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Public Key Encryption



‘Public Key Encryption

Key length [

Encryption Key e (e.d) Decryption Key d

(pubV rzvate)
Plaznte- Ciphertext Plaintext
c=E (m) m=Dy(E.(m))




Public Key Encryption IND-CPA Security

IND—CPA
Tﬂ,<KG,E,D> (b,n) {

(e,d) & KG(1™)

(mg,mq) < A(‘Choose’, ) s.t. |mg| = |mq]
c* Ee(mb)

b* = A(‘Guess’, (c*,e))

Return b*

Definition 2.10 (PKC IND-CPA). Let (KG,E,D) be a public-key cryp-
tosystem. We say that (KG, E, D) is IND-CPA, if every efficient adversary
A € PPT has negligible advantage sg}f(%jggfi’ﬂ(n) € NEGL(n), where:

IND—-CPA _ IND—-CPA IND—-CPA
8<KG’E,D>’ﬂ(n) =Pr [Tﬂ7<KG7E7D>(1,n) = 1} — Pr [Tﬂ’<KG’E7D>(O,n) = 1]
(2.35)

Where the probability is over the random coin tosses in IND-CPA (including of
A and E).



Discrete Log-based Encryption

We will explore two flavors:

2 An adaptation of DH key exchange protocol to
perform encryption.

o ElGamal encryption scheme.



Turning [DH] to Public Key Cryptosystem

Solves dependency on DDH assumption; secure under the
(weaker) CDH assumption.

To encrypt message m to Alice:
o Bob selects random b
0 Sends: g mod p , m@h((e)?)=m&h(g® *4 mod p)
a Secure if h(g? %4 mod p) is pseudo-random

AlICe e = gdA modp

‘5\:\ e = >
%

< g’ modp, m@h(g?? mod p)




ElGamal Public Key Encyption

Variant of [DH]

PKC: Encrypt by multiplication, not XOR

To encrypt message m to Alice, whose public key is
e,=g%4 mod p:

o Bob selects random b

a Sends: g® mod p , m*(e)?=m*g? %4 mod p

Alice
\«r\“\,'

e,=g%4 mod p

__________________________________________________________________________________ >

(¢” mod p , (m* e}f) mod p)

Select
random b



FElGamal Public Key Encryption

Encryption:
BEG(m) « {(g" modp, m-chy modp) b <& [2,p 1]
Decryption:
Dy, (z,y) =2 % -y mod p
Correctness:

Da,(9" modp, m- ey modp) =

— (gb mod p)_dA : (m- (gdA)b mod p)} mod p
- —b-da b-dA]

= |9 ‘m - g mod p

—= m



FlGamal Public Key Cryptosystem

Problem: g”%4 mod p may leak bit(s)...
"Classical’ DH solution: securely derive a key:
h(g*Pimod p)

El-Gamal’s solution: use a group where DDH
believed to hold

Note: message must be encoded as member of
the group!

So why use it? Some special properties...
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ElGamal PKC: homomorphism

Multiplying two ciphertexts produces a ciphertext of
the multiplication of the two plaintexts.

Given two ciphertexts:
Ee,(mq) = (x1,y1) = (g°* mod p,my * g"*4 mod p)
EeA(mZ) = (x2,¥2) = (gbz mod p, my * "4 mod p)
MUlt((x1:)’1)» (xz»YZ)) = (Xx1X2,Y1Y2)
Homomorphism:

= (gb1+b2 mOdp, ml . mz *g(b1+b2)'dA mOdp) =
= E,,(m; -my)

> compute E,, (m, - m,) from E, ,(my), E,,(m;)
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RSA Public Key Encryption

First proposed — and still widely used
Not really covered in this course — take crypto!

Select two large primes p,q ; let n=pq
Select prime ¢ (public key: <n,e>)
o Or co-prime with @(n) =(p-1)(g-1)
Let private key be d=¢' mod @(n) (i.e., ed=1 mod d(n))
Encryption: RSA.E, ,(m)=m® mod n

Decryption: RSA.D,,(c) =c mod n
Correctness: D, (E, (m))= (m®)? =m = m mod n

a Intuitively: ed=1 mod ®@(n) =» me? = m mod n

But why? Remember Euler’s theorem.
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RSA Public Key Cryptosystem

Correctness: D, ,(E, (m))= m® mod n
med=ped= I+ D) =y gyl P0) =py (P )]

m® mod n =m (m®™ mod n )' mod n
Eulers’Theorem: m®™ mod n=1 mod n

=2 D, (E, (m)=m® mod n=m 1'mod n =m
Comments:

O m<n =m=m modn

a Eulers’ Theorem holds (only) if m, n are co-primes

o If not co-primes”? Use Chinese Reminder Theorem
A nice, not very complex argument
But: beyond our scope — take Crypto!
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he RSA Problem and Assumption

RSA problem: Find m:, given (n,¢) and ‘ciphertext’ value
c=m¢° mod n

RSA assumption: if (n,¢) are chosen "correctly’, then the
RSA problem is "hard’

o l.e., no efficient algorithm can find » with non-
negligible probability

$
o For 'large’ nand m« {1, ..., n}

RSA and factoring

o Factoring alg =» alg to ‘break’ RSA

o Algorithm to find RSA private key =» factoring alg
o But: RSA-breaking may not allow factoring
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RSA PKC Security

It is a deterministic encryption scheme -
cannot IND-CPA secure.

