
CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

Lecture 11
Public Key Cryptography– Part II

Ghada Almashaqbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline
q Public key encryption.
q Digital signatures.
q PKI

2

Public Key Encryption

3

Encrypt E Decrypt D
Plaintext

m
Plaintext
m=Dd(Ee(m))

Ciphertext
c=Ee(m)

Encryption Key e
(public)

KeyGen KG

(e,d)

Key length l

e d

Decryption Key d
(private)

Public Key Encryption

4

Public Key Encryption IND-CPA Security
102 CHAPTER 2. ENCRYPTION AND PSEUDO-RANDOMNESS

T IND�CPA
A,hKG,E,Di(b, n) {
(e, d)

$ KG(1n)
(m0,m1) A(‘Choose’, e) s.t. |m0| = |m1|
c⇤ Ee(mb)
b⇤ = A(‘Guess’, (c⇤, e))
Return b⇤

}

Figure 2.26: The IND-CPA test for public-key encryption (KG,E,D). Notice
that this test does not use the decryption key d, generated in the first step.

Definition 2.10 (PKC IND-CPA). Let hKG,E,Di be a public-key cryp-
tosystem. We say that hKG,E,Di is IND-CPA, if every e�cient adversary
A 2 PPT has negligible advantage "IND�CPA

<KG,E,D>,A(n) 2 NEGL(n), where:

"IND�CPA
hKG,E,Di,A(n) ⌘ Pr

h
T IND�CPA
A,hKG,E,Di(1, n) = 1

i
� Pr

h
T IND�CPA
A,hKG,E,Di(0, n) = 1

i

(2.35)
Where the probability is over the random coin tosses in IND-CPA (including of
A and E).

In the PKCs definition of IND-CPA (Definition 2.10), the adversary is
given the public key e. Hence, ADV can encrypt at will, without the need to
make encryption queries, as enabled by the oracle calls in Definition 2.9, and
we removed the oracle. Another change is purely syntactic: the cryptosystem
includes an explicit key generation algorithm KG, while for the shared-key
cryptosystem, we assumed the (typical) case where the keys are just random
n-bit strings.

We discuss three specific public key cryptosystems, all in chapter 6: DH
and El-Gamal in § 6.5, and RSA in § 6.6.

2.7.4 Design of Secure Encryption: the Cryptographic
Building Blocks Principle

We next discuss the design of secure symmetric encryption schemes. It would
be great if we could use encryption schemes which are provably secure, e.g.,
proven to be IND-CPA (Definition 2.9), without assumptions on computational-
hardness of some underlying functions. However, this is unlikely; let us explain
why.

A provably IND-CPA encryption implies P 6= NP . IND-CPA implies
that there is no e�cient (PPT) algorithm that can distinguish between encryp-
tion of two given messages, i.e., the IND-CPA test is not in the polynomial-
complexity class P, containing problems which have a polynomial-time algorithm.
On the other hand, surely it is easy to ‘win’ in the test, given the key; which

Foundations of Cybersecurity: Applied Introduction to Cryptography

102 CHAPTER 2. ENCRYPTION AND PSEUDO-RANDOMNESS

T IND�CPA
A,hKG,E,Di(b, n) {
(e, d)

$ KG(1n)
(m0,m1) A(‘Choose’, e) s.t. |m0| = |m1|
c⇤ Ee(mb)
b⇤ = A(‘Guess’, (c⇤, e))
Return b⇤

}

Figure 2.26: The IND-CPA test for public-key encryption (KG,E,D). Notice
that this test does not use the decryption key d, generated in the first step.

Definition 2.10 (PKC IND-CPA). Let hKG,E,Di be a public-key cryp-
tosystem. We say that hKG,E,Di is IND-CPA, if every e�cient adversary
A 2 PPT has negligible advantage "IND�CPA

<KG,E,D>,A(n) 2 NEGL(n), where:

"IND�CPA
hKG,E,Di,A(n) ⌘ Pr

h
T IND�CPA
A,hKG,E,Di(1, n) = 1

i
� Pr

h
T IND�CPA
A,hKG,E,Di(0, n) = 1

i

(2.35)
Where the probability is over the random coin tosses in IND-CPA (including of
A and E).

In the PKCs definition of IND-CPA (Definition 2.10), the adversary is
given the public key e. Hence, ADV can encrypt at will, without the need to
make encryption queries, as enabled by the oracle calls in Definition 2.9, and
we removed the oracle. Another change is purely syntactic: the cryptosystem
includes an explicit key generation algorithm KG, while for the shared-key
cryptosystem, we assumed the (typical) case where the keys are just random
n-bit strings.

We discuss three specific public key cryptosystems, all in chapter 6: DH
and El-Gamal in § 6.5, and RSA in § 6.6.

2.7.4 Design of Secure Encryption: the Cryptographic
Building Blocks Principle

We next discuss the design of secure symmetric encryption schemes. It would
be great if we could use encryption schemes which are provably secure, e.g.,
proven to be IND-CPA (Definition 2.9), without assumptions on computational-
hardness of some underlying functions. However, this is unlikely; let us explain
why.

A provably IND-CPA encryption implies P 6= NP . IND-CPA implies
that there is no e�cient (PPT) algorithm that can distinguish between encryp-
tion of two given messages, i.e., the IND-CPA test is not in the polynomial-
complexity class P, containing problems which have a polynomial-time algorithm.
On the other hand, surely it is easy to ‘win’ in the test, given the key; which

Foundations of Cybersecurity: Applied Introduction to Cryptography

5

Discrete Log-based Encryption
n We will explore two flavors:

q An adaptation of DH key exchange protocol to
perform encryption.

q ElGamal encryption scheme.

