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Online Content Distribution
● Dramatic growth over the past decade.

○ Video streaming accounts for ~60% of today’s Internet traffic, 

projected to exceed 80% by 2022.

● Usually, infrastructure-based content delivery networks (CDNs) are used 

to distribute the load.

○ Through CDN providers, e.g., Akamai.

● Drawbacks:

○ Impose costly and complex business relationships.

○ Require overprovisioning bandwidth to handle peak demands.

○ Issues related to reachability, delays to set up new service, etc.
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Decentralized CDNs

● Utilize P2P data transfers to build dynamic CDNs.

● Allow anyone to join as a cache and distribute content to others.

● Advantages:

○ Offer a lower service cost.

○ Create robust and flexible CDN service.

○ Extend network coverage of traditional CDNs.

○ Scale easier with demand.

○ When managed carefully, provide a good quality of service.
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But #1 ...
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Cryptocurrencies and Blockchain Technology

● An emerging economic force that received a huge interest.

● Started with Bitcoin in 2009.

○ Currently there are 2149 cryptocurrencies*.

○ Total capital market exceeding $180 billion.

● Early systems focused on providing a virtual currency exchange medium.

○ Distributed.

○ Publicly verifiable.

○ No need for real identities.

*https://coinmarketcap.com/
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Cryptocurrency-Based Distributed Services

● Provide a service on top of the currency exchange medium.

○ E.g., computation outsourcing (Golem), File storage (Filecoin).

● Create an open access, distributed market.

○ Any party can join to serve others in order to collect cryptocurrency tokens.

● The mining itself could be tied to the amount of service put into the 

system.

● Several economic aspects:

○ Lower service cost than centralized approaches. 

○ A step forward on the “useful mining” path.

○ Utility tokens vs. store of value tokens.
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Let’s build a distributed bandwidth market then!
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Roadmap
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ABC: Asset-Based Cryptocurrency-focused 
Threat Modeling Framework



Background
● Threat modeling is an essential step in secure systems design.

○ Explore threat space and identify potential attack scenarios.

○ Helps in both guiding the system design and evaluating security in the 

after-design stages.

● Traditional approaches do not fit cryptocurrency-based systems.

○ Do not scale.

○ Do not explicitly account for attackers’ financial motivation or 

collusion between these attackers. 

○ Do not explicitly consider the new threat types cryptocurrencies 

introduce.
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What is ABC?

● A systematic threat modeling framework geared toward 
cryptocurrency-based systems.
○ Its tools are useful for any distributed system.

● Helps system designers to consider:

○ Financial motivation of attackers.
○ New asset types in cryptocurrencies.
○ System-specific threat categories.
○ Collusion.

■ Using a new tool called a collusion matrix that also manages the 

complexity of the threat space.

● Acknowledges that financial incentives can play a major role in other 

steps in the design process.
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A Collusion Matrix Example



What is ABC?

● A systematic threat modeling framework geared toward 
cryptocurrency-based systems.
○ Its tools are useful for any distributed system.

● Helps system designers to consider:

○ Financial motivation of attackers.
○ New asset types in cryptocurrencies.
○ System-specific threat categories.
○ Collusion.

■ Using a new tool called a collusion matrix that also manages the 

complexity of the threat space.

● Acknowledges that financial incentives can play a major role in other 

steps in the design process.
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ABC and CacheCash

● Used to build a thorough threat model covering MicroCash, Bitcoin, and 

the service module of CacheCash.

● Total of 15 collusion matrices.

○ 651 threat cases reduced to 32 distilled cases.

● These threat models guided the design of both MicroCash and 

CacheCash.

○ Among them, revealed the case of cache accounting attacks, for 

which we designed CAPnet as a mitigation.
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CAPnet: A Defense Against Cache Accounting 
Attacks



Background

● Cache accounting attacks: Clients collude 

with caches pretending to be served.

○ Caches can collect rewards without doing 

any actual work.
■ Confirmed by an empirical study on the Maze 

file system and Akamai Netsession.

● Previous solutions: Do not work in typical 

P2P networks.

○ Either rely on activity reports from the peers 

themselves.

○ Or assume the knowledge of peer 

computational power and link delay.
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CAPnet

● Lets untrusted caches join peer-assisted 

CDNs.

