CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

I.ecture 8

Shared Key Protocols — Part |

Ghada Almashaqgbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline

d Modeling cryptography protocols.
J Session or record protocols.
 Entity authentication protocols.

Modeling Cryptographic Protocols

J

A protocol is a set of PPT (efficient) functions

1 Each receiving (state, input), outputting (state, output)
O Two (or more) parties, each has its own state

Including Init, In, [and if needed Wakeup] functions
O And task-specific functions, e.g., Send

Adversary can invoke any function, handle outputs

The execution process is a series of function
Invocations based on which the protocol proceeds.
Our discussion (from here) is mostly informal

O Definitions of protocols, execution, goals are hard
O Focus on shared-key, two-party protocols, MitM adversary

Record Protocols

Secure communication between two parties using shared
keys.

Two-party, shared-key Record protocol

 Parties/peers: Alice (sender), Bob (receiver)
d Simplest — yet applied — protocol

4 Simplify: only-authentication, Alice sends to Bob
O Goal: Bob outputs monly if Alice had Send(m)

 Init(k): shared key, unknown to adversary

Send(m)
Init(k) ‘ T In(x)
m
) » -

Alice MitM Adversary

Init(k)

‘_

 Let’s design the protocol !

Design of Two-party, shared-key Record protocol

1 Design: define the protocol functions
A Init(k) [Initialize Alice/Bob with secret key k]
d Send(m): Alice sends message m (to Bob)
4 In(x) : Bob receives x from adversary

Design of Two-party, shared-key Record protocol

1 Design: define the protocol functions

4 Init(k) [Initialize Alice/Bob with secret key K]
QA {s.k<k;}
 Save received key k in state-variable s. k (part of s)

1 Send(m): Alice sends message m (to Bob)
4 In(x) : Bob receives x from adversary

Send(m)
Ej
Init(k) po In(x) ‘ I'nit(k)
Bob

Alice MitM Adversary

Design of Two-party, shared-key Record protocol

1 Design: define the protocol functions
A Init(k) [Initialize Alice/Bob with secret key k]
 Send(m): party asked to send m to peer

O Code even simpler if both can send, receive
O E.g., Alice instructed to send message m to Bob

A {Output x « (m,MAC,(m)); }
d In(x) : Bob receives x from adversary
Send(m) Send(m)

\n_, - -2 .
Init(k) ¥ : /

Init(k)
— In(x) In(x) et
e m m ‘
e »- -

Alice MitM Adversary Bob

Design of Two-party, shared-key Record protocol

1 Design: define the protocol functions
d Init(k) [Initialize Alice/Bob with secret key k]
4 Send(m): Party sends message m to peer

d In((m, o)) : Party receives (m, o) from adversary
A {Output m if (o = MAC,(m));}
 Output the message only if validated Ok

Send(m) Send(m)

- N \ - _
. - P
Init(k) g Init(k)

— In(x) In(x) 3 =
IGS] m a

Alice MitM Adversary Bob

Design of Two-party, shared-key Record protocol

1 Design: define the protocol functions

Algorithm 2 Simplified (authentication-only) record protocol

[: Init(k) : {s.k hd k}
2: Send(m) : { Return (m,)\'fA(J,.;¢_k(rrz))}
3: In((m,0)): { Return m if o = 1\'IA(},;¢,k(m)}

Init(k) ‘
=

Alice

MitM Adversary

Two-party, shared-key Record protocol

 Design has many simplifications, easily
avoided:

1 Only message authentication
O No confidentiality!

 Only ensure same message was sent
O Allow duplication, out-of-order, “stale’ messages, losses

d Also: no retransmissions, compression, ...
 To add confidentiality: use encryption

11

Two-party record protocol with Confidentiality

A Init(k) [Initialize Alice/Bob with secret key k]
Q {s € (kg = FxCE) , kg = F(CA))

1 Send(m): Alice sends message m (to Bob)
d {Output x = (Ex,(m), MACy ,(Ex.(m))); }

d In((c,0)) : Bob receives (c, o) from adversary
d {Output D, (c) if (6 = MACy,(c));}
d OKk! (but still allows dups/re-ordering, etc.)

