CSE 3400 - Introduction to Computer \& Network Security (aka: Introduction to Cybersecurity)

Lecture 6

Hash Functions - Part I

Ghada Almashaqbeh
 UConn

From Textbook Slides by Prof. Amir Herzberg

Outline

- Introduction and motivation.
\square Collision resistant hash functions (CRHF).
\square CRHF applications.
\square Weaker notions of security. - TCR, SPR, OWF.
\square Randomness extraction.
\square The random oracle model.

Hash Functions

- Input m : binary strings
- Output $h(m)$:
- 'Short' (n-bit) binary strings
- Aka message digest
- Efficiently computable
- Applications: cryptography, security, efficiency
- Keyed $h_{k}(m)$, where the key is public, or unkeyed $h(m)$

Hash functions: simple examples

- For simplicity: input m is decimal integer
- View as string of (three) digits

m
h
$h(m)$

- For example, $m=127 \rightarrow m_{1}=1, m_{2}=2, m_{3}=7$
- Least Significant Digit hash:

$$
h_{L S D}(m)=m_{3}
$$

- Sum hash: $\quad h_{\text {Sum }}(m)=\left(m_{1}+m_{2}+m_{3}\right) \bmod 10$
- Exercise:

$$
\begin{aligned}
& h_{L S D}(117)=\underline{7} \\
& h_{\text {Sum }}(117)=\underline{9}
\end{aligned}
$$

Note: the above are insecure hash functions, these are just toy examples to grasp the concept of hashing.

Motivation: Hashing for efficiency

- Input: large set (e.g., integers or strings)
- Goal: map `randomly’ to few bins
- E.g., to ensure efficiency - load balancing, etc.

Collisions?

- Input: large set (e.g., integers or strings)
- Goal: map `randomly’ to few bins
- E.g., to ensure efficiency - load balancing, etc.
- Adversary chooses inputs that hash to same bin

Security Goal: Collision Resistance

- A collision: two inputs (names) with same hash: $h\left(' B o b^{\prime}\right)=h\left({ }^{\prime}\right.$ Phil')
- Every hash has collisions, since |input|>>|output| !
- Collision resistance: hard to find collisions
- Note: attacker can always try names randomly until a collision is found
- But this should be ineffective: must try about (on average) N names (number of bins)

Collision Resistant Hash Function (CRHF)

- h is CRHF if it is hard to find collisions $h(x)=h\left(x^{\prime}\right)$
- Note: attacker can always try inputs randomly till finding collisions
- But this should be ineffective: must try about |Range| values
- Hard means that the probability that the attacker succeeds in finding a collision is negligible.

Collision Resistant Hash Function (CRHF)

- h is CRHF if it is hard to find collisions $h(x)=h\left(x^{\prime}\right)$
- Note: attacker can always try inputs randomly till finding collisions
- But this should be ineffective: must try about |Range| values
- Hard means that the probability that the attacker succeeds in finding a collision is negligible.

Definition . (Keyless Collision Resistant Hash Function (CRHF)). A keyless hash function $h^{(n)}(\cdot):\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ is collision-resistant if for every efficient (PPT) algorithm \mathcal{A}, the advantage $\varepsilon_{h, \mathcal{R}}^{C R H F}(n)$ is negligible in n, i.e., smaller than any positive polynomial for sufficiently large n (as $n \rightarrow \infty$), where:

$$
\varepsilon_{h, \mathcal{A}}^{C R H F}(n) \equiv \operatorname{Pr}\left[\left(x, x^{\prime}\right) \leftarrow \mathcal{A}\left(1^{n}\right) \text { s.t. }\left(x \neq x^{\prime}\right) \wedge\left(h^{(n)}(x)=h^{(n)}\left(x^{\prime}\right)\right]\right.
$$

Where the probability is taken over the random coin tosses of \mathcal{A}.

Keyless CRHF Do Not Exist!

- |Range|<<|Domain| so there is a collision where $h\left(x^{\prime}\right)=h(x), x \neq x^{\prime}$
- For a keyless CRHF there is a PPT algorithm A that can always output a collision: $A\left(1^{n}\right)=\left\{\right.$ return $\left.x, x^{\prime}\right\}$
- Proof: in textbook.
- Intuitively, since the function is fixed (same input-output mapping), a collision instance can be hardcoded in the attacker algorithm and just output that collision and win the security game.
- Solutions:
- keyed CRHF,
- Use functions that support weak-collision-resistance,
- or ignore! (more like asking if the collision is useful for the attacker?)