● Introduces a novel lightweight cache 

accountability puzzle that must be solved 

using the retrieved content.

● Allows a publisher to set a bound on the 

amount of bandwidth an attacker must 

expend when solving the puzzle.
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Cache Accountability Puzzle Design
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Puzzle challenge = H(L9)             Puzzle solution = L9



CAPnet ensures that caches perform the 

requested work, but how to reward them for this 

work? 
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MicroCash: Practical Concurrent Processing of 
Micropayments



Micropayments

● Payments of micro values (pennies or fractions of pennies).
● Several potential applications.

○ Ad-free web surfing, online gaming, and rewarding peers in 
peer-assisted services.

○ In CacheCash, a cache is paid per data chunk it serves.
● Drawbacks; high transaction fees and large log size.
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“Micropayments are back, at least in theory, 
thanks to P2P” *

*Clay Shirky, The Case Against Micropayments, http://www.openp2p.com/pub/a/p2p/2000/12/19/micropayments.html

http://www.openp2p.com/pub/a/p2p/2000/12/19/micropayments.html


Probabilistic Micropayments

● A solution to aggregate tiny payments.
● Dated back to Wheeler [W96] and Rivest [R97].
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● Cryptocurrencies are utilized to build decentralized probabilistic 
micropayment schemes.

● Prior work: MICROPAY [PS15] and DAM [CGL+17]
○ Sequential, interactive lottery protocol, computationally-heavy.

MicroCash 

addresses these 

limitations!!



MicroCash in a Nutshell
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Two escrows: 
payment and penalty.

Produce lottery draw 
outcome for each 

round.

Lottery does not require 
any interaction with the 

customer.

One round of 
communication.

Keep each ticket until 
its lottery draw time.

Winning tickets must 
be claimed before 

they expire.



Escrows
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● Payment escrow:

○ To allow payment concurrency, the payment escrow balance must 

cover all winning tickets with high probability (1-  ε).

● Penalty escrow:

○ Equals at least the additional utility gain a malicious customer obtains 

over an honest. 

○ Intuitively, it is the expected amount of payments a customer would 

pay for (m-1) merchants (at max ticket issuance rate) during the 

cheating detection period.

● Cannot be withdrawn by the owner customer.

○ Escrows can be spent using a restricted set of transactions.



Payment Escrow
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● Ticket winning events are independent.

● Number of winning tickets can be modeled as a binomial random 

variable.



Penalty Escrow I
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Penalty Escrow II
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- Putting It All Together - 

CacheCash



CacheCash
● A decentralized CDN system designed to address many of the limitations 

of previous solutions.

○ Creates a distributed, trustless bandwidth market.

○ Devises a novel service-payment exchange protocol that reduces the 

risks caused by malicious actors.

■ Pays a cache two lottery tickets per chunk instead of one, and ties and the 

currency value of these tickets together.

● Secure.

○ Employs cryptographic and financial approaches.

● Efficient.

○ Introduces several performance optimization techniques, and utilizes 

computationally-light primitives and protocols.
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CacheCash Pictorially
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Service Setup
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● Publisher side:

○ Advertises to recruit caches.

○ Creates payment and penalty escrow that list a set of beneficiary 

caches and payment setup parameters.

● Cache side:

○ Contacts a publisher to join its network.

○ Retrieves a copy of the content.

○ Shares a master secret key with the publisher.

● Miner side:

○ Processes the escrow creation transaction.

○ Creates a state for the new escrow to track its status.



Content Distribution
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Starts as soon as the 
escrow is confirmed on 

the blockchain

Request n data 
chunks

A ticket bundle contains:
- Cache contact info.
- Puzzle challenge.
- n tktr tickets.
- n tktL1 tickets.
- Masked tktL2 tickets.
- Masked kin,j
- A bundle signature.

Generate outer and 
inner layer encryption 

keys.



Payment Processing
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● A cache keeps each lottery ticket until the lottery draw time of that ticket.

● It observes the lottery draw outcome to determine whether this is a 

winning ticket (same as in MicroCash).

● The two-ticket model changes how payment value is computed:

○ A winning tktL2 increases the (cumulative) counter a cache owns by 1.

