CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

l.ecture 3

Encryption — Part 11
(and Pseudo-randomness)

Ghada Almashaqgbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline

* One time pad (OTP) encryption.

* Pseudorandom number generators (PRGS).
* Pseudorandom number functions (PRFs).

* Encryption schemes from PRGs and PRFs.

We can apply generic, exhaustive attacks to

every cryptosystem. So, 1s breaking just a
question of resources?

Can encryption be secure unconditionally —
even against attacker with unbounded time
and storager

%w A con!

- [Frank Miller, 1882] and
One-Time-Pad (OTP> [V;ar:han: (earnd Mausgrgne’?), 1919]

To encrypt message m, compute the bitwise
XOR of the key k with the message m:

o Er(m)=c where c[i] = Kk[i] ® m]i]

To decrypt ciphertext c, compute the bitwise
XOR of the key with the ciphertext:

o Dy(c)=m where m([i] = K[i] @ c]i]

m —>€"9

c=mak

~11/1/1/0 0 0 1 0 Keyk(pad)

\

Plalntext m /\é/—w Ciphertext c
5/4 3 2 8 7 6 ¥5 4 3 2 1

One-Time-Pad: Example, Properties

K = 11001 k= 11001
m = 10011 c= 01010
c = 01010 m=10011

* Correctness: k@ c=k®@(k®@m)=(k®dk)®m=0®m=m
* Very simple, and efficient... but:

- Stateful encryption (must remember the keys, or a counter of the key bits, used
so far to avoid using them again)

* And size of key must be (at least) equal to the message size.
« Key cannot be reused for several encryptions (one time!).

® Shannon [1949; simplified]: OTP is unconditionally secure, and for every
unconditionally-secure cipher, |k|=|m|
* Proofs of these claims? See crypto course / books ©

To go around the above limitations: we assume attackers are
computationally limited 0

Recall: Unconditional vs. Computational Security

* Unconditional security
* No matter how much computing power is available, the cipher

cannot be broken

« Computational security

The cost of breaking the cipher exceeds the value of the
encrypted info

The time required to break the cipher exceeds the useful
lifetime of the info

So it deals with Probabilistic Polynomial Time (PPT) attackers.

LLooking ahead: Stream Ciphers vs. Block Ciphers

« Stream cipher
« Encrypts a message bit by bit (stream of bits).

 Inherently stateful; needs to keep track of the location of last
encrypted bit.

* Block cipher

« Encrypts a block (string) of bits all at once.
« Can be stateless or stateful

Can we do computationally-secure
variant of OTP, with ‘short key’
([kf<<[m])>~

Yes, using pseudorandom number
generators (PRGs)!

PRG Stream Cipher

ldea: similar’ to OTP, but with bounded-length key &

o How?

o Use a pseudorandom generator fppc(+)
0 fpre (k) outputs a long stream of bits (longer than |4|)

o This stream is "indistinguishable from random’ bit-stream
o What is this ‘indistinguishability’ requirement??

o This is related to the famous Turing Test!

k

l

‘fpnc(-) \

S X
Y
C

pad = fpra(k); |pad| = |¢| = |m| > |E|.
A

= m D fprac(k)

PRG Stream Cipher - Example

1

0

Seed s PRG
(as key) 8 7 6 3 2
111 001
Plaintext m Bit i
8 7 6 5/ 4 3 2
10/0/0 1 00 1 1

5
0
JBit i of PRG(s)

of m
e () et
1

Ci Ciphertext c

8 7 6 b 4 3 2 1

0

0

0

1

10

The Turing Test [1950]

o Defined by Alan Turing

o Machine M is intelligent, if an evaluator cannot distinguish
between M and a human

o Only textual communication, to avoid “technicalities’

o If M is ‘intelligent’, judge will only be able to guess
o l.e., probability of distinguishing would be (at most) %2

11

The PRG Indistinguishabity Test

o Consider function f from n-bits to m-bits (m>n)
o Let seed and rand be random strings s.t.: [seed|=n, |rand|=m

o fis a PRG if no efficient distinguisher D can tell which is which.
o i.e., cannot output 1 for f(seed) and 0 given rand with non-negligible

advantage.
—|seed H
@ roits)” 1)
f(seed) rand *w

12

Recall: An Efficient (PPT) Algorithm

1 An algorithm A is efficient if its running time is bounded
by some polynomial in the length of its inputs.

d ‘Robust’ : does not depend on ‘machine’

d PPT (Probabilistic Polynomial Time) is the set of all
randomized efficient algorithms

d Given n bitinput x and y (i.e., n = |x| = |y]), is there an
efficient algorithm that:

O Finds xy (multiplication)?
1 Finds the factors of x?

13

Recall: Negligible Functions

Definition: a function ¢(n) that maps natural numbers
to non-negative real numbers is negligible if for every
positive polynomial p and all sufficiently large n it

1
holds that ¢ (TL) < %

4 Informally, e(n) converges to zero as n approaches
infinity.
d Useful propositions:

d If e,(n) and &,(n) are negligible, then &5(n)
= g,(n) +¢&,(n) Is also negligible.

