CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

Lecture 11
Public Key Cryptography— Part 11

Ghada Almashaqgbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline

Public key encryption.
Digital signatures.
PKI

Public Key Encryption

‘Public Key Encryption

Key length [

Encryption Key e (e.d) Decryption Key d

(pubV rzvate)
Plaznte- Ciphertext Plaintext
c=E (m) m=Dy(E.(m))

Public Key Encryption IND-CPA Security

IND—CPA
Tﬂ,<KG,E,D> (b,n) {

(e,d) & KG(1™)

(mg,mq) < A(‘Choose’,) s.t. |mg| = |mq]
c* Ee(mb)

b* = A(‘Guess’, (c*,e))

Return b*

Definition 2.10 (PKC IND-CPA). Let (KG,E,D) be a public-key cryp-
tosystem. We say that (KG, E, D) is IND-CPA, if every efficient adversary
A € PPT has negligible advantage sg}f(%jggfi’ﬂ(n) € NEGL(n), where:

IND—-CPA _ IND—-CPA IND—-CPA
8<KG’E,D>’ﬂ(n) =Pr [Tﬂ7<KG7E7D>(1,n) = 1} — Pr [Tﬂ’<KG’E7D>(O,n) = 1]
(2.35)

Where the probability is over the random coin tosses in IND-CPA (including of
A and E).

Discrete Log-based Encryption

We will explore two flavors:

2 An adaptation of DH key exchange protocol to
perform encryption.

o ElGamal encryption scheme.

Turning [DH] to Public Key Cryptosystem

Solves dependency on DDH assumption; secure under the
(weaker) CDH assumption.

To encrypt message m to Alice:
o Bob selects random b
0 Sends: g mod p , m@h((e)?)=m&h(g® *4 mod p)
a Secure if h(g? %4 mod p) is pseudo-random

AlICe e = gdA modp

‘5\:\ e = >
%

< g’ modp, m@h(g?? mod p)

ElGamal Public Key Encyption

Variant of [DH]

PKC: Encrypt by multiplication, not XOR

To encrypt message m to Alice, whose public key is
e,=g%4 mod p:

o Bob selects random b

a Sends: g® mod p , m*(e)?=m*g? %4 mod p

Alice
\«r\“\,'

e,=g%4 mod p

__ >

(¢” mod p , (m* e}f) mod p)

Select
random b

FElGamal Public Key Encryption

Encryption:
BEG(m) « {(g" modp, m-chy modp) b <& [2,p 1]
Decryption:
Dy, (z,y) =2 % -y mod p
Correctness:

Da,(9" modp, m- ey modp) =

— (gb mod p)_dA : (m- (gdA)b mod p)} mod p
- —b-da b-dA]

= |9 ‘m - g mod p

—= m

FlGamal Public Key Cryptosystem

Problem: g”%4 mod p may leak bit(s)...
"Classical’ DH solution: securely derive a key:
h(g*Pimod p)

El-Gamal’s solution: use a group where DDH
believed to hold

Note: message must be encoded as member of
the group!

So why use it? Some special properties...

10

ElGamal PKC: homomorphism

Multiplying two ciphertexts produces a ciphertext of
the multiplication of the two plaintexts.

Given two ciphertexts:
Ee,(mq) = (x1,y1) = (g°* mod p,my * g"*4 mod p)
EeA(mZ) = (x2,¥2) = (gbz mod p, my * "4 mod p)
MUlt((x1:)’1)» (xz»YZ)) = (Xx1X2,Y1Y2)
Homomorphism:

= (gb1+b2 mOdp, ml . mz *g(b1+b2)'dA mOdp) =
= E,,(m; -my)

> compute E,, (m, - m,) from E, ,(my), E,,(m;)

11

RSA Public Key Encryption

First proposed — and still widely used
Not really covered in this course — take crypto!

Select two large primes p,q ; let n=pq
Select prime ¢ (public key: <n,e>)
o Or co-prime with @(n) =(p-1)(g-1)
Let private key be d=¢' mod @(n) (i.e., ed=1 mod d(n))
Encryption: RSA.E, ,(m)=m® mod n

Decryption: RSA.D,,(c) =c mod n
Correctness: D, (E, (m))= (m®)? =m = m mod n

a Intuitively: ed=1 mod ®@(n) =» me? = m mod n

But why? Remember Euler’s theorem.

12

RSA Public Key Cryptosystem

Correctness: D, ,(E, (m))= m® mod n
med=ped= I+ D) =y gyl P0) =py (P)]

m® mod n =m (m®™ mod n)' mod n
Eulers’Theorem: m®™ mod n=1 mod n

=2 D, (E, (m)=m® mod n=m 1'mod n =m
Comments:

O m<n =m=m modn

a Eulers’ Theorem holds (only) if m, n are co-primes

o If not co-primes”? Use Chinese Reminder Theorem
A nice, not very complex argument
But: beyond our scope — take Crypto!