Keyed CRHF

Adversary knows k but not in advance cannot `know` a collision

Often referred to as ACR-hash (ANY-collision resistance)

Keyed CRHF - Definition

Definition (Keyed Collision Resistant Hash Function (CRHF)). Consider a keyed hash function $h_{k}(\cdot):\{0,1\}^{n} \times\{0,1\}^{*} \rightarrow\{0,1\}^{n}$, defined for any $n \in \mathbb{N}$. We say that h is collision-resistant if for every efficient (PPT) algorithm \mathcal{A}, the advantage $\varepsilon_{h, \mathcal{A}}^{C R H F}(n)$ is negligible in n, i.e., $\varepsilon_{h, \mathcal{A}}^{C R H F}(n) \in N E G L(n)$, where:

$$
\varepsilon_{h, \mathcal{A}}^{C R H F}(n) \equiv \operatorname{Pr}_{k \leftarrow\{0,1\}^{n}}\left[\left(x, x^{\prime}\right) \leftarrow \mathcal{A}(k) \text { s.t. }\left(x \neq x^{\prime}\right) \wedge\left(\left(h_{k}(x)=h_{k}\left(x^{\prime}\right)\right)\right]\right.
$$

Where the probability is taken over the random coin tosses of the adversary \mathcal{A} and the random choice of k.

Generic Collision Attacks

- An attacker that runs in exponential time can always find a collision (i.e., non PPT attacker)
- Easy: find collisions in 2^{n} time by trying $2^{n}+1$ distinct inputs (compute their hash and locate a collision).
- An attacker finds a collision with 2^{-n} probability (negligible probability).
- Choose x and x^{\prime} at random and check if they produce a collision.

The Birthday Paradox

- The birthday paradox states that the expected number q of hashes until a collision is found in $O\left(2^{n / 2}\right)$ not $O\left(2^{n}\right)$.
- It is $q \cong \approx^{n / 2} \cdot \sqrt{\frac{\pi}{2}} \approx 1.254 \cdot 2^{n / 2}$
- For 80 bit of effective security, use $n=160$!
- So to defend against an attacker who can perform 2^{80} hashes set the digest length to be at least 160 bits.
- So the range has a size of 2^{160} digests.
- Why? Intuition?

The Birthday Attack ('Paradox')

- Probability of NO birthday-collision:
- Two persons: (364/365)
- Three persons: $(364 / 365)^{*}(363 / 365)$
- ...
- n persons: $\quad \prod_{i=1}^{n-1} \frac{365-i}{365}$

Collision-Resistance: Applications

- Integrity (of object / file / message)
- Send $\operatorname{hash}(m)$ securely to validate m
- Later we will see how a hash function can be used to construct a MAC (called HMAC).
- Hash-then-Sign
- Instead of signing m sign hash(m)
- More efficient!
- We will explore this in detail once we study digital signatures.
- Blockchains
- Later

CRHF and Software Distribution

- Developer in LA develops a large software m
- Repository in DC obtains a copy of m
- User in NY wants to obtain m - securely and efficiently - Don't send m from LA to both NY and DC
- How?

CRHF: secure, efficient SW distribution

1. Repository in DC downloads software m from developer in LA
2. User download from (nearby) repository; receives m^{\prime}

- Is $m^{\prime}=m$? User should validate! How?

3. User securely downloads $h(m)$ directly from developer

- Digest $h(m)$ is short - much less overhead than downloading m

4. User validates: $h(m)=h\left(m^{\prime}\right) \rightarrow m=m^{\prime}$

Weaker Notions of Security

- Collision resistance provides the strongest guarantee.
- Gives more freedom to the adversary; the adversary wins if it finds any two inputs with the same digest.
- No conditions on these two inputs other than being in the domain of the hash function.
- Weaker security notions (but sufficient for many applications):
- Target collision resistance (TCR).
- Second preimage resistance.
- First preimage resistance.
- Birthday paradox (or attack) does not work against these weaker notions.
- It is for collision resistance; find any two inputs that collide!

Target CRHF (TCR Hash Function)

Adversary has to select target before knowing key

$$
\varepsilon_{h, \mathcal{A}}^{T C R}(n) \equiv \operatorname{Pr}_{k \leftarrow\{0,1\}^{n}}\left[\left\{\begin{array}{c}
x \leftarrow A\left(1^{n}\right) ; \\
x^{\prime} \leftarrow A(x, k)
\end{array}\right\} \text { s.t. }\left(x \neq x^{\prime}\right) \wedge\left(h_{k}(x)=h_{k}\left(x^{\prime}\right)\right]\right.
$$

TCR and Birthday Paradox?