○ A winning tktL1 allows a cache to claim currency from the publisher’s 

escrow, with value f(z) = az

● It also requires deriving new bounds for the balances of the payment and 

penalty escrows.



Payment Escrow
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● Ticket winning events are independent.

● Number of winning tickets can be modeled as a binomial random 

variable.

● We apply a Chernoff bound and round slicing to reduce the required 

amount of funds while achieving the 1- ε coverage rule.



Penalty Escrow I
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Penalty Escrow II
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CacheCash Security Properties
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● Addresses service corruption.

○ Done financially, serving invalid chunks prevents unmasking tktL2.

● Defends against cache accounting attacks and other payment related 

threats.

○ By the security of CAPnet and MicroCash.

○ The case of a cache collecting only tktL1 is handled financially.

● Handles service theft attacks.

○ Devise financial techniques to deal with ticket duplication, issuing 

invalid payments, and not paying out tktL2.



● Models the service as a repeated game between the same set of parties.

● Analyzes publisher collusion case and caches collusion case.

○ Compare the utility gain of a malicious publisher (cache) to an honest 

one.

● Cache Collusion, devise a suitable payment function, f(z) = az such that:

● Publisher Collusion, caches give higher priority to an honest publisher 

clients than a malicious one.

○ Eventually leave its network.

Financial Defenses
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CacheCash Efficiency
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** A modest publisher can handle requests 
at a rate sufficient to serve 315,780 clients 
watching the same 1080p video 
concurrently.

** A modest client is able to retrieve 
content at a rate of 122 Mbps (watch 24 
1080p videos concurrently).

** Bandwidth overhead is less than 0.1%



Last Stop



Future Directions
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● Optimize service price and collateral cost.

○ Devise a payment function with a slower growth rate.

○ Modify the lottery protocol in a way that reduces the needed 

payment escrow balance.

● Preserve user privacy.

● Fault tolerance and cache selection.

● Full system implementation and deployment.



Conclusion
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● Cryptocurrencies have provided new templates for reshaping large-scale 

distributed systems and services.

● CacheCash targets online content distribution.
○ Creates a distributed bandwidth market.

○ Though this idea has been around for a long time, all prior solutions suffered from 

various drawbacks that restrained practicality.

● CacheCash addresses these drawbacks by introducing several building 

blocks.

○ ABC, CAPnet, MicroCash, financial defenses, etc.

● Benchmark results show that modest machines can serve/retrieve 

content at a high bitrate with minimal bandwidth overhead.
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Limitations of Existing Solutions
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System CDN-specific Decentralized Trustless 
Publishers

Incentive 
Type

Sponsoring 
content 
retrieval for 
clients

Address 
cache 
accounting 
attacks

KARMA [1] ✔ ✔ ✔ Bandwidth ✘ N/A

Floodgate [2] ✔ ✔ ✘ Monetary ✔ N/A

Dandelion [3] ✔ ✔ ✘ Hybrid ✔ N/A

Hincent [4] ✔ ✘ ✔ Hybrid ✔ N/A

Storj [5] &  
Filecoin [6]

✘ ✔ ✔ Monetary ✘ N/A

Torcoin [7] & 
Mysterium [8]

✘ ✔ ✔ Monetary ✘ N/A

Gringotts [9] ✔ Partial ✔ Monetary ✔ N/A

NIOS [10] ✔ Partial ✔ Monetary ✔ Requires a 
trusted CDN 
node

CacheCash ✔ ✔ ✔ Monetary ✔ ✔



Thesis Statement 

Design a secure, efficient, and low cost 

decentralized CDN service that addresses the 

previous challenges.
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Distribute content without 
alteration.
Pay caches as promised.
Ensure that caches has 
earned their payments.

Optimize performance in 
terms of bandwidth and 
computation overhead.

Lower service cost than 
traditional solutions.

No centralized entity, 
and does not place trust 
in anyone.

Non-goal: 
**Digital rights 
management.
**Preserving user’s 
privacy.



More ABC
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ABC Steps
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Define all 
scenarios that 
attackers may 
follow to pursue 
their goals.

Threat Scenario 
Enumeration 

and Reduction

Prioritize threat 
cases and design 
mitigation 
techniques to 
secure the 
system.