RSA assumption does not rule out exposure
of partial information about the plaintext.

It is not CCA secure.

A solution: apply a random padding to the
plaintext then encryption using RSA.

15



Padding RSA
Pad and Unpad functions: 7 = Unpad(Pad(m;r))

S e
a Encryption with padding: € = [Pad(m,r)]” modn,
o Decryption with unpad: m — Unpad(cd mod n)

Required to...

o Add randomization
Prevent detection of repeating plaintext

o Prevent ‘related message’ attack (to allow use of tiny e)
o Detect, prevent (some) chosen-ciphertext attacks

Early paddings schemes subject to CCA attacks
o Even ‘Feedback-only CCA’ (aware of unpad failure)
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How does Bob know Alice’s public key?

Depends on threat model...

o Passive (‘eavesdropping ) adversary: just send it
2 Man-in-the-Middle (MITM): authenticate

Authenticate — how?
2 MAC: requires shared secret key

o Public key signature scheme:
authenticate using public key

o Certificate: public key of entity — signed by
certificate authority (CA)

This comes under what is called Public Key
Infrastructure (PKI)
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Digital Signature
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Public Key Digital Signatures

Key Generation
Key length n $
(A.s,A.v) « KG(1™)
Alice s private Alice’s public
o Signing key A.s verification key A.v
J A.s A.v &@5‘
i : by
Message | o (m,o) .
m Signo« S, (m) | Verify V,.(m, o)

Sign using a private, secret signature key (4.s for Alice)
Validate using a public key (4.v for Alice)

Everybody can validate signatures at any time
o Provides authentication, integrity and evidence / non-repudiation
o MAC: ‘Yjust’ authentication+integrity, no evidence, can repudiate
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Digital Signatures Security: Unforgeability

Key Generation
Key length n $
(A.s,A.v) « KG(1™)
Alice s private Alice’s public
o Signing key A.s verification key A.v
J A.s A.v &@5‘
i : by
Messagi’ o (m,o) .
m Signo« S, (m) | Verify V,.(m, o)

Unforgeability: given v, attacker should be
unable to find any ‘valid’ (m, o), i.e., V (m, 0)=0OK

Even when attacker can select messages m’, receive
o’=S,(m’)
For any message except chosen m

20



Digital Signature Scheme Detinition

Definition 1.4 (Signature scheme and its correctness). A signature scheme is
defined by a tuple of three efficient (PPT) algorithms, & = (K@, Sign,Verify),
and a set M of messages, such that:

KG is a randomized algorithm that maps a unary string (security parameter
1Y) to a pair of binary strings (KG.s(1V), KG.v(1)).

Sign is an algorithm® that receives two binary strings as input, a signing key
s € {0,1}* and a message m € M, and outputs another binary string
o€ {0,1}*. We call o the signature of m using signing key s.

Verify s a predicate that receives three binary strings as input: a verification
key v, a message m, and o, a purported signature over m. Verify should
output TRUE if o s the signature of m using s, where s is the signature
key corresponding to v (generated with v ).

Usually, M 1is a set of binary strings of some length. If M 1is not defined, then
this means that any binary string may be input, i.e., the same as M = {0, 1}*.

We say that a signature scheme (KG,Sign,Verify) is correct, if for every
security parameter 1° holds:

(V(s,v) & xeal), me M) Verify, (m, Sign, (m)) = Ok’ (1.31)
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Digital Signature Scheme Security

Algorithm 1 The existential unforgeability game EU F;fc%n(ll)(ll ) between
signature scheme & = (K G, Sign, Verify) and adversary A.

(s,0) & S.KC(Y) ;

(m, ) & A555:0) (v, 1))
return (8.Verify,(m,o) A (A didn’t request Sg(m)));

Definition 1.6. The existential unforgeability advantage function of adversary
A against signature scheme & s defined as:

PUF=Sian (1l = Py (EUFfzfg”(ﬂ)(ﬂ) - TRUE) (1.32)
Where the probability is taken over the random coin tosses of A and of & during

the run of EUFszgn( 1Y) with input (security parameter) 1!, and EUF%C%"(IZ)
1 the game deﬁned in Algorithm 1.
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RSA Signatures

Secret signing key s, public verification key v
Short (<n) messages: RSA signing with message recovery

o = RSA.S,(m)= m* mod n,

RSA.V,(m, g)={ OK if m= d " mod n, else, FAIL }
Long messages: 7?

o Hint: use collision resistant hash function (CRHF)

2 o =RSA.S,(m)= h(m)S mod n,
RSA.V,(m, 0)={ OK if h(m)= o ¥ mod n, else, FAIL }

Hash h

Sign S




Discrete-Log Digital Signaturer

RSA allowed encryption and signing...
based on assuming factoring is hard

Can we sign based on assuming
discrete log is hard?