- First: adversary selects x
- Probability for NO birthday-collision with x :
- Two persons: (364/365)
- Three persons: $(364 / 365)^{\star}(364 / 365)$
- ...
- n persons: $\quad \prod_{i=1}^{n-1} \frac{364}{365}=\left(\frac{364}{365}\right)^{n-1}$

Mar Apr May Jun Jul Aug Sep Oct Nov Dec

We (mostly) focus on keyless hash...

- Although there are no CRHFs
- And theory papers focus on keyed hash
- But...
- It's a bit less complicated and easier to work with.
\square No need to consider both ACR and TCR
- Why?
- Modifying to ACR is quite trivial
- Just make it keyed!
- Usually used in practice: libraries, standards, ...

$2^{\text {nd_Preimage-Resistant Hash (SPR) }}$

- Hard to find collision with a specific random x.

Use with care!

(think carefully about the security you want to achieve and see if SPR suffices)

CRHF/SPR vs. Applications

- CRHF secure for signing, SW-distribution
- How about SPR hash (weak-CRHF)?
- SW-distribution? YES
- Hash-then-sign? NO
- Why?
- Attacker can't impact SW to be distributed
- But... attacker may be able to impact signed msg!

SPR: Collisions to Chosen Messages

- Or: Alice and Mal, the corrupt lawyer
- Mal finds two `colliding wills', GoodW and BadW:
- GoodW: contents agreeable to Alice
- h(GoodW)=h(BadW)
- Alice Signs good will: Sign(h(GoodW))

GoodW: ‘I leave all to Bob’
$\operatorname{Sign}_{A}(\mathrm{~h}($ GoodW $))$

- Later... Mal presents to the court:

SPR: collisions to chosen message

- Or: Alice and Mal, the corrupt lawyer
- Mal finds two `colliding wills', GoodW and BadW:
- GoodW: contents agreeable to Alice

Is such attack realistic? Or SPR is enough 'in practice'?

SPR \& Chosen-prefix vulnerability

- Chosen-prefix vulnerability :
- Mal selects `prefix string' p
- Efficient algorithm finds :

$$
x \neq x^{\prime} \text { s.t. } h(p \| x)=h\left(p \| x^{\prime}\right)
$$

- Or, also for any suffix: $(\forall s) h(p\|x\| s)=h\left(p\left\|x^{\prime}\right\| s\right)$
- Hash may be SPR yet allow chosen-prefix attacks
- Such attacks found for several proposed, standard cryptographic hash function, e.g., MD5 and SHA1
- We show chosen prefix attack on HtS
- Example of possible attack on HtS with SPR

Chosen-prefix Attack

- Let $x<x^{\prime}$ be collision for prefix: $p=`$ Pay Mal \$'
- Mal tricks Alice into signing him an IOU for $\$ x$
- Alice signs, sends $s=S_{S}^{h}(m)$ where $m=`$ Pay Mal $\$ ’ \mid x$
- $S_{s}^{h}(m)=S_{s}(h(p \| x))=S_{S}\left(h\left(p \| x^{\prime}\right)\right)=S_{s}^{h}\left(m^{\prime}\right)$
- $m^{\prime}=`$ Pay Mal $\$^{\prime} \| x^{\prime}$
- Mal sends s, m ' to Alice's bank
- Bank validates "Ok" $=$ Verify $_{\text {Alice.v }}(m$ ',s)
- Bank gives $\$ x^{\prime}$ of Alice to Mal!!
- This attack is simplified:
- Mal has to find `good’ collision (high profit, convince Alice to sign)
- People sign (PDF) files, not plain text...
- In reality, attacker also chooses suffix \rightarrow stronger attack

Examples

- Let h_{k} be a keyed CRHF. Is $h_{k}{ }^{\prime}=h_{k}\left(h_{k}(x)\right)$ a CRHF? Why?
- Let $h\left(x_{1}\left\|x_{2}\right\| x_{3}\right)=x_{1}+x_{2}+x_{3} \bmod p$, is h is a CRHF? Why? Is it SPR? Why?
- Let $h_{k}(m)$ be a TCR function. Construct $h_{k}{ }^{\prime}(m)=0^{n}$ if $m[1:|k|]=k$ and $h_{k}(m)$ otherwise.
- Is $h_{k}{ }^{\prime}$ CRHF? Why?
- Is $h_{k}{ }^{\prime}$ TCR? Why?

