
CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

Lecture 7
Hash Functions – Part II

Ghada Almashaqbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline
q Hash based MACs.
q Domain extension.
q Merkle digest and Merkle trees.
q Blockchains.

2

3

Hash based MAC
n Hash-based MAC is often faster than

block-cipher MAC
n How? Heuristic constructions:

n Are these secure assuming CRHF ? OWF ? Both ?
q No.

q But: all ‘secure in random oracle model’

202 CHAPTER 4. HASH AND DIGEST SCHEMES

most widely used applications of hash functions - the construction of a Message
Authentication Code (MAC) scheme from a hash function; we show several
constructions which are secure under ROM but insecure under the standard
model.

4.6.1 HMAC and other constructions of a MAC from a
Hash function

One common use of cryptographic hash functions, is for message authentication,
by implementing a MAC function. The common motivation is that some
cryptographic hash functions are extremely e�cient, and this e�ciency can be
mostly inherited by HMAC. For example, the Blake2b [4] cryptographic hash
function achieves speeds of over 109 bytes/second, using rather standard CPU
(intel I5-6600 with 3310MHz clock).

About the terms: keyed hash vs. MAC. Constructions of MAC func-
tions from hash functions are often referred to as keyed hash, where they assume
that the hash function is ‘keyed’, in some way, using a secret key k. This
di↵ers from the ‘standard’ use of the term ‘keyed hash function’, which we
adopt, where the key k is not secret (i.e., we assume that k is known to the
adversary). Indeed, why use ‘keyed hash’ to mean exactly the same thing as
MAC? And surely we can’t only use ‘keyed hash’ to mean MAC, considering
MAC functions may be constructed in di↵erent ways, e.g., from a block cipher,
e.g., the CBC-MAC (subsection 3.5.2)!

Security of constructions of MAC from hash. Let us return to the
‘real’ question: how to construct a MAC from a cryptographic hash? Many
heuristic proposals were made, mostly constructing the MAC from a keyless
hash function. Three of the most well known heuristics were presented and
compared by Tsudik [186]. Given keyless hash function h, key k and message
m, these are:

Prepend Key: MACPK
k (m) = h(k ++m)

Append Key: MACAK
k (m) = h(m++ k)

Message-in-the-Middle: MACMitM
k (m) = h(k ++m++ k)

An obvious question is whether these schemes are secure - assuming that the
cryptographic hash function h satisfies some assumption. Let us first observe
that all three constructions are secure under the ROM.

Exercise 4.15. Prove that (a) MACPK , (b) MACAK and (c) MACMitM are
secure under the ROM.

Proof sketch: assume an adversary outputs m,� for a message m which it
did not give as input to the ‘oracle’ for h. Then the output of the corresponding
h function, was never computed yet, i.e., it is still random. For example,

Foundations of Cybersecurity: Applied Introduction to Cryptography

4

Hash-based MAC: HMAC
n HMAC uses only the unkeyed hash function ℎ:

HMACk(x)=h(kÅ opad || h(k Å ipad || x))
q opad, ipad: fixed sequences (of 36x, 5Cx resp.)

q It is a secure MAC under ‘reasonable assumptions’ [beyond our scope]

n Widely deployed – for MAC, PRF and KDF
q KDF – Key Derivation Function

n More results, more exposure è confidence!
n Hash are useful for MACs in another way:

q Hash then MAC for efficiency.

Digest Schemes
n Generalization of collision-resistant hash

q Input is a sequence of messages
q Output is n-bit digest, denoted Δ

n Three types of schemes:
q Digest-chain
q Merkle Digest (and Merkle trees)
q Blockchains (and Bitcoin)

n In other textbooks, this is referred to as
Domain Extension.

5

Digest-Chain Schemes
n Generalization of collision-resistant hash

q Input is a sequence of messages
q Output is n-bit digest, denoted Δ

6

4.7. MERKLE-DAMGÅRD CONSTRUCTION 205

All digest schemes extend the integrity-goal of CRHF, but instead of hashing
a single input, the input to a digest scheme is a sequence of input strings
(messages), which we usually refer to as a block, and typically denote by B.
Similarly to hash functions, one can define either a keyless or a keyed Digest-
Chain scheme.

