CSE 3400 - Introduction to Computer & Network Security (aka: Introduction to Cybersecurity)

Lecture 11 Public Key Cryptography– Part II

Ghada Almashaqbeh UConn

From Textbook Slides by Prof. Amir Herzberg UConn

Outline

- Public key encryption.
- Digital signatures.
- PKI

Public Key Encryption

Public Key Encryption

Public Key Encryption IND-CPA Security

$$T^{IND-CPA}_{\mathcal{A},\langle KG,E,D\rangle}(b,n) \{ \\ (e,d) \stackrel{\$}{\leftarrow} KG(1^n) \\ (m_0,m_1) \leftarrow \mathcal{A}(\text{`Choose'},e) \text{ s.t. } |m_0| = |m_1| \\ c^* \leftarrow E_e(m_b) \\ b^* = \mathcal{A}(\text{`Guess'},(c^*,e)) \\ \text{Return } b^* \}$$

Definition 2.10 (PKC IND-CPA). Let $\langle KG, E, D \rangle$ be a public-key cryptosystem. We say that $\langle KG, E, D \rangle$ is IND-CPA, if every efficient adversary $\mathcal{A} \in PPT$ has negligible advantage $\varepsilon_{\langle KG, E, D \rangle, \mathcal{A}}^{IND-CPA}(n) \in NEGL(n)$, where:

$$\varepsilon_{\langle KG,E,D\rangle,\mathcal{A}}^{IND-CPA}(n) \equiv \Pr\left[T_{\mathcal{A},\langle KG,E,D\rangle}^{IND-CPA}(1,n)=1\right] - \Pr\left[T_{\mathcal{A},\langle KG,E,D\rangle}^{IND-CPA}(0,n)=1\right]$$
(2.35)

Where the probability is over the random coin tosses in IND-CPA (including of \mathcal{A} and E).

Discrete Log-based Encryption

- We will explore two flavors:
 - An adaptation of DH key exchange protocol to perform encryption.
 - ElGamal encryption scheme.

Turning [DH] to Public Key Cryptosystem

- Solves dependency on DDH assumption; secure under the (weaker) CDH assumption.
- To encrypt message m to Alice:
 - Bob selects random b
 - □ Sends: $g^b \mod p$, $m \oplus h((e_A)^b) = m \oplus h(g^{b \cdot d_A} \mod p)$
 - □ Secure if $h(g^{b \cdot d_A} \mod p)$ is pseudo-random

ElGamal Public Key Encyption

- Variant of [DH] PKC: Encrypt by multiplication, not XOR
- To encrypt message *m* to Alice, whose public key is *e_A=g^{d_A} mod p*:
 - Bob selects random b
 - Sends: $g^b \mod p$, $m^*(e_A)^b = m^*g^{b \cdot d_A} \mod p$

Note: message must be encoded as member of the group!

0/2018

8/20/2018

$${}^{\mathbf{8/2}}\!\!E_{e_A}^{\underline{EG}}(m) \leftarrow \left\{ \begin{pmatrix} g^b \mod p \ , \ m \cdot e_A^b \mod p \end{pmatrix} | b \stackrel{\$}{\leftarrow} [2, p-1] \right\}$$

Decryption:

$$D_{d_A}(x,y) = x^{-d_A} \cdot y \mod p$$

Correctness:

$$D_{d_A}(g^b \mod p, m \cdot e_A^b \mod p) = \\ = \left[\left(g^b \mod p \right)^{-d_A} \cdot \left(m \cdot \left(g^{d_A} \right)^b \mod p \right) \right] \mod p \\ = \left[g^{-b \cdot d_A} \cdot m \cdot g^{b \cdot d_A} \right] \mod p \\ = m$$

7

7

ElGamal Public Key Cryptosystem

- Problem: $g^{b \cdot d_A} \mod p$ may leak bit(s)...
- `Classical' DH solution: securely derive a key:
 h(g<sup>a_ib_imod p)
 </sup>
- EI-Gamal's solution: use a group where DDH believed to hold
 - Note: message must be encoded as member of the group!
 - So why use it? Some special properties...

