CSE 3400 - Introduction to Computer \& Network Security (aka: Introduction to Cybersecurity)

Lecture 11
 Public Key Cryptography- Part II

Ghada Almashaqbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline

\square Public key encryption.
\square Digital signatures.
\square PKI

Public Key Encryption

Public Key Encryption

Public Key Encryption IND-CPA Security

```
T
    (e,d) \stackrel{&}{\leftarrow}KG(\mp@subsup{1}{}{n})
    (mo, m1)\leftarrow\mathcal{A}(`'Choose',e) s.t. }|\mp@subsup{m}{0}{}|=|\mp@subsup{m}{1}{}
    c*}\leftarrow\mp@subsup{E}{e}{}(\mp@subsup{m}{b}{}
    b*}=\mathcal{A}(`Guess',(c*,e)
    Return b*
}
```

Definition 2.10 (PKC IND-CPA). Let $\langle K G, E, D\rangle$ be a public-key cryptosystem. We say that $\langle K G, E, D\rangle$ is IND-CPA, if every efficient adversary $\mathcal{A} \in P P T$ has negligible advantage $\varepsilon_{<K G, E, D>, \mathcal{A}}^{I N D-C P A}(n) \in N E G L(n)$, where:

$$
\begin{equation*}
\varepsilon_{\langle K G, E, D\rangle, \mathcal{H}}^{I N D-C P A}(n) \equiv \operatorname{Pr}\left[T_{\mathcal{A},\langle K G, E, D\rangle}^{I N D-C P A}(1, n)=1\right]-\operatorname{Pr}\left[T_{\mathcal{A},\langle K G, E, D\rangle}^{I N D-C P A}(0, n)=1\right] \tag{2.35}
\end{equation*}
$$

Where the probability is over the random coin tosses in IND-CPA (including of \mathcal{A} and $E)$.

Discrete Log-based Encryption

- We will explore two flavors:
- An adaptation of DH key exchange protocol to perform encryption.
- ElGamal encryption scheme.

Turning [DH] to Public Key Cryptosystem

- Solves dependency on DDH assumption; secure under the (weaker) CDH assumption.
- To encrypt message m to Alice:
- Bob selects random b
- Sends: $g^{b} \bmod p, m \oplus h\left(\left(e_{A}\right)^{b}\right)=m \oplus h\left(g^{b \cdot d_{A}} \bmod p\right)$
- Secure if $h\left(g^{b \cdot d_{A}} \bmod p\right)$ is pseudo-random

ElGamal Public Key Encyption

- Variant of [DH] PKC: Encrypt by multiplication, not XOR
- To encrypt message m to Alice, whose public key is $e_{A}=g^{d_{A}} \bmod p$:
- Bob selects random b
- Sends: $g^{b} \bmod p, m^{*}\left(e_{A}\right)^{b=m *} g^{b \cdot d_{A}} \bmod p$

Alice	$e_{A}=g^{d_{A}} \bmod p$	Bob
9	$\left(g^{b} \bmod p,\left(m^{*} e_{A}^{b}\right) \bmod p\right)$	Select random b

ElGamal Public Key Encryption

- Encryption:

$$
E_{e_{A}}^{E G}(m) \leftarrow\left\{\left(g^{b} \bmod p, m \cdot e_{A}^{b} \bmod p\right) \mid b \stackrel{\&}{\leftarrow}[2, p-1]\right\}
$$

- Decryption:

$$
D_{d_{A}}(x, y)=x^{-d_{A}} \cdot y \quad \bmod p
$$

- Correctness:
$D_{d_{A}}\left(g^{b} \bmod p, \quad m \cdot e_{A}^{b} \bmod p\right)=$

$$
\begin{aligned}
& =\left[\left(g^{b} \bmod p\right)^{-d_{A}} \cdot\left(m \cdot\left(g^{d_{A}}\right)^{b} \bmod p\right)\right] \bmod p \\
& =\left[g^{-b \cdot d_{A}} \cdot m \cdot g^{b \cdot d_{A}}\right] \bmod p \\
& =m
\end{aligned}
$$

ElGamal Public Key Cryptosystem

- Problem: $g^{b \cdot d_{A}} \bmod p$ may leak bit(s)...
- `Classical' DH solution: securely derive a key: $h\left(g^{a_{i} b_{i}} \bmod p\right)$
- El-Gamal's solution: use a group where DDH believed to hold
- Note: message must be encoded as member of the group!
- So why use it? Some special properties...