Since digest schemes extend the goals of CRHFs, it is easy to see that,
for the same arguments presented for CRHF in § 4.2, there can actually be
no secure digest-chain scheme (as we define). In spite of that, following the
discussion in subsection 4.2.2, we only define the keyless variants, typically
constructed from keyless hash functions. All you need to do to have a keyed
digest-chain scheme, is to use a keyed CRHF instead, essentially.

Similarly to the case for hash functions and other cryptographic schemes, in
order to use asymptotic definitions of security, the functions of the Digest-chain
scheme must depend on a security parameter which is also the length of the
output of the digest function, i.e., the length of the digest; it is often denoted
by n. Recall that, to facilitate asymptotic security definitions, such security
parameter (for length of output) was also used for keyless hash functions, but
normally not written explicitly; we similarly usually omit the security parameter
n of digest schemes.

4.7.1 The collision resistant digest function

In this subsection, we focus on the basic collision-resistance property of digest-
chain schemes. This property is a trivial extension of CRHFs, and requires just
a single function, to which we refer as the digest function and denote by �.

The input to the digest function � is a block B = {m1, . . . ,ml}, i.e., a finite
sequence of messages. The output of the digest function, �(B), i.e., the digest
of B, is an n-bit binary sting.

We require the digest function to ensure collision-resistance, as defined
below. Intuitively, collision resistance means that it is infeasible for a PPT
adversary A to output a collision, i.e., two di↵erent blocks B 6= B0 which have
the same digest, i.e., �(B) = �(B0). Let us define this a bit more precisely,
although we still present the definition for fixed digest length of n bits; recall
that the more precise interpretation is that we define a whole sequence of such
functions �(n) for every integer n > 0, we just omit the (n) for brevity and
simplicity - and since in practice, we use a specific length anyway.

Definition 4.13. A digest function � is an e�ciently computable function
(in PPT) that maps blocks (finite sequences of binary strings) to n-bit binary
strings, i.e., � : ({0, 1}⇤)⇤ ! {0, 1}⇤, where n is the security parameter.

Digest function � is collision resistant if the digest collision-resistance
advantage "DCR

A,� (n) is negligible (in n), for every e�cient adversary A 2 PPT ,
where:

"DCR
A,� (n) ⌘ Pr ((B,B0) A(1n) s.t. B 6= B0 ^�(B) = �(B0)) (4.21)

Foundations of Cybersecurity: Applied Introduction to Cryptography

n

7

The Merkle-Damgard Digest Function
n The Merkle-Damgard construction of:

q Collision-Resistant Digest function from CRHF
q VIL CRHF from compression function (FIL CRHF): 𝑚! = 𝑛

n Idea: hash iteratively, message by message:
Δ 𝑚!, … , 𝑚" = ℎ Δ 𝑚!, … , 𝑚"#! | 1 |𝑚" ; Δ 𝑚! = ℎ 0$%!||𝑚!

n Lemma 4.2: if ℎ is a CRHF, then Δ is a collision-resistant digest
n Proof… (see details in textbook)

8

VIL CRHF from FIL CRHF
n Recall: design and cryptanalyze simple (FIL) function,

use it to construct strong (VIL) function
n Build VIL CRHF {0,1}*à{0,1}n from FIL CRHF

(aka compression function) comp:{0,1}mà{0,1}n

q E.g. m=2n , i.e. comp:{0,1}2nà{0,1}n

q The Merkle-Damgard constructs a CRHF from a
compression function

q Requires `MD-strengthening’ extension (next slide)

comp
x1Î{0,1}n comp(x1,x2)Î{0,1}n

x2Î{0,1}n

9

… bin(|x|)x[l]||10kx[2]x[1]

