
CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

Lecture 8
Shared Key Protocols – Part I

Ghada Almashaqbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline
q Modeling cryptography protocols.
q Session or record protocols.
q Entity authentication protocols.

2

Modeling Cryptographic Protocols
q A protocol is a set of PPT (efficient) functions

q Each receiving (state, input), outputting (state, output)
q Two (or more) parties, each has its own state

q Including Init, In, [and if needed Wakeup] functions
q And task-specific functions, e.g., Send

q Adversary can invoke any function, handle outputs
q The execution process is a series of function

invocations based on which the protocol proceeds.
q Our discussion (from here) is mostly informal

q Definitions of protocols, execution, goals are hard
q Focus on shared-key, two-party protocols, MitM adversary

3

Record Protocols

Secure communication between two parties using shared
keys.

Two-party, shared-key Record protocol
q Parties/peers: Alice (sender), Bob (receiver)

q Simplest – yet applied – protocol
q Simplify: only-authentication, Alice sends to Bob

q Goal: Bob outputs m only if Alice had Send(m)

q 𝐼𝑛𝑖𝑡(𝑘): shared key, unknown to adversary

q Let’s design the protocol !

5

Design of Two-party, shared-key Record protocol

q Design: define the protocol functions
q 𝐼𝑛𝑖𝑡(𝑘) [Initialize Alice/Bob with secret key k]
q 𝑆𝑒𝑛𝑑(𝑚): Alice sends message m (to Bob)
q 𝐼𝑛(𝑥) : Bob receives x from adversary

Design of Two-party, shared-key Record protocol

q Design: define the protocol functions
q Init(k) [Initialize Alice/Bob with secret key k]

q {𝑠. 𝑘ß 𝑘; }
q Save received key 𝑘 in state-variable 𝑠. 𝑘 (part of 𝑠)

q 𝑆𝑒𝑛𝑑(𝑚): Alice sends message m (to Bob)
q 𝐼𝑛(𝑥) : Bob receives x from adversary

Design of Two-party, shared-key Record protocol

q Design: define the protocol functions
q 𝐼𝑛𝑖𝑡(𝑘) [Initialize Alice/Bob with secret key k]
q 𝑆𝑒𝑛𝑑(𝑚): party asked to send 𝑚 to peer

q Code even simpler if both can send, receive
q E.g., Alice instructed to send message m to Bob

q {𝑂𝑢𝑡𝑝𝑢𝑡 𝑥 ← (𝑚,𝑀𝐴𝐶𝑘(𝑚)) ; }
q 𝐼𝑛(𝑥) : Bob receives x from adversary

Design of Two-party, shared-key Record protocol

q Design: define the protocol functions
q 𝐼𝑛𝑖𝑡(𝑘) [Initialize Alice/Bob with secret key k]
q 𝑆𝑒𝑛𝑑(𝑚): Party sends message m to peer
q 𝐼𝑛((𝑚, 𝜎)) : Party receives (𝑚, 𝜎) from adversary

q {𝑂𝑢𝑡𝑝𝑢𝑡 𝑚 if (𝜎 = 𝑀𝐴𝐶𝑘(𝑚)) ; }
q Output the message only if validated Ok

Design of Two-party, shared-key Record protocol

q Design: define the protocol functions
q 𝐼𝑛𝑖𝑡(𝑘) [Initialize Alice/Bob with secret key k]

q {𝑠ß 𝑘; } [Save received key k in the state s]
q 𝑆𝑒𝑛𝑑(𝑚): Alice sends message m (to Bob)

q {𝑂𝑢𝑡𝑝𝑢𝑡 𝑥 = (𝑚,𝑀𝐴𝐶𝑘(𝑚)) ; }

q 𝐼𝑛((𝑚, 𝜎)) : Bob receives (𝑚, 𝜎) from adversary
q {𝑂𝑢𝑡𝑝𝑢𝑡 𝑚 if (𝜎 = 𝑀𝐴𝐶𝑘(𝑚)) ; }

Two-party, shared-key Record protocol
q Design has many simplifications, easily

avoided:
q Only message authentication

q No confidentiality!

q Only ensure same message was sent
q Allow duplication, out-of-order, `stale’ messages, losses

q Also: no retransmissions, compression, …
q To add confidentiality: use encryption