ElGamal PKC: homomorphism

- Multiplying two ciphertexts produces a ciphertext of the multiplication of the two plaintexts.
- Given two ciphertexts:
- $E_{e_{A}}\left(m_{1}\right)=\left(x_{1}, y_{1}\right)=\left(g^{b_{1}} \bmod p, m_{1} * g^{b_{1} \cdot d_{A}} \bmod p\right)$
- $E_{e_{A}}\left(m_{2}\right)=\left(x_{2}, y_{2}\right)=\left(g^{b_{2}} \bmod p, m_{2} * g^{b_{2} \cdot d_{A}} \bmod p\right)$
- $\operatorname{Mult}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \equiv\left(x_{1} x_{2}, y_{1} y_{2}\right)$
- Homomorphism:
- $=\left(g^{b_{1}+b_{2}} \bmod p, m_{1} \cdot m_{2} * g^{\left(b_{1}+b_{2}\right) \cdot d_{A}} \bmod p\right)=$

$$
=E_{e_{A}}\left(m_{1} \cdot m_{2}\right)
$$

$-\quad \rightarrow$ compute $E_{e_{A}}\left(m_{1} \cdot m_{2}\right)$ from $E_{e_{A}}\left(m_{1}\right), E_{e_{A}}\left(m_{1}\right)$

RSA Public Key Encryption

- First proposed - and still widely used

- Not really covered in this course - take crypto!
- Select two large primes p, q; let $n=p q$
- Select prime e (public key: $\langle n, e>$)
- Or co-prime with $\Phi(n)=(p-1)(q-1)$
- Let private key be $d=e^{-1} \bmod \Phi(n)$ (i.e., $e d=1 \bmod \Phi(n)$)
- Encryption: RSA.E $e_{e, n}(m)=m^{e} \bmod n$
- Decryption: RSA. $D_{d, n}(c)=c^{d} \bmod n$
- Correctness: $D_{d, n}\left(E_{e, n}(m)\right)=\left(m^{e}\right)^{d}=m^{e d}=m \bmod n$
- Intuitively: $e d=1 \bmod \Phi(n) \rightarrow m^{e d}=m \bmod n$
- But why? Remember Euler's theorem.

RSA Public Key Cryptosystem

- Correctness: $D_{d, n}\left(E_{e, n}(m)\right)=m^{e d} \bmod n$
- $m^{e d}=m^{e d}=m^{l+l \Phi(n)}=m m^{l \Phi(n)}=m\left(m^{\Phi(n)}\right)^{l}$
- $m^{e d} \bmod n=m\left(m^{\Phi(n)} \bmod n\right)^{l} \bmod n$
- Eulers'Theorem: $m^{\Phi(n)} \bmod n=1 \bmod n$
$-\Rightarrow D_{d, n}\left(E_{e, n}(m)\right)=m^{e d} \bmod n=m 1^{l} \bmod n=m$
- Comments:
- $m<n \Rightarrow m=m \bmod n$
- Eulers' Theorem holds (only) if m, n are co-primes
- If not co-primes? Use Chinese Reminder Theorem
- A nice, not very complex argument
- But: beyond our scope - take Crypto!

The RSA Problem and Assumption

- RSA problem: Find m, given (n, e) and 'ciphertext' value $c=m^{e} \bmod n$
- RSA assumption: if (n, e) are chosen `correctly', then the RSA problem is 'hard'
- I.e., no efficient algorithm can find m with nonnegligible probability
- For `large' n and $m \stackrel{\$}{\leftarrow}\{1, \ldots, n\}$
- RSA and factoring
- Factoring alg $\boldsymbol{\rightarrow}$ alg to 'break' RSA
- Algorithm to find RSA private key \rightarrow factoring alg
- But: RSA-breaking may not allow factoring

RSA PKC Security

- It is a deterministic encryption scheme \rightarrow cannot IND-CPA secure.
- RSA assumption does not rule out exposure of partial information about the plaintext.
- It is not CCA secure.

A solution: apply a random padding to the plaintext then encryption using RSA.

Padding RSA

- Pad and Unpad functions: $m=\operatorname{Unpad}(\operatorname{Pad}(m ; r))$
- Encryption with padding:
- Decryption with unpad:

$$
\begin{aligned}
& c=[\operatorname{Pad}(m, r)]^{e} \bmod n \\
& m=\operatorname{Unpad}\left(c^{d} \bmod n\right)
\end{aligned}
$$

- Required to...
- Add randomization
- Prevent detection of repeating plaintext
- Prevent 'related message' attack (to allow use of tiny e)
- Detect, prevent (some) chosen-ciphertext attacks
- Early paddings schemes subject to CCA attacks
- Even ‘Feedback-only CCA' (aware of unpad failure)

How does Bob know Alice's public key?