Merkle - Damgard Length-Padding
n Aka Merkle - Damgard Strengthening
n Let pad(x)=1||0k||bin (|x|) ; x’=x||pad(x)

q Where bin (|x|) is the L–bit binary representation of |x|
q And: |x|+|pad(x)|º0 mod L

q Simplify: assume |x|º0 mod L, |pad(x)|=L

n Let y0=IV be some fixed L bits (IV=Initialization Value)
n For i=1,..|x’|/L let yi=c(x’[i] || yi-1)
n Output MD[c]IV(x)=yl+1

cIV c c c h(x)=yl+1=c(|x| || yl)

This is just a high level
idea, care needed to
avoid collisions

The Digest-Chain Extend Function
n Beyond digest and collision resistance:

sequence-related integrity mechanisms
n For digest-chain, the extend function:

q Input: digest and ‘next’ sequence
q Output: digest (of entire sequence)
q Correctness requirement:

Use to (1) extend chain, (2) validate new digest (with
new seq.), or (3) use digest to validate a message

10

210 CHAPTER 4. HASH AND DIGEST SCHEMES

Exercise 4.18. Assume that |m1| = n, and consider a variant on the MD
construction where we change Equation 4.22 so that for l = 1, we have:
MDh.� ({m1}) ⌘ m1. This variant ‘saves’ a hash operation; however, show
that it may allow collisions.

4.7.3 The Extend Function and Validation of Entries and
Extensions

Digest schemes provide additional integrity mechanisms beyond collision resis-
tance. These mechanisms are useful for many applications and situations, in
which the sequence of messages is dynamic, such a in a log scenario. Clearly, in
a log, new messages may be added over time. Furthermore, we may want to
add messages to the log, to validate that a particular message appears in the
log, or to validate that a new digest of a log is consistent with a previous digest,
all without re-using the entire set of messages. There are two motivations for
not requiring the entire set of messages: improved e�ciency - and allowing
validation and log-extension by di↵erent parties, who may not even possess all
the messages in the log. The reader may already see how this will soon bring
us to more elaborate digest schemes, such as Merkle digests and Blockchains -
the topics of the following two sections.

However, for now, we still continue to discuss the simpler digest-chain
scheme. Our discussion so far was limited to the digest function, which can
be viewed as a very basic digest-chain scheme; we now extend it, to define a
‘proper’ digest-chain scheme.

The extension involves only one more function, which we actually refer to
as the extend function, and denote Extend. This function receives the ‘current’
digest and a sequence of (one or more) additional (‘new’) messages, and produces
the ‘new’ digest. The only additional requirement we need to make is that the
extend function is consistent with the digest function, i.e., that for any given
�l = �(Ml) and sequence of additional messages Ml+1,l0 , holds:

Extend(�l,Ml+1,l0) = �(Ml ++Ml+1,l0) (4.27)

The definition of a digest-chain scheme and its security requirements follows.

Definition 4.14. A Digest-Chain scheme is a pair (�, Extend) of PPT-
computable functions:

� is a digest function as defined in Definition 4.13.

Extend is the extend function, whose inputs are a digest �l and a sequence
of ‘additional’ messages Ml+1,l0 , and whose output is a ‘new’ digest �l0 .

A digest-chain scheme is correct if for any given �l = �(Ml) and sequence
of additional messages Ml+1,l0 , Equation 4.27 holds.

A digest-chain scheme is secure if it is correct and its digest function is
collision-resistant (see Definition 4.13).

Foundations of Cybersecurity: Applied Introduction to Cryptography

11

… 𝑚"𝑚#

The Merkle-Damgard Extend Function
n We can define Extend for Merkle-Damgard:

q Idea: Just continue last digest!

n Not secure to be used to construct a MAC!

h1 h Ext(Δ, 𝑚$, … , 𝑚%)ℎ(Δ||1||𝑚$)Δ
1

4.7. MERKLE-DAMGÅRD CONSTRUCTION 211

In spite of this simple definition and requirements, there are three di↵erent
ways to use the Extend function, for di↵erent applications and scenarios:

Extend current digest: this is direct use of � to extend the sequence of mes-
sages,Ml = {m1, . . . ,ml}, with additional messagesMl+1,l0{ml+1, . . . ,ml0 .
The digest function will receive as input the current digest �l = �(Ml),
and the sequence of additional messages Ml+1,l0 , and produce the new
digest �l0 . The basic correctness property is that this would be the digest
of the entire sequence, i.e., that �l0 = �(Ml ++Ml+1,l0).