11

Two-party record protocol with Confidentiality

q 𝐼𝑛𝑖𝑡(𝑘) [Initialize Alice/Bob with secret key k]
q {𝑠ß (𝑘! = 𝐹" `𝐸` , 𝑘# = 𝐹" `𝐴`)

q 𝑆𝑒𝑛𝑑(𝑚): Alice sends message m (to Bob)
q {𝑂𝑢𝑡𝑝𝑢𝑡 𝑥 = (𝐸"!(𝑚),𝑀𝐴𝐶""(𝐸"!(𝑚))) ; }

q 𝐼𝑛((𝑐, 𝜎)) : Bob receives (𝑐, 𝜎) from adversary
q {𝑂𝑢𝑡𝑝𝑢𝑡 𝐷𝑘(𝑐) if (𝜎 = 𝑀𝐴𝐶""(𝑐)) ; }

q Ok! (but still allows dups/re-ordering, etc.)

12

So, in summary

what does a secure shared-key
two-party record protocol mean?
How about the security of the one

with confidentially?

Entity Authentication Protocols

Ensure the identity of an entity (or a peer) involved in
communication.

Mutual Authentication Protocols
q Our focus.
q In mutual authentication, each party

authenticates herself to the other.
q Alice knows that she is communicating with Bob,

and vice versa
q This requires, at least, one exchange of

messages.
q A message from Alice and a response from Bob (or

vice versa).
q Such a flow is called a handshake.

15

Handshake Entity-Authentication protocol
q A protocol to open sessions between parties

q Each party assigns its own unique ID to each session
q And map peer’s-IDs to its own IDs

q Alice maps Bob’s 𝑖! to its identifier 𝐼𝐷" 𝑖!
q Bob maps Alice’s 𝑖" to its identifier 𝐼𝐷! 𝑖"

q ‘Matching’ goal: 𝑖" = 𝐼𝐷" 𝐼𝐷! 𝑖" , 𝑖! = 𝐼𝐷! 𝐼𝐷" 𝑖!

q Allow concurrent sessions and both to open
q Simplify: no timeout / failures / close, ignore session protocol, …

16

Handshake Entity-Authentication protocol
q Protocol functions

q 𝐼𝑛𝑖𝑡 𝑘 : Initialize Alice/Bob with secret key k
q 𝑂𝑝𝑒𝑛: instruct Alice/Bob to open session
q 𝐼𝑛(𝑥) : party receives 𝑥 from channel (via MitM)

q Protocol outputs
q 𝑂𝑝𝑒𝑛(𝑖): party opened session 𝑖
q 𝑂𝑢𝑡(𝑥) : party asks to send 𝑥 to peer

17

18

Example : IBM’s SNA Handshake
qFirst dominant networking technology
qHandshake uses encryption with shared key k

A, NA

Ek(NA), NA ,NB

NB,Ek(NB)

BobAlice

SNA (Systems Network Architecture): IBM’s proprietary network architecture,
dominated market @ [1975-1990s], mainly in banking, government.

NA and NB - randomly
chosen nonces

Insecure !! Why ?

19

Attack on SNA’s Handshake
qMitM opens two sessions with Bob… sending NB to Bob
in 2nd connection to get Ek(NB)

qSNA is secure for sequential mutual authentication handshakes
but not concurrent.

BobMitM (spoofing as Alice)
Session 1 Session 2 Session 1 Session 2

A, NA=1234
Ek(1234),NB=5678

5678 A, NA=5678

Ek(5678),NB=9012Ek(5678)

Ek(5678) Alice `identified`
(spoofed)

Fixing Mutual Authentication
n Encryption does not ensure authenticity

q Use MAC to authenticate messages
q Although, a block cipher is a PRP, and a PRP is a PRF, and

a PRF is a MAC, but domain is limited!
n Prevent redirection

q Identify party in challenge
q Better: use separate keys for each direction

n Prevent replay and reorder
q Identify flow and connection
q Prevent use of old challenge: randomness, time or state

n Do not provide the adversary with an oracle access!
n Do not compute values from Adversary
q Include self-chosen nonce in the protected reply

20

Two-Party Handshake Protocol (2PP)

Use MAC rather than encryption to authenticate
Prevent redirection: include identities (A,B)
Prevent replay and reorder:
q Nonces (NA,NB)
q Separate 2nd and 3rd flows: 3 vs. 2 input blocks

q Secure against arbitrary attacks [proved formally in the literature]

A, NA

NB , Mack(2 || AßB ||NA || NB)

Mack(3 || AàB || NA || NB) BobAlice

21

Covered Material From the Textbook
q Chapter 5

q Sections 5.1 and 5.2

22