ElGamal PKC: homomorphism

- Multiplying two ciphertexts produces a ciphertext of the multiplication of the two plaintexts.
- Given two ciphertexts:
 - $E_{e_A}(m_1) = (x_1, y_1) = (g^{b_1} \mod p, m_1 * g^{b_1 \cdot d_A} \mod p)$
 - $E_{e_A}(m_2) = (x_2, y_2) = (g^{b_2} \mod p, m_2 * g^{b_2 \cdot d_A} \mod p)$
- $Mult((x_1, y_1), (x_2, y_2)) \equiv (x_1x_2, y_1y_2)$
- Homomorphism:

$$= (g^{b_1+b_2} \mod p, m_1 \cdot m_2 * g^{(b_1+b_2) \cdot d_A} \mod p) = E_{e_A}(m_1 \cdot m_2)$$

• \rightarrow compute $E_{e_A}(m_1 \cdot m_2)$ from $E_{e_A}(m_1)$, $E_{e_A}(m_1)$

RSA Public Key Encryption

- First proposed and still widely used
- Not really covered in this course take crypto!
- Select two large primes p,q ; let n=pq
- Select prime *e* (public key: <*n*,*e*>)
 - Or co-prime with $\Phi(n) = (p-1)(q-1)$
- Let private key be $d=e^{-1} \mod \Phi(n)$ (i.e., $ed=1 \mod \Phi(n)$)
- Encryption: $RSA.E_{e,n}(m) = m^e \mod n$
- Decryption: $RSA.D_{d,n}(c) = c^d \mod n$
- Correctness: $D_{d,n}(E_{e,n}(m)) = (m^e)^d = m^{ed} = m \mod n$ □ Intuitively: $ed=1 \mod \Phi(n) \Rightarrow m^{ed} = m \mod n$
 - But why? Remember Euler's theorem.

RSA Public Key Cryptosystem

- Correctness: $D_{d,n}(E_{e,n}(m)) = m^{ed} \mod n$
- $m^{ed} = m^{ed} = m^{1+l \Phi(n)} = m m^{l \Phi(n)} = m (m^{\Phi(n)})^{l}$
- $m^{ed} \mod n = m (m^{\Phi(n)} \mod n)^l \mod n$
- Eulers'Theorem: $m^{\Phi(n)} \mod n = 1 \mod n$
- $\rightarrow D_{d,n}(E_{e,n}(m)) = m^{ed} \mod n = m \ l^l \mod n = m$
- Comments:
 - $\square m < n \rightarrow m = m \mod n$
 - □ Eulers' Theorem holds (only) if *m*, *n* are co-primes
 - If not co-primes? Use Chinese Reminder Theorem
 - A nice, not very complex argument
 - But: beyond our scope take Crypto!

The RSA Problem and Assumption

- RSA problem: Find *m*, given (*n*,*e*) and 'ciphertext' value c=m^e mod n
- RSA assumption: if (n,e) are chosen `correctly', then the RSA problem is `hard'
 - I.e., no efficient algorithm can find *m* with nonnegligible probability
 - For `large' *n* and $m \stackrel{\$}{\leftarrow} \{1, ..., n\}$
- RSA and factoring
 - □ Factoring alg → alg to 'break' RSA
 - □ Algorithm to find RSA private key → factoring alg
 - But: RSA-breaking may <u>not</u> allow factoring

RSA PKC Security

- It is a deterministic encryption scheme → cannot IND-CPA secure.
- RSA assumption does not rule out exposure of partial information about the plaintext.
- It is not CCA secure.

A solution: apply a random padding to the plaintext then encryption using RSA.

Padding RSA

• Pad and Unpad functions: m = Unpad(Pad(m;r))

- Encryption with padding:
- Decryption with unpad:

$$c = [Pad(m,r)]^{e} \mod n,$$
$$m = Unpad(c^{d} \mod n)$$

- Required to...
 - Add randomization
 - Prevent detection of repeating plaintext
 - Prevent 'related message' attack (to allow use of tiny e)
 - Detect, prevent (some) chosen-ciphertext attacks
 - Early paddings schemes subject to CCA attacks
 Even 'Feedback-only CCA' (aware of unpad failure)

How does Bob know Alice's public key?