Validate digest consistency: in this use-case, the current digest �l and the
new digest �l0 are computed by one entity, e.g., a bank, and received
by a di↵erent entity, Val, e.g., a customer. Val may want to validate
that �l0 is consistent with �l, and with a given set of new messages,
e.g., transactions, Ml+1,l0{ml+1, . . . ,ml0 . Namely, Val needs to know that
�l0 = �(Ml ++Ml+1,l0 , for some set of messages Ml, committed-to by the
old digest �l, i.e., �l = �(Ml). Notice that in some applications, Val may
not even be interested in the specific additional transactions in the set
Ml+1,l0 , but they must be used for validation when using a digest-chain
scheme; this will be avoided in the Merkle-digest scheme and Blockchain
scheme, presented in the following sections.

Validate Inclusion: in this use-case, Val is an entity who has a digest �l0 ,
and receives a particular message ml+1. Val wants to validate that ml+1

appeared in the sequence whose digest is the known �l0 , possibly also
with its sequence number. To this end, Val must be provided with the
�l = �(Ml) and with the entire sequence of additional messages Ml+1,l0 ,
and use these to reproduce �l0 .

The Merkle-Damg̊ard extend function. As mentioned in subsection 4.6.1,
it is well known that the Merkle-Damg̊ard construction allows extension; in
fact, for some applications such as MAC, this is not always a welcome feature.
However, this is a required feature for a digest-chain scheme. We therefore
define the Merkle-Damg̊ard extend function MDh.Extend, based on a hash
function h:

MDh.Extend (�, {m1, . . . ,ml}) ⌘

8
>><

>>:

Let �1 h(�++ 1 ++m1)
For l = 1: �1

For l > 1:
MDh.Extend (�1, {m2, . . . ,ml})

(4.28)

Lemma 4.4. If h is a CRHF, then (MDh.�,MDh.Extend) is a secure digest-
chain scheme.

Proof: Correctness follows by substituting using the definitions of the
functions, and collision resistance of MDh.� was proven in 4.2.

Foundations of Cybersecurity: Applied Introduction to Cryptography

Merkle Digest Schemes
n Digest function ∆: 𝑚!𝜖 0,1 ∗ → 0,1 𝒏

n Collision-resistance requirement

n Validation of Inclusion: 𝑃𝑜𝐼 and 𝑉𝑒𝑟𝑃𝑜𝐼
q 𝑃𝑜𝐼 function: compute Proof of Inclusion
q 𝑉𝑒𝑟𝑃𝑜𝐼 function: verify PoI
q Both: mandatory and optimized
q Optional, also Proof-of-Non-Inclusion (PoNI)

n Extending the Sequence: 𝑃𝑜𝐶 and 𝑉𝑒𝑟𝑃𝑜𝐶
q 𝑃𝑜𝐶: Proof of Consistency (from old digest to new)
q 𝑉𝑒𝑟𝑃𝑜𝐶 function: verify PoC
q Optional

12

Merkle digest scheme: definition

13

214 CHAPTER 4. HASH AND DIGEST SCHEMES

Definition 4.15 (Merkle digest scheme). A Merkle digest scheme M is a tuple
of three PPT functions (M.�,M.PoI,M.V erPoI), where:

M.� is the Merkle tree digest function, whose input is a sequence of mes-
sages B = {mi 2 {0, 1}⇤}i and whose output is an n-bit digest: M.� :
({0, 1}⇤)⇤ ! {0, 1}n.

M.PoI is the Proof-of-Inclusion function, whose input is a sequence of messages
B = {mi 2 {0, 1}⇤}i, an integer i 2 [1, |B|] (the index of one message in
B), and whose output is a Proof-of-Inclusion (PoI): M.PoI : ({0, 1}⇤)⇤⇥
N! {0, 1}⇤.