Risk Assessment 
and Threat 
Mitigation

Outline system 
use cases, 
modules, 
participant roles, 
its assets, etc.

System Model 
Characterization

Define broad 
threat categories 
that must be 
investigated.

Threat Category 
Identification



Threat Category Identification Example
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Step 2: Running Example Application

Target
Attacker 

Client Server Client and Server

External

Clients cannot be  
targets because 
they do not serve 
others.

Servers and external 
cannot attack because 
they do not ask/pay for  
service.

Reduced to the case 
of attacking servers 
only, clients do not 
serve others (cannot 
be targets).

Server

Server and 
External

Client (1) Refuse to pay after 
receiving the service.
(2) Issue invalid 
payments.

Client and External Reduced to the case of 
an attacker client. A 
client does not become 
stronger when colluding 
with other servers or 
external entities.

Server and Client

Client, Server, and 
External

Service Theft Threat Collusion Matrix



User Study - ABC vs. STRIDE
● Recruited 53 participants (mainly security masters students).

○ 5 pilot run, two groups of 24 subjects (one tested STRIDE, one tested 

ABC).

● Asked to build a threat model for a cryptocurrency-based file storage and 

retrieval network called ArchiveCoin.

● Each session spanned 3 hours.

○ Overview of cryptocurrencies.

○ A tutorial for ABC or STRIDE.

○ Overview of ArchiveCoin.

○ Threat model building.
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Results - Financial Aspects and Collusion
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● For financial threat in question (service theft of file retrieval): 

○ STRIDE 13%, ABC 71%.

● For collusion: none in STRIDE, while 45% in ABC.



Results - Accuracy
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● Computed precision, recall, and total score.

○ Precision -- STRIDE 0.48, ABC 0.57

○ Recall -- STRIDE 0.4, ABC 0.48

○ Total scores (normalized).

■ STRIDE avg 0.5, ABC avg 0.64



Use Cases
● Applied ABC to three real world systems.

○ Bitcoin - well established system.

○ Filecoin - close to launch.

○ CacheCash - our system, under development.

● We developed ABC while working on CacheCash when we realized that 

none of traditional frameworks suited our needs.
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Use Cases - Outcome

● All known threats to Bitcoin were mapped to the collusion matrices ABC 

produced.

● Revealed 3 unaddressed threats in the public design of Filecoin.

● ABC was useful for CacheCash in both pre-design threat modeling step, 

and after-design security analysis.
57

Aspect Bitcoin Filecoin CacheCash

ABC steps covered Steps 1-3 Seps 1-3 Steps 1-4

Completion time (hr) 10 47 Not tracked

No. of collusion matrices 5 14 9

Threat cases total 105 882 525

Distilled threat cases 10 35 22



More CAPnet

58



CAPnet Work Model
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Security Analysis

60

● Define a δ-bound, the ratio between the number of pieces a puzzle solver 

retrieves out of the total number of pieces in the requested chunks.

○ E.g., 0.9-bound means that 90% of the content will be retrieved in 

order to solve the puzzle.

● A publisher can set a specific bound by configuring the number of puzzle 

rounds.

○ Also, needs to configure the piece size.

● Simulation-based analysis while assuming a full knowledge of piece 

selection frequency.



Security Analysis II
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● We assume a strong adversary that knows the frequency distribution of 

all pieces in all data chunks.

● A client is colluding with a set of malicious caches, Cm, of size m < n.

● One will be the puzzle solver and one will be the piece provider.

● A client always retrieve chunks from honest caches.

● Set piece size <= hash size/m

● Using simulation, we determine the number of puzzle rounds based on 

the desired δ-bound.



Parameter Setup - An Example
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● 1 MB chunk size, 16-byte piece size, n = 6 caches.



Performance Evaluation
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● Benchmarks to evaluate puzzle generation and solving rate. 

○ Represented in terms of content bitrate.

● Study the effect of puzzle rounds (or δ bound), chunk size, and piece size.



CAPnet Efficiency - Generator
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A publisher can generate puzzles 
sufficient to serve 870,000 clients 
watching the same 1080p video 
concurrently.



CAPnet Efficiency - Solver
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A client can solve puzzles 
sufficient to retrieve 34 1080p 
videos concurrently.