- Depends on threat model...
 - Passive (`eavesdropping`) adversary: just send it
 - Man-in-the-Middle (MITM): authenticate
- Authenticate how?
 - MAC: requires shared secret key
 - Public key signature scheme: authenticate using public key
 - Certificate: public key of entity signed by certificate authority (CA)
 - This comes under what is called Public Key Infrastructure (PKI)

Digital Signature

Public Key Digital Signatures

- Sign using a private, secret signature key (A.s for Alice)
- Validate using a <u>public</u> key (A.v for Alice)
- Everybody can validate signatures at any time
 - Provides authentication, integrity <u>and</u> evidence / non-repudiation
 - □ MAC: 'just' authentication+integrity, no evidence, can repudiate

Digital Signatures Security: Unforgeability

- Unforgeability: given v, attacker should be unable to find any 'valid' (m, σ), i.e., V_v(m, σ)=OK
 - Even when attacker can select messages m', receive $\sigma' = S_s(m')$
 - For any message except chosen m

Digital Signature Scheme Definition

Definition 1.4 (Signature scheme and its correctness). A signature scheme *is* defined by a tuple of three efficient (PPT) algorithms, $\mathcal{S} = (\mathcal{KG}, \mathcal{S}ign, \mathcal{V}erify)$, and a set M of messages, such that:

- \mathcal{KG} is a randomized algorithm that maps a unary string (security parameter 1^l) to a pair of binary strings ($\mathcal{KG}.s(1^l), \mathcal{KG}.v(1^l)$).
- Sign is an algorithm⁸ that receives two binary strings as input, a signing key $s \in \{0,1\}^*$ and a message $m \in M$, and outputs another binary string $\sigma \in \{0,1\}^*$. We call σ the signature of m using signing key s.
- Verify is a predicate that receives three binary strings as input: a verification key v, a message m, and σ , a purported signature over m. Verify should output TRUE if σ is the signature of m using s, where s is the signature key corresponding to v (generated with v).

Usually, M is a set of binary strings of some length. If M is not defined, then this means that any binary string may be input, i.e., the same as $M = \{0, 1\}^*$.

We say that a signature scheme $(\mathcal{KG}, Sign, Verify)$ is correct, if for every security parameter 1^l holds:

$$\left(\forall (s,v) \stackrel{\$}{\leftarrow} \mathcal{KG}(1^l), \ m \in M\right) \mathcal{V}erify_v(m, \mathcal{S}ign_s(m)) = 'Ok' \quad (1.31)$$

Digital Signature Scheme Security

Algorithm 1 The existential unforgeability game $EUF_{\mathcal{A},\mathcal{S}}^{Sign}(1^l)(1^l)$ between signature scheme $\mathcal{S} = (\mathcal{KG}, Sign, Verify)$ and adversary \mathcal{A} .

 $\begin{array}{l} (s,v) \stackrel{\$}{\leftarrow} \mathcal{S}.\mathcal{K}G(1^l) ; \\ (m,\sigma) \stackrel{\$}{\leftarrow} \mathcal{A}^{\mathcal{S}.\mathcal{S}ign_s(\cdot)}(v,1^l); \\ \textbf{return} \ (\mathcal{S}.\mathcal{V}erify_v(m,\sigma) \land (\mathcal{A} \ \text{didn't request} \ S_s(m))); \end{array}$

Definition 1.6. The existential unforgeability advantage function of adversary \mathcal{A} against signature scheme \mathcal{S} is defined as:

$$\varepsilon_{\mathcal{S},\mathcal{A}}^{EUF-Sign}(1^l) \equiv \Pr\left(EUF_{\mathcal{A},\mathcal{S}}^{Sign}(1^l)(1^l) = \mathrm{TRUE}\right)$$
(1.32)

Where the probability is taken over the random coin tosses of \mathcal{A} and of \mathcal{S} during the run of $EUF_{\mathcal{A},\mathcal{S}}^{Sign}(1^l)$ with input (security parameter) 1^l , and $EUF_{\mathcal{A},\mathcal{S}}^{Sign}(1^l)$ is the game defined in Algorithm 1.

RSA Signatures

- Secret signing key s, public verification key v
- Short (<n) messages: <u>RSA signing with message recovery</u>
- $\sigma = \text{RSA.}S_s(m) = m^s \mod n$, RSA. $V_v(m, \sigma) = \{ OK \text{ if } m = \sigma^v \mod n; \text{ else, FAIL } \}$
- Long messages: ??
 - Hint: use collision resistant hash function (CRHF)
 - $\sigma = \mathsf{RSA}.S_s(m) = h(m)^s \mod n,$ $\mathsf{RSA}.V_v(m, \sigma) = \{ OK \text{ if } h(m) = \sigma^v \mod n; \text{ else, FAIL } \}$

Discrete-Log Digital Signature?

