The Age of Cryptocurrencies: Bitcoin and Sisters

Ghada Almashaqbeh
Columbia University

April 2019
Outline

➢ Motivation.
➢ Main concepts.
 ○ Operation; transactions, mining, blockchain, consensus.
➢ Main problems and potential solutions:
 ○ Supported functionality,
 ○ Anonymity,
➢ Conclusions.
Once Upon A Time
Centralized Currency
Decentralized Currency
History

 - By Satoshi Nakamoto.
 - Described a distributed cryptocurrency system not regulated by any government.
- The system went live on January 2009.
- Now “Satoshi Nakamoto” is only associated with certain public keys on Bitcoin blockchain.
 - She/He/They was/were active on forums/emails/etc. till 2010.
- Currently there are 2129 cryptocurrencies (https://coinmarketcap.com/).
Bitcoin in a Nutshell

- A distributed currency exchange medium open to anyone to join.
- Utilize basic cryptographic primitives to control money flow in the system.

Main components:
- **Players**: miners and clients.
- **Transactions**: messages exchanged.
- **Blockchain**: an append-only log.
- **Mining**: extending the blockchain.
- **Consensus**: agreeing on the current state of the blockchain.
Bitcoin in a Nutshell II

- No real identities are required, just a key pair.
 - Usually the hash of the public key is used as an address.
- Losing the private key of a specific address means losing the coins associated to this address forever.
 - Wallets take care of tracking coins, issuing transactions, etc.
- Clients, or simple payment verification (SPV) nodes, are concerned with their transactions only.
 - Do not mine or hold full copies of the blockchain.
- Miners, or fully validating nodes, track everything and mine.
Bitcoin Pictorially
Virtual Coins

- Digital tokens, or transactions, that can be spent by providing signatures.
- No notion of accounts, track chains of transactions.
 - Wallets do that transparently for users.
 - Other cryptocurrencies do it differently, e.g., Ethereum have accounts for users.

Blockchain and Mining

- It is an append only log containing a full record of all transactions.
 - Full history is needed to handle double spending.
Mining

- Miners extend the blockchain by mining new blocks.
 - Proof-of-work in Bitcoin.
- Miners solve a hash puzzle,
 \[
 \text{SHA-256(SHA-256 (new block header))} < \text{Difficulty Target}
 \]
- Difficulty is adjusted periodically.
- This is needed to prevent Sybil attacks.
- Miners collect rewards: mining rewards + transaction fees.
- Total Bitcoin to mine is capped by 21 million BTC.
 - Currently there are around 17.6 million coins in circulation.
Consensus

- Miners hold, hopefully, consistent copies of the blockchain.
 - Only differ in the recent unconfirmed blocks.

- A miner votes for a block implicitly by building on top of it.

- Forking the blockchain means that miners work on different branches
 - Caused by network propagation delays, adversarial actions, etc.
 - Resolved by adopting the longest branch.

- Security is subject to the assumption that at least 50% of the mining power is honest.

But ...
Several Issues

- Supported functionality
- Anonymity
- Micropayments
- Mining and consensus
- Security

And more ...
Supported Functionality
Bitcoin

- **Vision:** distributed currency exchange medium with the virtue of simplicity.
 - Supports Turing-incomplete scripting language.
 - Tedious currency tracking model.

Ethereum

- **Vision:** a transaction-based state machine, or a virtual environment EVM, that runs distributed applications (Dapps).
 - Supports Turing-complete scripting language.
 - Global state, accounts, smart contracts, tokens, etc.
Ethereum

- Users can issue two types of transactions: message calls and smart contracts deployment.
- Miners mine new blocks and implement smart contracts for clients.
 - Pay gas to prevent DoS against miners.
- The blockchain contains:
 - a full record of transactions,
 - smart contracts code,
 - and the global state of the network.
- Famously known to create new digital currencies on top of its platform called Ethereum Tokens.
Mining and Consensus in Ethereum

- Currently it adopts a PoW based mining algorithm.
 - Plans announced to move to Casper, a proof-of-stake based mining.
- Ethereum has higher block generation rate than Bitcoin, around a block every 16 sec.
- Does the longest chain concept still work?
Smart Contracts

- Programs written in Ethereum scripting language, deployed on EVM and run by the miners.
- The full code of the smart contract and its current state are public on the blockchain.
- Once a contract is deployed, the contract owner cannot change its code.
 - Can ask the miners to destruct the contract (if it contains a function to do that) and deploy a new contract.
- Interacting with a contract is done by issuing transactions that invoke its functions.
- Each miner over the network implement the code of a smart contract but only one collects the gas cost.
 - The one who mines the next block.
Additional Features for Free?

- Security bugs in smart contracts.
- Gas cost (or transaction fees).
 - Limits the functionality scope of smart contracts.

The DAO Attacked: Code Issue Leads to $60 Million Ether Theft

Source: https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/

Code was supposed to eliminate the need to trust humans. But humans, it turns out, are tough to take out of the equation.

A coding error led to $30 million in ethereum being stolen
Anonymity
Is Bitcoin Anonymous?

- Believed to be, users are known by their public keys.
 - To protect privacy create new key pair for each new transaction.
 - Send the change to a new address each time.

No, it is not ...

- Proved to be pseudo-anonymous:
 - The blockchain is public, track the flow of transactions.
 - Cluster Bitcoin addresses into entities, link them to identities and/or Bitcoin addresses posted by their owners on forums, etc., [Reid et al. 2014]
 - Link this flow to users’ IPs based on Bitcoin protocol design [Koshy et al. 2014].
 - Track how the traffic is originated, a transaction source will broadcast this transaction several times to guarantee that it reaches miners. Same for destination.
 - Analyze these behaviors to link IP address to Bitcoin addresses.
Mixing

Goal: Break transactions linkability.
- This creates an anonymity set of the output.

Will the mixer return the money back? Will it forget the mapping?

Mixcoin [Bonneau et al., 2014]
- Mixers issue warranties to customers.
- Use a series of mixers to reduce the probability of local records risk.
- Still linkable in several cases, does not guarantee anonymity.
Decentralized Mixer

Zercoin [Miers et al., 2013]:

- Distributed mixing.
- Utilize zero-knowledge proofs to prove that a coin with a specific serial number belongs to a set of Zerocoins on the ledger (anonymity set).
- Does not hide currency value or destination address.
- Computationally heavy.
Anonymous Cryptocurrencies

- Hide source, destination, and value.
- Example: Zerocash [Ben Sasson et al., 2014]:
 - Utilize zk-SNARKs (zero-knowledge succinct non-interactive argument of knowledge).
 - Mint and pour predicates to create and spend private coins.
 - Coins are tracked based on their sequence numbers that is revealed once it is spent.
 - More efficient than Zerocoin, but still requires a trusted setup.
 - Launched officially as Zcash in 2016.
Conclusions

- Cryptocurrencies provide a disruptive work model.
 - But also exhibit complicated relations between, financially motivated, untrusted parties.
- Great potential and huge arena of applications.
 - However, deeper thinking is needed to assess when/where to apply.
- Are they just a hype that will fade away?!
 - Still provide an elegant proof of concept.
Questions?

aNd ThANk yOU :)
References

Cont’d.