 For any polynomial p(n) and negligible function £(n),
the function £,(n) = p(n).e(n) is also negligible.

14

The PRG Advantage

o A random guess is correct half of the time
o A good distinguisher will have an advantage:

$ESmy= Pr D)~ Pr (D)
s¢{0,1}n r&-{0,1}1£(0™)]
— | seed H
@ oits)” 10) ,

f(seed)

Pseudo-Random Generator: Definition

A PRG is an efficiently-computable function f € PPT, which
is length-increasing ((Vk)|f (k)| > |k|), and whose output
IS Indistinguishable from random, i.e.:
(VD € PPT) ep"(n) € NEGL(n)

epyy (n) = Pr [D(f(s))] Pr (D (r)]

s€-{0,1}m r&-{0,1}1/(0™)]

[0, o

16

Exercise

d Let f(s) be a PRG, are the following PRGs?
3 g(s) = 1]|f(s)
4 q(s) = (parity of s)|[f(s)
QO w(s) = ~f(s)

 ~is the bitwise complement or negation

17

‘Many PRG proposals 1

« Often based on Feedback Shift Register(s)

« Easy construction for efficient hardware implementations.

« Linear feedback (LFSR), or non-linear feedback function
(f(...) in the figure, e.g., XOR all previous bits to produce
the next one).

« LFSRis easily predictable (not secure PRG)

18

Many PRG proposals 11

 More complex (multi-registers, etc.), e.g. in GSM
 GSM's original stream-ciphers (A5/1, A5/2): broken
« RC4; efficient for software implementations, but known
attacks on 15t bytes ®

* In practice, attacks on PRGs (or constructions that
use PRGs) are often caused by an incorrect use
of a PRG.

« Example: a PRG-based OTP encryption scheme with a
fixed PRG seed.

What is wrong with this construction?

19

‘Example: Misusing Stream-Cipher

MS-Word 2002 uses RC4 to encrypt:
PAD = RC4(password)
Save PAD @ Document (bitwise XOR)

The Problem: same pad used to encrypt when document is
modified

Attacker gets: c1=PAD xor d1, c2 = PAD xor d2
Enough redundancy in English to decrypt!
[Mason et al., CCS'00]

20

Provably-Secure PRG?

 f is a secure PRG =» no PPT distinguisher
 But given k, it is trivial to identify f (k)

d This means that the PRG problem is in NP
d NP:in PPT, ifgivena ‘hint —e.qg., k...

d So a provable secure PRG = P + NP
d The ‘holy grail’ of the theory of complexity

1 So don’t expect a ‘real’ provably-secure PRG

 Instead, we prove that a given PRG construction is
secure, if <assumption>

1 The paradigm of proof by reduction

21

Provably-Secure PRG : by reduction

 Construct PRG f from g, assumed to be X

d Xis some hard problem (or a hardness assumption)
O Known (or believed) to be hard to be broken.

1 Reduction: if g is secure X =» f is a secure
PRG

1 Basic method of theory of cryptograph
4 Many such PRG constructions.

22

Proof by Reduction

1 General paradigm (informal).

1 Use the new construction attacker (in this case it is the
distinguisher D’) to build an attacker against the secure
(smaller) construction (in this case it is the distinguisher
D).

1 Analyze the success probability of D' based on that.

O Since the smaller construction is secure, the success
probability of D’ will be also negligible, thus proving the
security of the new construction.

O Usually, it is easier to use proof by contrapositive.

d Assume the new construction is insecure, then the smaller
attacker will succeed with non-negligible probability >
contradiction = the new construction is secure.

23

PRG by reduction — An Example

Let f: {0, 1} = {0, 1}"*1 be a secure PRG. Is f' : {0, 1}"1 > {0, 1},
defined as f'(b || x) =b || f(x), where b € {0, 1}, also a secure PRG?

Steps/hints:

intuitively, is f’ a secure PRG? Why?

Formula for the advantage of D (attacker against f)

Formula for the advantage of D’ (attacker against f’)

Assume f’ is insecure, construct the attacker D using the attacker
D’

Analyze the success probability and compute the advantage
of D (in terms of the advantage of D’)

You will reach a contradiction saying that the advantage of D
IS non-negligible, why is that a contradiction?

Given the contradiction, this means that the assumption that
f'is insecure is wrong, thus it is secure.

24

Stream-Cipher Like but Stateless Encrypt?

= PRG-based stream ciphers are stateful.

= Need to remember how many bits (or bytes) were
already enchpted, and and how many bits (or bytes) of
PRG output have been used so far.

= Can secure encryption be stateless?
= The answer is...

gw A con!

25

First, what’s a (‘truly’) random function f?

Fix domain D, usually binary strings: {0,1}™

Fix range R, usually binary strings: {0,1}"

For each value x in D, randomly select a value y in R
f(x) =y

Example:

- Range R {0,1}°
| 00

Domain D
{0,1}*

26

‘What’s a (‘truly’) random function?

Fix domain D, usually binary strings: {0,1}™

Fix range R, usually binary strings: {0,1}"

For each value x in D, randomly select a value y in R
f(x) =y

Example:

- Range R {0,1}°
00 [EENE

11010
01101
11101

Domain D
{0,1}*

27

‘What’s a (‘truly’) random function?