- Depends on threat model...
- Passive ('eavesdropping') adversary: just send it
- Man-in-the-Middle (MITM): authenticate
- Authenticate - how?
- MAC: requires shared secret key
- Public key signature scheme: authenticate using public key
- Certificate: public key of entity - signed by certificate authority (CA)
- This comes under what is called Public Key Infrastructure (PKI)

Digital Signature

Public Key Digital Signatures

- Sign using a private, secret signature key (A.s for Alice)
- Validate using a public key (A.v for Alice)
- Everybody can validate signatures at any time
- Provides authentication, integrity and evidence / non-repudiation
- MAC: 'just' authentication+integrity, no evidence, can repudiate

Digital Signatures Security: Unforgeability

- Unforgeability: given v, attacker should be unable to find any 'valid' (m, σ), i.e., $V_{v}(m, \sigma)=O K$
- Even when attacker can select messages m ', receive $\sigma^{\prime}=S_{s}\left(m^{\prime}\right)$
- For any message except chosen m

Digital Signature Scheme Definition

Definition 1.4 (Signature scheme and its correctness). A signature scheme is defined by a tuple of three efficient (PPT) algorithms, $\mathcal{S}=\left(\mathcal{K} \mathcal{L}_{\mathcal{L}}\right.$, Sign, Verify $)$, and a set M of messages, such that:
$\mathcal{K} \mathcal{L}_{\mathcal{L}}$ is a randomized algorithm that maps a unary string (security parameter $\left.1^{l}\right)$ to a pair of binary strings $\left(\mathscr{K} \mathscr{L}_{\mathcal{L}} \cdot s\left(1^{l}\right), \mathscr{K} \mathcal{L}_{\mathcal{L}} \cdot v\left(1^{l}\right)\right)$.

Sign is an algorithm ${ }^{8}$ that receives two binary strings as input, a signing key $s \in\{0,1\}^{*}$ and a message $m \in M$, and outputs another binary string $\sigma \in\{0,1\}^{*}$. We call σ the signature of m using signing key s.

Verify is a predicate that receives three binary strings as input: a verification key v, a message m, and σ, a purported signature over m. Verify should output TRUE if σ is the signature of m using s, where s is the signature key corresponding to v (generated with v).

Usually, M is a set of binary strings of some length. If M is not defined, then this means that any binary string may be input, i.e., the same as $M=\{0,1\}^{*}$.

We say that a signature scheme ($\mathcal{K} \mathcal{L}, \mathcal{S i g n}, \mathcal{V}$ vify) is correct, if for every security parameter 1^{l} holds:

$$
\begin{equation*}
\left(\forall(s, v) \stackrel{\$}{\leftarrow} \mathscr{K} \mathscr{L}_{\mathcal{L}}\left(1^{l}\right), m \in M\right) \operatorname{Verify}_{v}\left(m, \operatorname{Sign}_{s}(m)\right)=' O k \tag{1.31}
\end{equation*}
$$

Digital Signature Scheme Security

```
\(\overline{\text { Algorithm } 1}\) The existential unforgeability game \(E U F_{\mathcal{A}, \mathcal{S}}^{S i g n}\left(1^{l}\right)\left(1^{l}\right)\) between
signature scheme \(\mathcal{S}=(\mathscr{K} \mathscr{L}, \mathcal{S i g n}\), Verify \()\) and adversary \(\mathcal{A}\).
    \((s, v) \stackrel{\$}{\leftarrow} \mathcal{S} . \mathcal{K} \mathcal{L}_{\mathcal{L}}\left(1^{l}\right) ;\)
    \((m, \sigma) \stackrel{\&}{\leftarrow} \mathcal{A}^{\text {S. } \operatorname{Sign}_{s}(\cdot)}\left(v, 1^{l}\right) ;\)
    return \(\left(\mathcal{S}\right.\). Verify \(_{v}(m, \sigma) \wedge\left(\mathcal{A}\right.\) didn't request \(\left.\left.S_{s}(m)\right)\right)\);
```

Definition 1.6. The existential unforgeability advantage function of adversary \mathcal{A} against signature scheme \mathcal{S} is defined as:

$$
\begin{equation*}
\varepsilon_{S, \mathcal{A}}^{E U F-S i g n}\left(1^{l}\right) \equiv \operatorname{Pr}\left(E U F_{\mathcal{A}, \mathcal{S}}^{S i g n}\left(1^{l}\right)\left(1^{l}\right)=\operatorname{TRUE}\right) \tag{1.32}
\end{equation*}
$$

Where the probability is taken over the random coin tosses of \mathcal{A} and of \mathcal{S} during the run of $E U F_{\mathcal{H}, \delta}^{S i g n}\left(1^{l}\right)$ with input (security parameter) 1^{l}, and $E U F_{\mathcal{A}, \mathcal{S}}^{S i g n}\left(1^{l}\right)$ is the game defined in Algorithm 1.