M.V erPoI is the Verify-Proof-of-Inclusion predicate, whose inputs are digest
d 2 {0, 1}n, message m 2 {0, 1}⇤, index i 2 N, proof p 2 {0, 1}⇤, and
whose output is a bit (1 for ‘true’ or 0 for ‘false’): M.V erPoI : {0, 1}n ⇥
{0, 1}⇤ ⇥ N⇥ {0, 1}⇤ ! {0, 1}.

A Merkle digest scheme M is correct if for every sequence of messages
B = {mi 2 {0, 1}⇤}i and every index i 2 [1, |B|], the Proof-of-Inclusion verifies
correctly, i.e.:

M.V erPoI(M.�(B),mi, i,M.PoI(B, i)) = True (4.29)

A Merkle digest scheme M is secure if for every e�cient (PPT) algorithm
A, both the collision advantage "Coll

M,A(n) and the PoI advantage "PoI
M,A(n) are

negligible in n, i.e., smaller than any positive polynomial for su�ciently large
n (as n!1), where:

"Coll
M,A(n) ⌘ Pr

(x, x0) A(1n) s.t. (x 6= x0)
^(M.�(x) = M.�(x0)

�

"PoI
M,A(n) ⌘ Pr

2

4
({m1, . . . ,ml}, d,m, i, p) A(1n) s.t. mi 6= m^

d = M.�({m1, . . . ,ml})^
M.V erPoI(d,m, i, p) = True

3

5

Where the probability is taken over the random coin tosses of A.

Merkle digest constructions are optimized not only for computation time, but
also to have succinct proofs. The length of the PoI in the simpler Two-layered
Merkle Tree (2lMT) construction of subsection 4.8.4 is n · l bits, and this is
reduced to n · dlog(l)e bits in the better-optimized (and widely used) Merkle
tree (MT) construction of subsection 4.8.5. The length of the digest is typically
n - the same as the length of the output of the underlying hash function h.

4.8.2 Extending the sequence: Proofs of Consistency

In many applications of the Merkle digest scheme, the digest is always computed
and validated by applying the � function to the entire sequence of messages.
However, there are also applications of Merkle digest schemes where entries may

Foundations of Cybersecurity: Applied Introduction to Cryptography

Merkle digest: correctness and security

14

214 CHAPTER 4. HASH AND DIGEST SCHEMES

Definition 4.15 (Merkle digest scheme). A Merkle digest scheme M is a tuple
of three PPT functions (M.�,M.PoI,M.V erPoI), where:

M.� is the Merkle tree digest function, whose input is a sequence of mes-
sages B = {mi 2 {0, 1}⇤}i and whose output is an n-bit digest: M.� :
({0, 1}⇤)⇤ ! {0, 1}n.

M.PoI is the Proof-of-Inclusion function, whose input is a sequence of messages
B = {mi 2 {0, 1}⇤}i, an integer i 2 [1, |B|] (the index of one message in
B), and whose output is a Proof-of-Inclusion (PoI): M.PoI : ({0, 1}⇤)⇤⇥
N! {0, 1}⇤.

M.V erPoI is the Verify-Proof-of-Inclusion predicate, whose inputs are digest
d 2 {0, 1}n, message m 2 {0, 1}⇤, index i 2 N, proof p 2 {0, 1}⇤, and
whose output is a bit (1 for ‘true’ or 0 for ‘false’): M.V erPoI : {0, 1}n ⇥
{0, 1}⇤ ⇥ N⇥ {0, 1}⇤ ! {0, 1}.

A Merkle digest scheme M is correct if for every sequence of messages
B = {mi 2 {0, 1}⇤}i and every index i 2 [1, |B|], the Proof-of-Inclusion verifies
correctly, i.e.:

M.V erPoI(M.�(B),mi, i,M.PoI(B, i)) = True (4.29)

A Merkle digest scheme M is secure if for every e�cient (PPT) algorithm
A, both the collision advantage "Coll

M,A(n) and the PoI advantage "PoI
M,A(n) are

negligible in n, i.e., smaller than any positive polynomial for su�ciently large
n (as n!1), where:

"Coll
M,A(n) ⌘ Pr

(x, x0) A(1n) s.t. (x 6= x0)
^(M.�(x) = M.�(x0)

�

"PoI
M,A(n) ⌘ Pr

2

4
({m1, . . . ,ml}, d,m, i, p) A(1n) s.t. mi 6= m^

d = M.�({m1, . . . ,ml})^
M.V erPoI(d,m, i, p) = True

3

5

Where the probability is taken over the random coin tosses of A.