Another example:

Domain D: integers

Range R: bits {0,1}

For each integer i, randomly select a bit 1(i)

Example:
_ Range: bits {0,1}

Domain:

integers

28

‘What’s a (‘truly’) random function?

Another example:

Domain D: integers

Range R: bits {0,1}

For each integer i, randomly select a bit 1(i)

Example:
_ Range: bits {0,1)

Domain:

integers

29

Random-Function-Based Encryption

Stateful (counter) Design Randomized Design
i r; & {0,1}"
f() ()
m; _»é; mi —>é§
C; =My D f(l) C; = (;nl- @?Tf(riy. 'I'i)
- Sync-state (counter) - Stateless
- No extra random bits required - n random bits per plaintext bit

- |ciphertext|=|plaintext|

|ciphertext|=(n + 1) ‘|plaintext|

30

Random-Function Bitwise-Encryption

Stateful (counter) Design Randomized Design
i r; & {0,1}"
f() ()
m; _»é; mi _.éé
c; =m; @ f() G = (;ni @?Tf(‘l‘ii. ;)
Drawbacks:

- Require random function (impractical)
- Invoke function once-per-bit (computational overhead)

31

Reduce Overhead: Block-Encryption

Optimization: operate in blocks (say of n bits)
f be random function from n-bits strings ("blocks’) to n-bits strings ("blocks’)
p(i) be i-th block of n-bits of plaintext
c(i) be i-th block of n-bits of ciphertext
i ri & {0,1}"

| |

f0) fC)

mi —f—eD mi —H
— —
c; = (m; © f(i)) ci = (m; @ f(ri),m3)

(a) Stateful block encryption with (b) Stateless, randomized block encryp-
Random Function f(-). tion with Random Function f(-).

Challenge: sharing such random function f !
Size of table? 2" entries of n bits each...
Idea: use pseudo-random function (PRF) instead!

32

Encryption with PRE

= Operate in blocks (say of n bits)
= Use Pseudo-Random Function (PRF) f;(+), output n bits

= Efficient , compact
$

1 r; < {0,1}"
k— fx(*) k— fr(:)
_ /
m; —/—»EVB mi _f’éé
|
Y
C; = (;n.,,' D fA(J) C;i = (;Hi) fA~(‘l'1‘5-, T'i)

But what’s a PRF ?

33

‘ The PRF Indistinguishabity Test

o Fis a PRF from domain D to range R, if no distinguisher A:

o Outputs 1 (signaling PRF) given oracle access to F,(.) (for random n-bits key k), and
o Outputs 0 (signaling random) given oracle access to f(.), a random function (from D to

R)

Q—v n-bit Key k

Lk

Fil-)

Box 1: PRF

f(.) —.

34

PRF Definition

A PRF is "as secure as random function’
Against efficient adversaries (PPT), allowing negligible advantage
Yet practical, even efficient

Formally, a PRF Fj, is:

Definition 2.7. A pseudorandom function (PRF) is a polynomial-time com-
putable function Fy(z) : {0,1}* x D — R s.t. for all PPT algorithms A,

ehl(n) € NEGL, i.e., is negligible, where the advantage €% (n) of the PRF

F' against adversary A is defined as:

e (n)y= Pr [AAM] - Pr (AT (2.29)
k& {0,1}n fE{D—R}

The probabilities are taken over random coin tosses of A, and random choices
of the key k & {0,1}™ and of the function f & {D — R}.

35

Constructing a PRF

 Heuiristics: efficient, not proven secure

d Construct PRF from PRG
 Provably secure - if PRG is secure (reduction)

O But many PRG calls for each PRF computation
L =>» Not deployed in practice

d Provable secure PRF without assumptions?
 If exists, would imply that P = NP . Why?
O Given the key £, it is trivial to identify the PRF
P : problems solvable in polynomial time
d NP :same, but given also any ‘hint’ (e.g. key k)

PREF Applications

PRFs have many more applications:
Encryption, authentication, key management...
Example: derive independent key for each day d
Easy, with PRF and single shared key k
Key for day d is k,; = F,(d)
Exposure of keys of Monday and Wednesday does not
expose key for Tuesday

Similarly: separate keys for different goals, e.g., encryption
and authentication

i
Key k PRF F,

l

Fi(d)

37

Examples on the white board

1 Let Fk be a PRF, are the following PRFs and why?
J Fu(x) = F1"(x) || Fi(x)
J F u(x) = F(x) [| Isb(F(x))
O Isb is the least significant bit
d The following PRF is secure, prove that
formally (again using prove by reduction):

Let F : {0,1}" x {0,1}"*' — {0,1}*" be a PRF, construct F’ : {0,1}" x {0,1}"
{0,1}*" as
Fi(m) = Fi(m0)||Fy,(m1)

where m0 is m concatenated with 0, and m1 is m concatenated with 1.

%

38

‘Covered Material From the Textbook

d Chapter 2: section 2.4 and 2.5

Tnanx Youl

