ABC: A Cryptocurrency-Focused Threat Modeling Framework

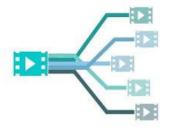
Ghada Almashaqbeh¹, Allison Bishop^{1,2}, Justin Cappos³

¹Columbia, ²Proof Trading, ³NYU

CryBlock 2019, Paris, France

Outline

- Background.
- > Motivation.
- ➣ The ABC framework.
 - System model characterization.
 - Threat category identification.
 - Threat scenario enumeration and reduction.
 - Risk assessment and threat mitigation.
- User study.
- Use cases and experiences.
- ➤ Conclusion.


Cryptocurrencies and Blockchain Technology

- An emerging economic force that received a huge interest.
- Started with Bitcoin in 2009.
 - Currently there are *2135 cryptocurrencies**.
 - Total capital market exceeding \$170 billion.
- Early systems focused on providing a virtual currency exchange medium.
 - Distributed; the trusted bank is replaced with the miners.
 - Publicly verifiable; everything is logged on the blockchain.
 - No real identities; anyone can join using a pseudonym.

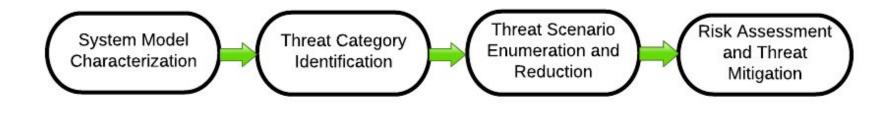
Cryptocurrency-based Distributed Services

- E.g., computation outsourcing (Golem), File storage (Filecoin), video transcoding (Livepeer).
- Any party can join to serve others in order to collect cryptocurrency tokens.
- The mining itself could be tied to the amount of service put in the system.
- Several economic aspects:
 - Could provide lower cost than centralized service providers.
 - A step forward on the "useful mining" path.

But ... Are They Secure?!

- Cryptocurrency/blockchain-based space experienced a huge number of attacks.
 - Financial incentives lead to more motivated attackers.
- Security is more challenging in cryptocurrency-based distributed services.
 - Complicated functionality.
 - Larger scale.
 - Usually open access model, anyone can join with no pre-identification.
 - Fair service-payment exchange is impossible between distrusted parties.

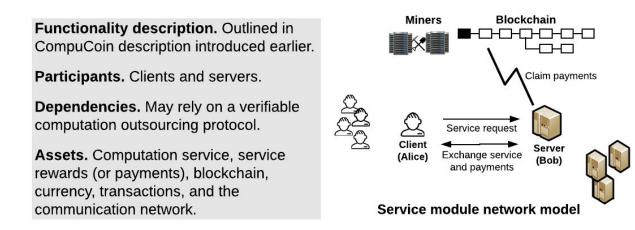
Threat Modeling and Cryptocurrencies


- Threat modeling is an essential step in secure systems design.
 - Explore the threat space to a system and identify the potential attack scenarios.
 - Helps in both guiding the system design, and evaluating the security of developed systems.
- Traditional approaches do not fit cryptocurrency-based systems.
 - Do not scale.
 - Do not explicitly account for attacker financial motivation nor collusion between these attackers.
 - Do not consider the new threat types cryptocurrencies introduce.

ABC: <u>Asset-Based Cryptocurrency-focused</u> Threat Modeling Framework

What is ABC?

- A systematic threat modeling framework geared toward cryptocurrency-based systems.
 - Its tools are useful for any distributed system.
- Helps designers to focus on:
 - Financial motivation of attackers.
 - New asset types in cryptocurrencies.
 - Deriving system-specific threat categories.
 - Spotting collusion and managing the complexity of the threat space.
 - Using a new tool called a collusion matrix.
- Integrates with other steps of a system design; risk management and threat mitigation.