Merkle digest constructions are optimized not only for computation time, but
also to have succinct proofs. The length of the PoI in the simpler Two-layered
Merkle Tree (2lMT) construction of subsection 4.8.4 is n · l bits, and this is
reduced to n · dlog(l)e bits in the better-optimized (and widely used) Merkle
tree (MT) construction of subsection 4.8.5. The length of the digest is typically
n - the same as the length of the output of the underlying hash function h.

4.8.2 Extending the sequence: Proofs of Consistency

In many applications of the Merkle digest scheme, the digest is always computed
and validated by applying the � function to the entire sequence of messages.
However, there are also applications of Merkle digest schemes where entries may

Foundations of Cybersecurity: Applied Introduction to Cryptography

Simply put, security means that a PPT adversary cannot find collisions
and cannot forge a valid PoI

Proof of Consistency (PoC)
n A Merkle digest scheme supports PoC if it

has two more functions:

n Correct PoC:

15

4.8. THE MERKLE DIGEST SCHEME 215

be added to the sequence over time, motivating the use of special operations
to extend and validate the consistency of the digest of the extended sequence
- like the Extend function of the digest-chain scheme (subsection 4.7.3). For
example, this may be desirable in order to allow a recipient to validate new
entries and the corresponding new digest, even if the recipient did not maintain
all the entries which were included in the sequence so far, e.g., for maintaining
a log or ledger of transactions.

The Merkle digest scheme, as defined in Definition 4.15, allows verification
of the integrity of the sequence (e.g., log) using just the digest, and verification
of a particular entry, using the PoI mechanism. However, to allow the sequence
of events to be extended over time, we need an additional mechanism: Proof of
Consistency (PoC).

Let BC be a block of lC messages, BC = {mC,1, . . . ,mC,lC}. Assume Bob
receives from Alice, securely, the digest of BC , which we denote �C , i.e.,
�C ⌘ �(BC).

Let BN be another block, of lN messages: BN = {mN,1, . . . ,mN,lN }. Intu-
itively, block BN is an extension of block BC . Namely, Alice computes and
sends to Bob the digest of the concatenation of the two blocks, BC ++ BN ;
Alice may also send BN to Bob - but not necessarily. Let BCN denote this
concatenation, i.e.:

BCN ⌘ BC ++BN = {mC,1, . . . ,mC,lC ,mN,1, . . . ,mN,lN }

Let �CN denote the digest of the concatenation BCN , i.e., �CN ⌘ �(BC++BN).
The goal of the PoC mechanism, is to allow Bob, using the V erPoC function,

to validate that �CN is consistent with �C , i.e., that �CN is a digest of a
block whose prefix has the digest �C .

Definition 4.16 (Proof-of-Consistency). We say that Merkle digest scheme
M supports Proof-of-Consistency given two additional functions, M.PoC for
extending a digest, and M.V erPoC for validating an extension, where:

M.PoC(BC , BN) is the Extend and Proof-of-Consistency function PoC, whose
input are two sequences, BC and BN , and whose output �CN = M.PoC(BC , BN)
is a binary string which we call the Proof-of-Consistency from �C ⌘
M.�(BC) to �CN ⌘ M.�(BCN).

M.V erPoC(�C ,�CN , lC , lN , p) 2 {True,False} is the Verify-Proof-of-Consistency
predicate, whose inputs are the two digests �C ,�CN , the numbers of en-
tries (lC and lN), and a string (PoC) p.

We use M to refer to the entire Merkle digest scheme, including the PoC,V erPoC
functions.