One-Way Function (OWF)

- One-way function or first preimage resistance: given $h(x)$ for random x, it is hard to find x, or any x^{\prime} s.t. $h\left(x^{\prime}\right)=h(x)$
Compare to:
- Collision-Resistance (CR): hard to find collision, i.e., any (x, x^{\prime}) s.t. $h\left(x^{\prime}\right)=h(x), x \neq x^{\prime}$
- Second-preimage resistance (SPR): hard to find collision with random x, i.e., x^{\prime} s.t. $h\left(x^{\prime}\right)=h(x), x \neq x^{\prime}$

Application: One-time Password Authentication

- One-time password authentication:
- Select random x : 'one-time password’ (keep secret!)
- Validate using non-secret 'one-time validation token': $h(x)$
- Extend to one-time public-key signatures.
- Will be covered later when we study digital signatures.

How about a one-time password chain?

Not an Application: One-time Password Chain

- Alice computes a hash chain instead of one hash:
- Select random x_{0} then compute a chain of length l of hashes: $x_{i+1}=h\left(x_{i}\right)$
- This allows Alice to authenticate l times instead of one.
- Alice gives the server x_{l} then each time she wants to authenticate she sends x_{i-1}
- The server can check by verifying that $x_{i}=h\left(x_{i-1}\right)$
- A one-way function property alone may not sufficient, h has also to be a permutation.
- x_{i} need to be uniformly distributed.

Example

- Let $h(x)$ be a OWF, construct $g(x)$ as:
- $g(x)=0^{2 n}$ if $x \bmod 2^{n}=0$
- $g(x)=h(x) \| O^{n}$ otherwise
- $g(x)$ is a OWF.
- Why?
- But $f(x)=g(g(x))$ is not a OWF.
- Why?
- And recall that a one time password chain is a nested calls of the hash function.
- So $g(x)$ cannot be used to construct such a chain.
- Why?

Exercise

- Let h_{1}, h_{2} be both CRHF and OWF
- Use them to construct:
- $h_{\text {CRHF }}$ - CRHF but not OWF
- $h_{\text {OWF }}$ - OWF but not CRHF
- One possible solution:
- $h_{\text {CRHF }}(m)=\left\{1| | m\right.$ if $|m|=n, 0| | h_{l}(m)$ otherwise $\}$
$-h_{\text {OWF }}(m)=\left\{\begin{array}{c}h_{1}(m) \text { if }|m|=n \\ h_{1}\left(m_{1 . . n} \oplus h_{2}\left(m^{\prime}\right)\right) \text { if } m=m_{1 . . n} \| m^{\prime}\end{array}\right.$

Randomness Extraction

Let x be string chosen by adversary, except for m random bits

Select random bit $b \stackrel{\$}{\leftarrow}\{0,1\}$
$y_{b}=h(x)$
y_{b-1}
$\leftarrow\{0,1\}^{n}$ (random)

- 'If input is sufficiently random, then output is random'
- Multiple `sufficiently random' models
- Randomness extraction: if any m input bits are random \rightarrow all n output bits are pseudorandom
- For sufficiently large m
- Pseudorandom: it is not computationally-feasible to distinguish between these bits and truly random bits
- How to model random extraction? Two models are discussed next!

Von Neuman's Randomness Extractor

- Assume each bit is result of flip of coin with fixed bias
- The bit 1 is produced with probability p and the bit 0 is produced with a probability $1-p$
- Coin tosses are independent.
- Von Neuman's solution:
- Arrange input in pairs of bits: $\left\{\left(x_{i}, y_{i}\right)\right\}$
- Remove pairs where bits are the same, so now $x_{i} \neq y_{i}$
- Output x_{i}
- If assumption holds (independent biased coin flips) output is uniform !
- Bit 0 or 1 is produced with probability exactly $1 / 2$

Bitwise Randomness Extraction

- 'If input is sufficiently random, then output is random'
- Simple model: if any n input bits are random,
\rightarrow all n output bits are pseudorandom
- For sufficiently large n
- Simplified process:

Random Oracle Model (ROM)

- Use a fixed, keyless hash function h
- Analyse as if hash $h()$ is a random function
- An invalid assumption: $h()$ is fixed!
- Whenever $h($) is used, use oracle (black box) for random function
- Good for screening insecure solutions
- Random oracle security \rightarrow many attacks fail
- In practice: assume random oracle and use a standard hash function
- It was shown that in some cases the construction will become insecure.
- Better to have security with standard assumption than the non-standard ROM.

Covered Material From the Textbook

- Chapter 3
- Sections 3.1, 3.2 (except 3.2.6), 3.3, 3.4 (except 3.4.2), 3.5 (except 3.5.3).

Thank Youl