Running Example: *CompuCoin*

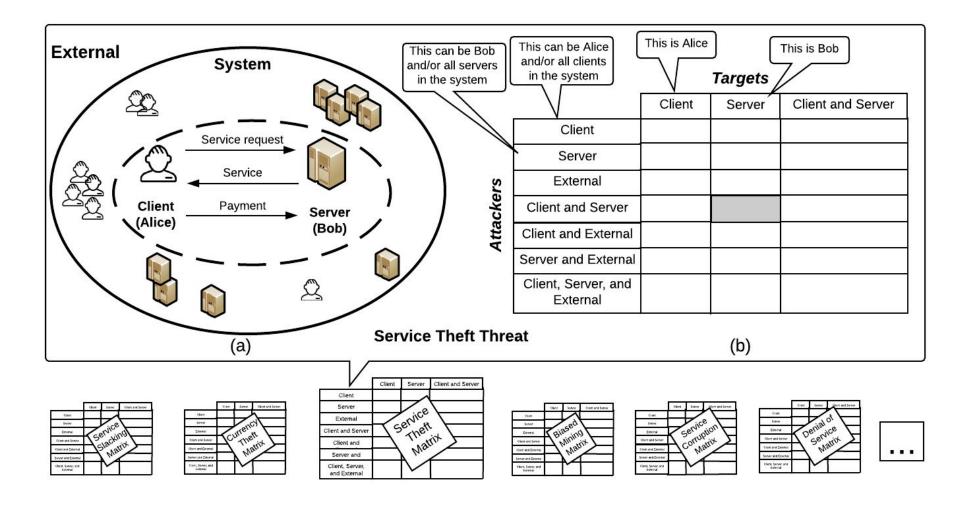
- A cryptocurrency that provides a distributed computation outsourcing service.
- Parties with excessive CPU power may join as servers to perform computations for others in exchange for CompuCoin tokens.
- The mining process is tied to the amount of service these servers provide.

Step 1: System Model Characterization

- Identify the following:
 - Activities in the system.
 - Participant roles.
 - Assets.
 - Any external dependencies on other services.
 - System assumptions.
- Draw a network diagram(s) of the system modules.

Step 2: Threat Category Identification

- Define broad threat classes that must be investigated.
- ABC defines these classes around the assets.
- For each asset, do the following:
 - Define what constitute a secure behaviour for the asset.
 - Use that knowledge to derive the asset security requirements.
 - Define threat classes as violations of these requirements.


Step 2: Running Example Application

Asset	Security Threat Category		
Service	Service corruption (provide corrupted service for clients).		
	Denial of service (make the service unavailable to legitimate users).		
	Information disclosure (service content/related data are public).		
	Repudiation (the server can deny a service it delivered).		
Service	Service slacking (a server collects payments without performing all		
	the promised work).		
payments	Service theft (a client obtains correct service for a lower payment		
	than the agreed upon amount).		
	Inconsistency (honest miners hold copies of the blockchain that may		
Blockchain	differ beyond the unconfirmed blocks).		
	Invalid blocks adoption (the blockchain contains invalid blocks that		
	does not follow the system specifications).		
	Biased mining (a miner pretends to expend the needed resources for		
	mining to be elected to extend the blockchain).		
Transactions	Repudiation (an attacker denies issuing transactions).		
	Tampering (an attacker manipulates the transactions in the system).		
	Deanonymization (an attacker exploits transaction linkability and		
	violates users' anonymity).		
Currency	Currency theft (an attacker steals currency from others in the system).		
Communication	Denial of service (interrupt the operation of the underlying network).		
network			

Step 3: Threat Scenario Enumeration and Reduction

- For each threat, define scenarios that attackers may follow to pursue their goals.
 - Be comprehensive, consider collusion and financial motivation.
- ABC devises collusion matrices to help with this step.
- Analyzing a collusion matrix involves:
 - Enumerating all possible attack scenarios.
 - Crossing out irrelevant cases and merge together those that have the same effect.
 - Documenting all distilled threat scenarios.