RSA Signatures

- Secret signing key s, public verification key v
- Short (<n) messages: RSA signing with message recovery
- $\sigma=$ RSA. $S_{s}(m)=m^{s} \bmod n$, RSA. $V_{v}(m, \sigma)=\left\{O K\right.$ if $m=\sigma^{v} \bmod n$; else, FAIL $\}$
- Long messages: ??
- Hint: use collision resistant hash function (CRHF)
- $\sigma=$ RSA. $S_{s}(m)=h(m)^{s} \bmod n$, RSA. $V_{v}(m, \sigma)=\left\{O K\right.$ if $h(m)=\sigma^{v} \bmod n$; else, FAIL $\}$

Sign S

Discrete-Log Digital Signature?

- RSA allowed encryption and signing... based on assuming factoring is hard
- Can we sign based on assuming discrete \log is hard?
- Most well-known, popular scheme: DSA
- Digital Signature Algorithm, by NSA/NIST
- Details: crypto course

Public Key Infrastructure PKI

Public keys are very useful...

- Secure web connections
- Software signing (against malware)
- Secure messaging, email
- Cryptocurrency and blockchains.
- But ...
- How do we know the PK of an entity?
- Mainly: signed by a trusted Certificate Authority
- E.g., in TLS, browsers maintain list of 'root CAs'

Public Key Certificates \& Authorities

- Certificate: signature by Issuer / Certificate Authority (CA) over subject's public key and attributes
- Attributes: identity (ID) and others...
- Validated by CA (liability?)
- Used by relying party for decisions (e.g., use this website?)

Certificates are all about Trust

- Certificate: $C_{B o b}=\operatorname{Sign}_{C A . S}($ Bob.com,Bob.e, ... $)$
- CA attests that Bob's public key is Bob.e
- Do we trust this attestation to be true?
- Special case of trust management
- Important problem far beyond PKI... still not resolved!

Rogue Certificates

- Rogue cert: equivocating or misleading (domain) name
- Attacker goals:
- Impersonate: web-site, phishing email, signed malware..
- Equivocating (same name): circumvent name-based security mechanisms, such as Same-Origin-Policy (SOP), blacklists, whitelists, access-control ...
- Name may be misleading even if not equivocating
- Types of misleading names ('cybersquatting'):
- Combo names: bank.com vs. accts-bank.com, bank.accts.com, ...
- Domain-name hacking: accts.bank.com vs. accts-bank.com, ... or accts-bank.co
- Homographic: paypal.com [l is L] vs. paypal.com [i is I]
- Typo-squatting: bank.com vs. banc.com, baank.com, banl.com,...

PKI Failures

- Although the signature over the certificate verifies correctly, there is still a failure and the certificate must be revoked.
- This is called a PKI failure.
- PKI failures include:
- Subject key exposure.
- CA failure.
- Cryptanalysis certificate forgery.
- Find collisions in the hash function used in the HtS paradigm,
- or exploit some vulnerability in the digital signature scheme used for signing.

Some Infamous PKI Failures

2001	VeriSign: attacker gets code-signing certs
2008	Thawte: email-validation (attackers' mailbox)
2008,11	Comodo not performing domain validation
2011	DigiNotar compromised, 531 rogue certs (discovered); a rogue cert for *.google.com used for MitM against 300,000 Iranian users.
2011	TurkTrust issued intermediate-CA certs to users
2012	Trustwave issued intermediate-CA certificate for eavesdropping
2013	ANSSI, the French Network and Information Security Agency, issued intermediate-CA certificate to MitM traffic management device
2014	India CCA / NIC compromised (and issued rogue certs)
2015	CNNIC (China) issued CA-cert to MCS (Egypt), who issued rogue certs. Google and Mozilla removed CNNIC from their root programs.
$2013-17$	Audio driver of Savitech install root CA in Windows
2015,17	Symantec issued unauthorized certs for over 176 domains, caus- ing removal from all root programs.
2019	Mozilla, Google browsers block customer-installed Kazakhstan root CA (Qaznet)
2019	Mozilla, Google revoke intermediate-CA of DarkMatter, and refuse to add them to root program

PKI Goals/Requirements

Trustworthy issuers: Trust anchor/root CAs and Intermediary CAs; Limitations on Intermediary CAs (e.g., restricted domain names)

Accountability: identify issuer of given certificate

Timeliness: limited validity period, timely revocation

Transparency: public log of all certificate; no 'hidden' certs!

Non-Equivocation: one entity - one certificate

Privacy: why should CA know which site I use?

Covered Material From the Textbook

- Chapter 1: Section: 1.4
- Chapter 6: Sections 6.4, 6.5 (except 6.5.6 and 6.5.7), and 6.6 (except RSA with message recovery)
- Chapter 8: Section 8.1

Thank Youl

