puzzles
sufficient to retrieve 34 1080p
videos concurrently.

More MicroCash

66

The lottery Protocol

67

Lottery Ticket Issuance

68

● Each ticket is a simple structure consist of:

 tktL = idesc||pkM||seqno||σC

● Ticket issuance must follow a ticket issuing schedule.

Escrow Balances - Example

69

MicroCash Security Properties

70

● Prevents escrow overdraft.

○ Front running attacks are not possible.

○ Ticket tracking prevent issuing more tickets than what can be

covered.

● Prevents escrow-withholding.

○ An escrow will be refunded once all tickets expire.

● Prevents manipulating the lottery outcome.

○ Achieved by the use of VDF and ticket issuing schedule.

● Addresses duplicated ticket issuance.

○ Using detect-and-punish approach.

MicroCash Efficiency

71

● Compared with a sequential micropayment scheme, MICROPAY.

● Computational cost.

○ Increases ticket processing rate by 1.67 - 4.1x.

● Effect of micropayment concurrency.

○ Amount of data logged on the blockchain: ~50% reduction.

● Bandwidth cost (in terms of lottery ticket size).

○ From customer to merchant: 48% reduction.

○ From merchant to miner: 60% reduction.

MicroCash Efficiency - MicroBenchmarks I

72

● Ticket processing rate (ticket / sec):

Scheme ECDSA (secp256k1) ECDSA (P-256) EdDSA (Ed25519)

MICROPAY

Customer 1891 32606 20884

Merchant 1353 2530 2509

Miner 1365 2591 2565

MicroCash

Customer 1890 32978 20879

Merchant 2266 10463 7825

Miner 2266 10463 7825

Merchants and miners in MicroCash are 1.67x, 4.1x, and 3.1x faster than in

MICROPAY (for the three digital signature schemes shown above).

MicroCash Efficiency - MicroBenchmarks II

73

● Bandwidth cost (in terms of ticket size):

○ From customer to merchant; 274 bytes (MICROPAY), 142 byte

(MicroCash, 48% reduction).

○ From merchant to miner; 355 byte (MICROPAY), 142 bytes

(MicroCash, 60% reduction).

● Number of escrows:

○ MICROPAY needs 60, 1019, and 653 escrows to support the rates

reported previously.

○ MicroCash needs only one escrow.

Real World Applications - Online Gaming

74

- Bitcoin: Average transaction fee is $0.068, and average transaction size is 250 bytes.

- Minecraft: 125 servers, each serving 8 players. Cost is $12 per 8 players per month.

- With 2% overhead percentage, p = 0.00001

- Each player pay one ticket per minute.

- 𝜷 = $3.472

Real World Applications - Peer-assisted CDN

75

- CDN: one publisher serving 1 Gpb, cost is $0.0067, each cache gets a ticket per 1 MB it
serves.

- With 2% overhead percentage, p = 0.000015
- Issues 128 tickets per second
- 𝜷 = $3.4

More CacheCash

76

Bundle Signature

77

● Instead of signing each ticket individually, a publisher does the following:

○ Hash each ticket individually.

○ Hash all these hashes to produce a bundle hash.

○ Sign the bundle hash.

● A client can verify this signature because it receives the full ticket bundle

all at once.

● A cache receives a copy of the signature and the bundle hash with tktr.

○ Verify signature over tickets by looking for an identical hash.

Batch Signature

78

● Compute a Merkle tree of all bundle hashes, sign the root, and provide a

membership path for each bundle.

CacheCash Efficiency II

79

● Bundle/Batch signature boost publisher’s speed by 7.2x and 22.7x,

respectively, over individual ticket signing.

Signing Approach Publisher (Tbps) Cache (Gbps) Client (Mbps)

Individual tickets 0.064 11.34 121.92

Individual bundles 0.46 23.55 122.56

Batch (64) 1.43 23.5 121.92

Batch (128) 1.51 23.24 122.24

Batch (256) 1.44 23.45 121.28

Batch (512) 1.48 23.35 120.64

Batch (1024) 1.45 23.47 121.28

CacheCash Efficiency - Comparison with MicroCash

80

- Bandwidth overhead cache/miner: CacheCash incurs 3.9x MicroCash’s cost.

- Delta blockchain size: CacheCach adds 4.6x the amount of data MicroCash adds.

- Still the overall bandwidth cost is less than 0.1%