We say that the Merkle digest scheme M has correct PoC if for every two
sequences of messages BC = {mC,1, . . . ,mC,lC}, BN = {mN,1, . . . ,mN,lN }, the
Proof-of-Consistency verifies correctly, i.e.:

M.V erPoC (M.�(BC),M.�(BC ++BN), lC , lN ,M.PoC(BC , BN)) = True

(4.30)

Foundations of Cybersecurity: Applied Introduction to Cryptography

4.8. THE MERKLE DIGEST SCHEME 215

be added to the sequence over time, motivating the use of special operations
to extend and validate the consistency of the digest of the extended sequence
- like the Extend function of the digest-chain scheme (subsection 4.7.3). For
example, this may be desirable in order to allow a recipient to validate new
entries and the corresponding new digest, even if the recipient did not maintain
all the entries which were included in the sequence so far, e.g., for maintaining
a log or ledger of transactions.

The Merkle digest scheme, as defined in Definition 4.15, allows verification
of the integrity of the sequence (e.g., log) using just the digest, and verification
of a particular entry, using the PoI mechanism. However, to allow the sequence
of events to be extended over time, we need an additional mechanism: Proof of
Consistency (PoC).

Let BC be a block of lC messages, BC = {mC,1, . . . ,mC,lC}. Assume Bob
receives from Alice, securely, the digest of BC , which we denote �C , i.e.,
�C ⌘ �(BC).

Let BN be another block, of lN messages: BN = {mN,1, . . . ,mN,lN }. Intu-
itively, block BN is an extension of block BC . Namely, Alice computes and
sends to Bob the digest of the concatenation of the two blocks, BC ++ BN ;
Alice may also send BN to Bob - but not necessarily. Let BCN denote this
concatenation, i.e.:

BCN ⌘ BC ++BN = {mC,1, . . . ,mC,lC ,mN,1, . . . ,mN,lN }

Let �CN denote the digest of the concatenation BCN , i.e., �CN ⌘ �(BC++BN).
The goal of the PoC mechanism, is to allow Bob, using the V erPoC function,

to validate that �CN is consistent with �C , i.e., that �CN is a digest of a
block whose prefix has the digest �C .

Definition 4.16 (Proof-of-Consistency). We say that Merkle digest scheme
M supports Proof-of-Consistency given two additional functions, M.PoC for
extending a digest, and M.V erPoC for validating an extension, where:

M.PoC(BC , BN) is the Extend and Proof-of-Consistency function PoC, whose
input are two sequences, BC and BN , and whose output �CN = M.PoC(BC , BN)
is a binary string which we call the Proof-of-Consistency from �C ⌘
M.�(BC) to �CN ⌘ M.�(BCN).

M.V erPoC(�C ,�CN , lC , lN , p) 2 {True,False} is the Verify-Proof-of-Consistency
predicate, whose inputs are the two digests �C ,�CN , the numbers of en-
tries (lC and lN), and a string (PoC) p.

We use M to refer to the entire Merkle digest scheme, including the PoC,V erPoC
functions.

We say that the Merkle digest scheme M has correct PoC if for every two
sequences of messages BC = {mC,1, . . . ,mC,lC}, BN = {mN,1, . . . ,mN,lN }, the
Proof-of-Consistency verifies correctly, i.e.:

M.V erPoC (M.�(BC),M.�(BC ++BN), lC , lN ,M.PoC(BC , BN)) = True

(4.30)

Foundations of Cybersecurity: Applied Introduction to Cryptography

p

Secure Proof of Consistency

16

216 CHAPTER 4. HASH AND DIGEST SCHEMES

We say that M has secure PoC, if for every e�cient (PPT) algorithm A,
the PoC-advantage "PoC

M,A(n) is negligible in n, where:

"PoC
M,A(n) ⌘ Pr

2

4
(BC , BA, lC , lA, p) A(1n) s.t.

M.V erPoC(M.�(BC),M.�(BA), lC , lA, p) = True ^
^ BC is not a prefix of BA

3

5

Where the probability is taken over the random coin tosses of A.

Merkle Digest PoC vs. Blockchain PoC Merkle Digest and digest-chains
are both used in many Blockchain systems. Blockchains systems allow parties
to agree on a sequence of blocks of events (entries). Blockchains, like Merkle
digests, provide PoC and V erPoC mechanisms to ensure consistency. However,
this does not necessarily mean that they use the Proof-of-Consistency of the
Merkle scheme; often, blockchains use only the PoC of the digest chain (using
the Extend function). We discuss the blockchain scheme and constructions in
§ 4.9.