- RSA allowed encryption and signing... based on assuming factoring is hard
- Can we sign based on assuming discrete log is hard?
- Most well-known, popular scheme: DSA
 Digital Signature Algorithm, by NSA/NIST
 - Details: crypto course

Public Key Infrastructure PKI

Public keys are very useful...

- Secure web connections
- Software signing (against malware)
- Secure messaging, email
- Cryptocurrency and blockchains.
- But ...
 - How do we know the PK of an entity?
 - Mainly: signed by a trusted Certificate Authority
 - E.g., in TLS, browsers maintain list of 'root CAs'

Public Key Certificates & Authorities

- Certificate: signature by Issuer / Certificate Authority (CA) over subject's public key and attributes
- Attributes: identity (ID) and others...
 - Validated by CA (liability?)
 - □ Used by **relying party** for decisions (e.g., use this website?)

Certificates are all about Trust

- Certificate: $C_{Bob} = Sign_{CA.s}(Bob. com, Bob. e, ...)$
 - □ CA attests that Bob's public key is *Bob*. *e*
- Do we trust this attestation to be true?
- Special case of trust management
 - Important problem far beyond PKI... still not resolved !

Rogue Certificates

- Rogue cert: equivocating or misleading (domain) name
- Attacker goals:
 - □ Impersonate: web-site, phishing email, signed malware..
 - Equivocating (same name): circumvent name-based security mechanisms, such as Same-Origin-Policy (SOP), blacklists, whitelists, access-control ...
 - Name may be misleading even if not equivocating
- Types of misleading names ('cybersquatting'):
 - □ Combo names: bank.com vs. accts-bank.com, bank.accts.com, ...
 - Domain-name hacking: accts.bank.com vs. accts-bank.com, ... or accts-bank.co
 - Homographic: paypal.com [l is L] vs. paypal.com [i is l]
 - Typo-squatting: bank.com vs. banc.com, baank.com, banl.com,...

PKI Failures

- Although the signature over the certificate verifies correctly, there is still a failure and the certificate must be revoked.
 - This is called a PKI failure.
- PKI failures include:
 - Subject key exposure.
 - CA failure.
 - Cryptanalysis certificate forgery.
 - Find collisions in the hash function used in the HtS paradigm,
 - or exploit some vulnerability in the digital signature scheme used for signing.

Some Infamous PKI Failures

2001	VeriSign: attacker gets code-signing certs
2008	Thawte: email-validation (attackers' mailbox)
2008,11	Comodo not performing domain validation
2011	DigiNotar compromised, 531 rogue certs (discovered); a rogue
	cert for *.google.com used for MitM against 300,000 Iranian
	users.
2011	TurkTrust issued intermediate-CA certs to users
2012	Trustwave issued intermediate-CA certificate for eavesdropping
2013	ANSSI, the French Network and Information Security Agency,
	issued intermediate-CA certificate to MitM traffic management
	device
2014	India CCA / NIC compromised (and issued rogue certs)
2015	CNNIC (China) issued CA-cert to MCS (Egypt), who issued
	rogue certs. Google and Mozilla removed CNNIC from their
	root programs.
2013-17	Audio driver of Savitech install root CA in Windows
$2015,\!17$	Symantec issued unauthorized certs for over 176 domains, caus-
	ing removal from all root programs.
2019	Mozilla, Google browsers block customer-installed Kazakhstan
	root CA (Qaznet)
2019	Mozilla, Google revoke intermediate-CA of DarkMatter, and
	refuse to add them to root program

PKI Goals/Requirements

Accountability: identify issuer of given certificate

Timeliness: limited validity period, timely revocation

Transparency: public log of all certificate; no 'hidden' certs!

Non-Equivocation: one entity – one certificate

Privacy: why should CA know which site I use?

Covered Material From the Textbook

- Chapter 1: Section: 1.4
- Chapter 6: Sections 6.4, 6.5 (except 6.5.6 and 6.5.7), and 6.6 (except RSA with message recovery)
- Chapter 8: Section 8.1

Thank You!