Collusion Matrix

Step 2: Running Example Application

Service Theft Threat Collusion Matrix

Target Attacker	Client	Server	Client and Server
External		Servers and external cannot attack because	
Server		they do not ask/pay for service.	Reduced to the case of attacking servers only, clients do not serve others (cannot be targets).
Server and External	Clients cannot be targets because they do not serve others.		
Client		 (1) Refuse to pay after receiving the service. (2) Issue invalid payments. 	
Client and External		Reduced to the case of an attacker client. A client does not become	
Server and Client		stronger when colluding with other servers or	
Client, Server, and External		external entities.	

Step 4: Risk Management and Threat Mitigation

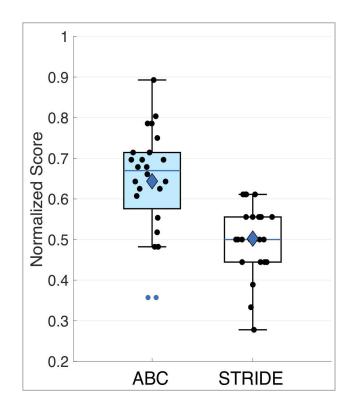
- An independent task of threat modeling.
- However, financial incentives affect prioritizing threats and their mitigation techniques.
 - Use game theory-based analysis to quantify the pay-off an attacker may obtain.
 - Use detect-and-punish techniques to address certain threat types.
- For example, in CompuCoin:
 - Locking payments in an escrow neutralizes threat 1.
 - Having a penalty deposit that is fortified upon cheating addresses threat 2.
 - Both require careful design and economic analysis.

Evaluation - User Study

User Study - ABC vs. STRIDE

- Recruited 53 participants (mainly security masters students).
 - 5 pilot run, two groups of 24 subjects (one tested STRIDE, one tested ABC).
- Asked to build a threat model for a cryptocurrency-based file storage and retrieval network called ArchiveCoin.
- Each session spanned 3 hours.
 - Overview of cryptocurrencies.
 - A tutorial for ABC or STRIDE.
 - Overview of ArchiveCoin.
 - Threat model building.

Results - Financial Aspects and Collusion



- For financial threat in question (service theft of file retrieval):
 - STRIDE 13%, ABC 71%.
- For collusion: none in STRIDE, while 45% in ABC.

Results - Accuracy

- Computed precision, recall, and total score.
 - Precision -- STRIDE 0.48, ABC 0.57
 - Recall -- STRIDE 0.4, ABC 0.48

- Total scores (normalized).
 - STRIDE avg 0.5, ABC avg 0.64

Evaluation - Use Cases

Use Cases

- Applied ABC to three real world systems.
 - Bitcoin well established system.
 - Filecoin close to launch.
 - CacheCash our system, under development.

• We developed ABC while working on CacheCash when we realized that none of traditional frameworks suited our needs.

Use Cases - Outcome

Aspect	Bitcoin	Filecoin	CacheCash
ABC steps covered	Steps 1-3	Seps 1-3	Steps 1-4
Completion time (hr)	10	47	Not tracked
No. of collusion matrices	5	14	9
Threat cases total	105	882	525
Distilled threat cases	10	35	22

- All known threats to Bitcoin were mapped to the collusion matrices ABC produced.
- Revealed **3** *unaddressed threats* in the public design of Filecoin.
- ABC was useful for CacheCash in both pre-design threat modeling step, and after-design security analysis.

Extended Version

https://arxiv.org/abs/1903.03422

(full user study results and deeper discussion of the use cases)

Conclusions

- Cryptocurrencies provide a disruptive work model.
 - But also exhibit complicated relations between, financially motivated, untrusted parties.
- Great potential and huge arena of applications.
 - However, deeper thinking is needed to assess when/where to apply.
 - Threat modeling is a critical step to enhance their security.
- Are they just a hype that will fade away?!
 - Still provide an elegant proof of concept.