Most well-known, popular scheme: DSA
o Digital Signature Algorithm, by NSA/NIST
o Details: crypto course
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Public Key Infrastructure
PKI

25



Public keys are very useful...

Secure web connections

Software signing (against malware)
Secure messaging, email
Cryptocurrency and blockchains.

But ...

o How do we know the PK of an entity?
Mainly: signed by a trusted Certificate Authority
E.g., in TLS, browsers maintain list of ‘root CAs’
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Public Key Certificates & Authorities

m Certificate: signature by Issuer / Certificate Authority (CA) over
subject’s public key and attributes

= Attributes: identity (ID) and others...
o Validated by CA (liability?)
o Used by relying party for decisions (e.g., use this website?)

(Aka CA or Issuer)
T

{Certiﬁcate Authority}

Al Bob’s public key | ' Certificate
lice Bob.e : ! Cp

(relying party)

P Certificate Cp: ¥
( Subject J

Cp = Signca.s(bob.com, Bob.e, . ..)

(e.g, website bob.com))
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Certificates are all about Trust

Certificate: Cgz,, = Sign-, (Bob.com,Bob.e, ...)
o CA attests that Bob's public key is Bob. e

Do we trust this attestation to be true?

Special case of trust management
o Important problem far beyond PKI... still not resolved !
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Rogue Certificates

Rogue cert: equivocating or misleading (domain) name

Attacker goals:
o Impersonate: web-site, phishing email, signed malware..

o Equivocating (same name): circumvent name-based security
mechanisms, such as Same-QOrigin-Policy (SOP), blacklists,
whitelists, access-control ...

o Name may be misleading even if not equivocating
Types of misleading names (‘cybersquatting’):
o Combo names: bank.com vs. accts-bank.com, bank.accts.com, ...

o Domain-name hacking: accts.bank.com vs. accts-bank.com, ... or
accts-bank.co

o Homographic: paypal.com [l is L] vs. paypal.com [i is |]
o Typo-squatting: bank.com vs. banc.com, baank.com, banl.com,...
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PKI Failures

Although the signature over the certificate verifies

correctly, there is still a failure and the certificate must be
revoked.

o This is called a PKI failure.
PKI failures include:

o Subject key exposure.

a CA failure.

o Cryptanalysis certificate forgery.
Find collisions in the hash function used in the HtS
paradigm,

or exploit some vulnerability in the digital signature
scheme used for signing.
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Some Infamous PKI Failures

2001 VeriSign: attacker gets code-signing certs

2008 Thawte: email-validation (attackers’ mailbox)

2008,11 | Comodo not performing domain validation

2011 DigiNotar compromised, 531 rogue certs (discovered); a rogue
cert for * google.com used for MitM against 300,000 Iranian
users.

2011 TurkTrust issued intermediate-CA certs to users

2012 Trustwave issued intermediate-CA certificate for eavesdropping

2013 ANSSI, the French Network and Information Security Agency,
issued intermediate-CA certificate to MitM traffic management
device

2014 India CCA / NIC compromised (and issued rogue certs)

2015 CNNIC (China) issued CA-cert to MCS (Egypt), who issued
rogue certs. Google and Mozilla removed CNNIC from their
root prograims.

2013-17 | Audio driver of Savitech install root CA in Windows

2015,17 | Symantec issued unauthorized certs for over 176 domains, caus-
ing removal from all root programs.

2019 Mozilla, Google browsers block customer-installed Kazakhstan
root CA (Qaznet)

2019 Mozilla, Google revoke intermediate-CA of DarkMatter, and

refuse to add them to root program
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PKI Goals/Requirements

Trustworthy issuers: Trust anchor/root CAs and Intermediary CAs;
Limitations on Intermediary CAs (e.g., restricted domain names)

Accountability: identify issuer of given certificate
Timeliness: limited validity period, timely revocation
Transparency: public log of all certificate; no ‘hidden’ certs!
Non-Equivocation: one entity — one certificate

Privacy: why should CA know which site | use?
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Covered Material From the Textbook

Chapter 1: Section: 1.4

Chapter 6: Sections 6.4, 6.5 (except 6.5.6 and
6.5.7), and 6.6 (except RSA with message
recovery)

Chapter 8: Section 8.1
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