More MicroCash
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The lottery Protocol
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Lottery Ticket Issuance
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● Each ticket is a simple structure consist of: 

 tktL = idesc||pkM||seqno||σC

● Ticket issuance must follow a ticket issuing schedule.



Escrow Balances - Example
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MicroCash Security Properties
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● Prevents escrow overdraft.

○ Front running attacks are not possible.

○ Ticket tracking prevent issuing more tickets than what can be 

covered.

● Prevents escrow-withholding.

○ An escrow will be refunded once all tickets expire.

● Prevents manipulating the lottery outcome.

○ Achieved by the use of VDF and ticket issuing schedule.

● Addresses duplicated ticket issuance.

○ Using detect-and-punish approach.



MicroCash Efficiency
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● Compared with a sequential micropayment scheme, MICROPAY.

● Computational cost.

○ Increases ticket processing rate by 1.67 - 4.1x.

● Effect of micropayment concurrency.

○ Amount of data logged on the blockchain: ~50% reduction.

● Bandwidth cost (in terms of lottery ticket size).

○ From customer to merchant: 48% reduction.

○ From merchant to miner: 60% reduction.



MicroCash Efficiency - MicroBenchmarks I
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● Ticket processing rate (ticket / sec):

Scheme ECDSA (secp256k1) ECDSA (P-256) EdDSA (Ed25519)

MICROPAY

Customer 1891 32606 20884

Merchant 1353 2530 2509

Miner 1365 2591 2565

MicroCash

Customer 1890 32978 20879

Merchant 2266 10463 7825

Miner 2266 10463 7825

Merchants and miners in MicroCash are 1.67x, 4.1x, and 3.1x faster than in 

MICROPAY (for the three digital signature schemes shown above).



MicroCash Efficiency - MicroBenchmarks II
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● Bandwidth cost (in terms of ticket size):

○ From customer to merchant; 274 bytes (MICROPAY), 142 byte 

(MicroCash, 48% reduction).

○ From merchant to miner; 355 byte (MICROPAY), 142 bytes 

(MicroCash, 60% reduction).

● Number of escrows:

○ MICROPAY needs 60, 1019, and 653 escrows to support the rates 

reported previously.

○ MicroCash needs only one escrow.



Real World Applications - Online Gaming
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- Bitcoin: Average transaction fee is $0.068, and average transaction size is 250 bytes.

- Minecraft: 125 servers, each serving 8 players. Cost is $12 per 8 players per month.

- With 2% overhead percentage, p = 0.00001

- Each player pay one ticket per minute.

- 𝜷 = $3.472



Real World Applications - Peer-assisted CDN
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- CDN: one publisher serving 1 Gpb, cost is $0.0067, each cache gets a ticket per 1 MB it 
serves.

- With 2% overhead percentage, p = 0.000015
- Issues 128 tickets per second
- 𝜷 = $3.4



More CacheCash
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Bundle Signature
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● Instead of signing each ticket individually, a publisher does the following:

○ Hash each ticket individually.

○ Hash all these hashes to produce a bundle hash.

○ Sign the bundle hash.

● A client can verify this signature because it receives the full ticket bundle 

all at once.

● A cache receives a copy of the signature and the bundle hash with tktr.

○ Verify signature over tickets by looking for an identical hash.



Batch Signature

78

● Compute a Merkle tree of all bundle hashes, sign the root, and provide a 

membership path for each bundle.



CacheCash Efficiency II
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● Bundle/Batch signature boost publisher’s speed by 7.2x and 22.7x, 

respectively, over individual ticket signing.

Signing Approach Publisher (Tbps) Cache (Gbps) Client (Mbps)

Individual tickets 0.064 11.34 121.92

Individual bundles 0.46 23.55 122.56

Batch (64) 1.43 23.5 121.92

Batch (128) 1.51 23.24 122.24

Batch (256) 1.44 23.45 121.28

Batch (512) 1.48 23.35 120.64

Batch (1024) 1.45 23.47 121.28



CacheCash Efficiency - Comparison with MicroCash
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- Bandwidth overhead cache/miner: CacheCash incurs 3.9x MicroCash’s cost.

- Delta blockchain size: CacheCach adds 4.6x the amount of data MicroCash adds.

- Still the overall bandwidth cost is less than 0.1%