13

he RSA Problem and Assumption

RSA problem: Find m:, given (n,¢) and ‘ciphertext’ value
c=m¢° mod n

RSA assumption: if (n,¢) are chosen "correctly’, then the
RSA problem is "hard’

o l.e., no efficient algorithm can find » with non-
negligible probability

$
o For 'large’ nand m« {1, ..., n}

RSA and factoring

o Factoring alg =» alg to ‘break’ RSA

o Algorithm to find RSA private key =» factoring alg
o But: RSA-breaking may not allow factoring

14

RSA PKC Security

It is a deterministic encryption scheme -
cannot IND-CPA secure.

RSA assumption does not rule out exposure
of partial information about the plaintext.

It is not CCA secure.

A solution: apply a random padding to the
plaintext then encryption using RSA.

15

Padding RSA
Pad and Unpad functions: 7 = Unpad(Pad(m;r))

S e
a Encryption with padding: € = [Pad(m,r)]” modn,
o Decryption with unpad: m — Unpad(cd mod n)

Required to...

o Add randomization
Prevent detection of repeating plaintext

o Prevent ‘related message’ attack (to allow use of tiny e)
o Detect, prevent (some) chosen-ciphertext attacks

Early paddings schemes subject to CCA attacks
o Even ‘Feedback-only CCA’ (aware of unpad failure)

16

How does Bob know Alice’s public key?

Depends on threat model...

o Passive (‘eavesdropping) adversary: just send it
2 Man-in-the-Middle (MITM): authenticate

Authenticate — how?
2 MAC: requires shared secret key

o Public key signature scheme:
authenticate using public key

o Certificate: public key of entity — signed by
certificate authority (CA)

This comes under what is called Public Key
Infrastructure (PKI)

17

Digital Signature

18

Public Key Digital Signatures

Key Generation
Key length n $
(A.s,A.v) « KG(1™)
Alice s private Alice’s public
o Signing key A.s verification key A.v
J A.s A.v &@5‘
i : by
Message | o (m,o) .
m Signo« S, (m) | Verify V,.(m, o)

Sign using a private, secret signature key (4.s for Alice)
Validate using a public key (4.v for Alice)

Everybody can validate signatures at any time
o Provides authentication, integrity and evidence / non-repudiation
o MAC: ‘Yjust’ authentication+integrity, no evidence, can repudiate

19

Digital Signatures Security: Unforgeability

Key Generation
Key length n $
(A.s,A.v) « KG(1™)
Alice s private Alice’s public
o Signing key A.s verification key A.v
J A.s A.v &@5‘
i : by
Messagi’ o (m,o) .
m Signo« S, (m) | Verify V,.(m, o)

Unforgeability: given v, attacker should be
unable to find any ‘valid’ (m, o), i.e., V (m, 0)=0OK

Even when attacker can select messages m’, receive
o’=S,(m’)
For any message except chosen m

20

Digital Signature Scheme Detinition

Definition 1.4 (Signature scheme and its correctness). A signature scheme is
defined by a tuple of three efficient (PPT) algorithms, & = (K@, Sign,Verify),
and a set M of messages, such that:

KG is a randomized algorithm that maps a unary string (security parameter
1Y) to a pair of binary strings (KG.s(1V), KG.v(1)).

Sign is an algorithm® that receives two binary strings as input, a signing key
s € {0,1}* and a message m € M, and outputs another binary string
o€ {0,1}*. We call o the signature of m using signing key s.

Verify s a predicate that receives three binary strings as input: a verification
key v, a message m, and o, a purported signature over m. Verify should
output TRUE if o s the signature of m using s, where s is the signature
key corresponding to v (generated with v).

Usually, M 1is a set of binary strings of some length. If M 1is not defined, then
this means that any binary string may be input, i.e., the same as M = {0, 1}*.

We say that a signature scheme (KG,Sign,Verify) is correct, if for every
security parameter 1° holds:

(V(s,v) & xeal), me M) Verify, (m, Sign, (m)) = Ok’ (1.31)

21

Digital Signature Scheme Security

Algorithm 1 The existential unforgeability game EU F;fc%n(ll)(ll) between
signature scheme & = (K G, Sign, Verify) and adversary A.

(s,0) & S.KC(Y) ;

(m,) & A555:0) (v, 1))
return (8.Verify,(m,o) A (A didn’t request Sg(m)));

Definition 1.6. The existential unforgeability advantage function of adversary
A against signature scheme & s defined as:

PUF=Sian (1l = Py (EUFfzfg”(ﬂ)(ﬂ) - TRUE) (1.32)
Where the probability is taken over the random coin tosses of A and of & during

the run of EUFszgn(1Y) with input (security parameter) 1!, and EUF%C%"(IZ)
1 the game deﬁned in Algorithm 1.