\
T T
Init(k) * 5
R In(x) In(x)
IS5 =] T T
= »- -

Alice MitM Adversary

Send(m) Send(m)

12

So, in summary

what does a secure shared-key
two-party record protocol mean?

How about the security of the one
with confidentially?

Entity Authentication Protocols

Ensure the identity of an entity (or a peer) involved in
communication.

Mutual Authentication Protocols

1 Our focus.

d In mutual authentication, each party
authenticates herself to the other.

 Alice knows that she is communicating with Bob,
and vice versa

 This requires, at least, one exchange of
messages.

1 A message from Alice and a response from Bob (or
vice versa).

1 Such a flow is called a handshake.

15

Handshake Entity-Authentication protocol

J A protocol to open sessions between parties
1 Each party assigns its own unique ID to each session

d And map peer’s-IDs to its own IDs
O Alice maps Bob’s iy to its identifier ID,(ig)
O Bob maps Alice’s i, to its identifier IDg (i)
d ‘Matching’ goal: iy = 1D,(IDg(iy)) ,ig = ID5(ID,(ip))

d Allow concurrent sessions and both to open
d Simplify: no timeout / failures / close, ignore session protocal, ...

Open g‘ Open \q
Inmit(k) ‘ Open(ia) Openlip) 4 Init(k)

1“1:.1‘| ’," Outlx) » IH|J'| ,." ()Hfl..l"l)
..'_4 - - - -

Alice MitM Adversary Bob

——

16

Handshake Entity-Authentication protocol

1 Protocol functions
QA Init(k): Initialize Alice/Bob with secret key k
1 Open: instruct Alice/Bob to open session
O In(x) : party receives x from channel (via MitM)
d Protocol outputs
O Open(i): party opened session i
4 Out(x) : party asks to send x to peer

()I~ n p {
Imit(k) ‘ Open(ia) Openl(ip) ' Init(k)
In(z) / Out(rx) » In(x) / Out(x) J
e - > - % ey

Alice MitM Adversary Bob

Open

17

Example : IBM’s SNA Handsha

dFirst dominant networking techno

KC

ogy

dHandshake uses encryption with shared key &

Alice Bob
AN,
N E(Ny), Ny.N,
Ny Ey(Ny) /

N, and Ng - randomly

chosen nonces

Insecure !! Why ?

SNA (Systems Network Architecture): IBM’s proprietary network architecture,
dominated market @ [1975-1990s], mainly in banking, government.

18

Attack on SNA’s Handshake

dMitM opens two sessions with Bob... sending N, to Bob
in 2"d connection to get £, (Np)

SNA is secure for sequential mutual authentication handshakes
but not concurrent.

MitM (spoofing as Alice) Bob
Session 1 Session 2 Session 1 Session 2
A, N,=1234
E(1234),Nz=5678
5678 A, N,=5678
E(5678) E(5678),Ng=9012
E(5675) Alice “identified’

(spoofed)

19

‘ Fixing Mutual Authentication

m Encryption does not ensure authenticity
o Use MAC to authenticate messages

o Although, a block cipher is a PRP, and a PRP is a PRF, and
a PRF is a MAC, but domain is limited!

s Prevent redirection

o ldentify party in challenge

o Better: use separate keys for each direction
s Prevent replay and reorder

o ldentify flow and connection

o Prevent use of old challenge: randomness, time or state
= Do not provide the adversary with an oracle access!

= Do not compute values from Adversary

o Include self-chosen nonce in the protected reply

20

TWO—Pal’ty Handshake PTOtOCO] <2PP>

J Ng, Mac(2 || A€B ||Ny|| Ng)

Alice [Macy3|[A2B || Ny|[Ng)

Use MAC rather than encryption to authenticate
Prevent redirection: include identities (4,B)

Prevent replay and reorder:
Nonces (N, Np)
Separate 2" and 3™ flows: 3 vs. 2 input blocks
Secure against arbitrary attacks [proved formally in the literature]

21

‘Covered Material From the Textbook

d Chapter 5
J Sections 5.1 and 5.2

22

Tnanx Youl