4.8.3 Merkle Digest scheme and Privacy

Using Merkle Digest schemes for privacy. A Merkle Digest scheme may
also be useful for privacy, when some recipients should have access only to
some files, e.g., if each file mi contains data which is private to user i. Note,
however, that CRHFs - and Merkle digests - may not ensure confidentiality.
Collision-resistance does not ensure that the value of h(m) will not expose some
information about m. Namely, for such privacy properties, the hash function h
should also have additional properties, such as other properties we discuss later
on for general-purpose cryptographic hash functions.

Exercise 4.19. Let h be a (keyed or keyless) CRHF. Use h to design another
hash function g, s.t. (1) g is also a CRHF, yet (2) g exposes one or more bits
of its input. Explain why this implies that the two Merkle constructions we
discussed, do not guarantee privacy. In particular, explain why the PoI of one
message may expose information about other messages.

4.8.4 2lMT: the two-layered Merkle Tree construction

In this and the next subsection, we present two ‘classical’ constructions of a
Merkle Tree, from an underlying CRHF. In this subsection, we begin with the
simple Two-layered Merkle Tree (2lMT) construction; this construction is not
very e�cient - in particular, for input which is a sequence of l messages, the
resulting Proof-of-Inclusion requires l·n bits. Nevertheless, for some applications,
this construction su�ces; and it is surely a good stepping stone to the more
complex and e�cient Merkle tree (MT) construction.

As the name Two-layered Merkle Tree (2lMT implies, the construction
operates in ‘two layers’: we first apply the hash function to each of the input
messages, and then apply it again - to the concatenated digest of all messages.

Foundations of Cybersecurity: Applied Introduction to Cryptography

To be consistent with previous
slides, replace BA with BCN

Simply put, the above says that a PPT
adversary cannot forge a valid PoC

Two-layered Merkle tree
n Short digest validates integrity of large object

q Often, object consists of multiple ‘files’

n Merkle tree : integrity for many ‘messages’
q Hash each ‘message’ in block, then hash-of-hashes

𝛿 = ℎ(ℎ 𝑚$ ||ℎ 𝑚& ||ℎ 𝑚' ||ℎ 𝑚()
q Validate each ‘message’ independently

n Advantages: efficiency (computation, communication) and privacy

17

𝑚# 𝑚$ 𝑚% 𝑚&

ℎ
ℎ(𝑚#)

ℎ
ℎ(𝑚$)

ℎ
ℎ(𝑚%)

ℎ
ℎ(𝑚&)

ℎ
𝛿

Two-layered Merkle tree
n Hash each item in block separately:

𝑥$ = ℎ 𝑚$, 𝑥& = ℎ 𝑚& , …
n Digest is hash of hashes:

𝑦 = ∆ 𝑚$,𝑚&,… = ℎ 𝑥$, 𝑥&, …

18

𝑚# 𝑚$ 𝑚% 𝑚&

ℎ
ℎ(𝑚#)

ℎ
ℎ(𝑚$)

ℎ
ℎ(𝑚%)

ℎ
ℎ(𝑚&)

ℎ
𝑦

𝑥# 𝑥$ 𝑥&

Allows each user to receive, validate only required items. How?

To verify inclusion of 𝑚!…

19

𝑚$

ℎ
ℎ(𝑚$)

ℎ/
𝑑

𝑥#
𝑥$

𝑥&

Receive and validate only 𝑚$. Other hashes still required, though.

𝑥%

20

The Merkle Tree Construction
n Reduce length of ‘proofs’ – send less hashes of ‘other msgs’

21

Merkle Tree: Proof of Inclusion (PoI)
n To prove inclusion of 𝑚' , send also ‘proofs’: ℎ$1&, ℎ(

Blockchains
q Next slides set.

22

Covered Material From the Textbook
q Chapter 3

q Sections 3.8, 3.9, and 3.10

23