22

RSA Signatures

Secret signing key s, public verification key v
Short (<n) messages: RSA signing with message recovery

o = RSA.S,(m)= m* mod n,

RSA.V,(m, g)={ OK if m= d " mod n, else, FAIL }
Long messages: 7?

o Hint: use collision resistant hash function (CRHF)

2 o =RSA.S,(m)= h(m)S mod n,
RSA.V,(m, 0)={ OK if h(m)= o ¥ mod n, else, FAIL }

Hash h

Sign S

Discrete-Log Digital Signaturer

RSA allowed encryption and signing...
based on assuming factoring is hard

Can we sign based on assuming
discrete log is hard?

Most well-known, popular scheme: DSA
o Digital Signature Algorithm, by NSA/NIST
o Details: crypto course

24

Public Key Infrastructure
PKI

25

Public keys are very useful...

Secure web connections

Software signing (against malware)
Secure messaging, email
Cryptocurrency and blockchains.

But ...

o How do we know the PK of an entity?
Mainly: signed by a trusted Certificate Authority
E.g., in TLS, browsers maintain list of ‘root CAs’

26

Public Key Certificates & Authorities

m Certificate: signature by Issuer / Certificate Authority (CA) over
subject’s public key and attributes

= Attributes: identity (ID) and others...
o Validated by CA (liability?)
o Used by relying party for decisions (e.g., use this website?)

(Aka CA or Issuer)
T

{Certiﬁcate Authority}

Al Bob’s public key | ' Certificate
lice Bob.e : ! Cp

(relying party)

P Certificate Cp: ¥
(Subject J

Cp = Signca.s(bob.com, Bob.e, . ..)

(e.g, website bob.com))

27

Certificates are all about Trust

Certificate: Cgz,, = Sign-, (Bob.com,Bob.e, ...)
o CA attests that Bob's public key is Bob. e

Do we trust this attestation to be true?

Special case of trust management
o Important problem far beyond PKI... still not resolved !

28

Rogue Certificates

Rogue cert: equivocating or misleading (domain) name

Attacker goals:
o Impersonate: web-site, phishing email, signed malware..

o Equivocating (same name): circumvent name-based security
mechanisms, such as Same-QOrigin-Policy (SOP), blacklists,
whitelists, access-control ...

o Name may be misleading even if not equivocating
Types of misleading names (‘cybersquatting’):
o Combo names: bank.com vs. accts-bank.com, bank.accts.com, ...

o Domain-name hacking: accts.bank.com vs. accts-bank.com, ... or
accts-bank.co

o Homographic: paypal.com [l is L] vs. paypal.com [i is |]
o Typo-squatting: bank.com vs. banc.com, baank.com, banl.com,...

29

PKI Failures

Although the signature over the certificate verifies

correctly, there is still a failure and the certificate must be
revoked.

o This is called a PKI failure.
PKI failures include:

o Subject key exposure.

a CA failure.

o Cryptanalysis certificate forgery.
Find collisions in the hash function used in the HtS
paradigm,

or exploit some vulnerability in the digital signature
scheme used for signing.

30

Some Infamous PKI Failures

2001 VeriSign: attacker gets code-signing certs

2008 Thawte: email-validation (attackers’ mailbox)

2008,11 | Comodo not performing domain validation

2011 DigiNotar compromised, 531 rogue certs (discovered); a rogue
cert for * google.com used for MitM against 300,000 Iranian
users.

2011 TurkTrust issued intermediate-CA certs to users

2012 Trustwave issued intermediate-CA certificate for eavesdropping

2013 ANSSI, the French Network and Information Security Agency,
issued intermediate-CA certificate to MitM traffic management
device

2014 India CCA / NIC compromised (and issued rogue certs)

2015 CNNIC (China) issued CA-cert to MCS (Egypt), who issued
rogue certs. Google and Mozilla removed CNNIC from their
root prograims.

2013-17 | Audio driver of Savitech install root CA in Windows

2015,17 | Symantec issued unauthorized certs for over 176 domains, caus-
ing removal from all root programs.

2019 Mozilla, Google browsers block customer-installed Kazakhstan
root CA (Qaznet)

2019 Mozilla, Google revoke intermediate-CA of DarkMatter, and

refuse to add them to root program

31

PKI Goals/Requirements

Trustworthy issuers: Trust anchor/root CAs and Intermediary CAs;
Limitations on Intermediary CAs (e.g., restricted domain names)

Accountability: identify issuer of given certificate
Timeliness: limited validity period, timely revocation
Transparency: public log of all certificate; no ‘hidden’ certs!
Non-Equivocation: one entity — one certificate

Privacy: why should CA know which site | use?

32

Covered Material From the Textbook

Chapter 1: Section: 1.4

Chapter 6: Sections 6.4, 6.5 (except 6.5.6 and
6.5.7), and 6.6 (except RSA with message
recovery)

Chapter 8: Section 8.1

33

Tnanx Youl

’)

?%2;? '2’?%@