6

Turning [DH] to Public Key Cryptosystem
n Solves dependency on DDH assumption; secure under the

(weaker) CDH assumption.
n To encrypt message m to Alice:

q Bob selects random b
q Sends: gb mod p , mÅh((eA)b)=mÅh(𝑔!"#! mod p)
q Secure if h(𝑔!"#! mod p) is pseudo-random

7

BobAlice eA= 𝑔#! mod p

gb mod p , mÅ h(𝑔!"#! mod p)

ElGamal Public Key Encyption
n Variant of [DH] PKC: Encrypt by multiplication, not XOR
n To encrypt message m to Alice, whose public key is

eA=𝑔#! 𝑚𝑜𝑑 𝑝:
q Bob selects random b
q Sends: gb mod p , m*(eA)b=m*𝑔!"#! mod p

8

BobAlice eA=𝑔#! 𝑚𝑜𝑑 𝑝

(gb mod p , (m* 𝑒$!) mod p)
Select
random b

ElGamal Public Key Encryption
n Encryption:

n Decryption:

n Correctness:

9

326 CHAPTER 6. PUBLIC KEY CRYPTOLOGY

Figure 6.15: The El-Gamal Public-Key Encryption. The value b is randomly
chosen from the set {2, . . . , p} for each encryption, while dA is a randomly-chosen
(fixed) public key of Alice.

EEG
eA (m)

n�
gb mod p , m · ebA mod p

�
|b $ [2, p� 1]

o
(6.11)

Note that this assumes m < p.
El-Gamal decryption is:

DdA
(x, y) = x�dA · y mod p (6.12)

The correctness property holds since:

DdA
(gb mod p , m· ebA mod p) =

=
h�
gb mod p

��dA ·
⇣
m ·

�
gdA

�b
mod p

⌘i
mod p

=
⇥
g�b·dA ·m · gb·dA

⇤
mod p

= m

Exercise 6.9. Let p = 5.

1. Find a generator for Z⇤
p. (There are only three candidates to try!)

2. Let’s select the private key dA = 2. Compute the public key eA = gdA

mod p.

3. Compute El-Gamal encryption of 4 and of 3: c4 ⌘ EeA(4), c3 ⌘ EeA(3).
Comment: this is a randomized encryption, so another encyrption may
result in a di↵erent output!

4. Compute the decryptions of c4 and of c3.

6.5.3 Homomorphic encryption, Voting and Re-encryption.

The El-Gamal encryption is homomorphic with respect to multiplication.
Namely, there is a ‘ciphertext multiplication’ operation, such that the multi-
plication of two ciphertexts is an encryption of the multiplication of the two

Foundations of Cybersecurity: Applied Introduction to Cryptography

326 CHAPTER 6. PUBLIC KEY CRYPTOLOGY

Figure 6.15: The El-Gamal Public-Key Encryption. The value b is randomly
chosen from the set {2, . . . , p} for each encryption, while dA is a randomly-chosen
(fixed) public key of Alice.

EEG
eA (m)

n�
gb mod p , m · ebA mod p

�
|b $ [2, p� 1]

o
(6.11)

Note that this assumes m < p.
El-Gamal decryption is:

DdA
(x, y) = x�dA · y mod p (6.12)

The correctness property holds since:

DdA
(gb mod p , m· ebA mod p) =

=
h�
gb mod p

��dA ·
⇣
m ·

�
gdA

�b
mod p

⌘i
mod p

=
⇥
g�b·dA ·m · gb·dA

⇤
mod p

= m

Exercise 6.9. Let p = 5.

1. Find a generator for Z⇤
p. (There are only three candidates to try!)

2. Let’s select the private key dA = 2. Compute the public key eA = gdA

mod p.

3. Compute El-Gamal encryption of 4 and of 3: c4 ⌘ EeA(4), c3 ⌘ EeA(3).
Comment: this is a randomized encryption, so another encyrption may
result in a di↵erent output!

4. Compute the decryptions of c4 and of c3.

6.5.3 Homomorphic encryption, Voting and Re-encryption.

The El-Gamal encryption is homomorphic with respect to multiplication.
Namely, there is a ‘ciphertext multiplication’ operation, such that the multi-
plication of two ciphertexts is an encryption of the multiplication of the two

Foundations of Cybersecurity: Applied Introduction to Cryptography

326 CHAPTER 6. PUBLIC KEY CRYPTOLOGY

Figure 6.15: The El-Gamal Public-Key Encryption. The value b is randomly
chosen from the set {2, . . . , p} for each encryption, while dA is a randomly-chosen
(fixed) public key of Alice.

EEG
eA (m)

n�
gb mod p , m · ebA mod p

�
|b $ [2, p� 1]

o
(6.11)

Note that this assumes m < p.
El-Gamal decryption is:

DdA
(x, y) = x�dA · y mod p (6.12)

The correctness property holds since:

DdA
(gb mod p , m· ebA mod p) =

=
h�
gb mod p

��dA ·
⇣
m ·

�
gdA

�b
mod p

⌘i
mod p

=
⇥
g�b·dA ·m · gb·dA

⇤
mod p

= m

Exercise 6.9. Let p = 5.

1. Find a generator for Z⇤
p. (There are only three candidates to try!)

2. Let’s select the private key dA = 2. Compute the public key eA = gdA

mod p.

3. Compute El-Gamal encryption of 4 and of 3: c4 ⌘ EeA(4), c3 ⌘ EeA(3).
Comment: this is a randomized encryption, so another encyrption may
result in a di↵erent output!

4. Compute the decryptions of c4 and of c3.

6.5.3 Homomorphic encryption, Voting and Re-encryption.

The El-Gamal encryption is homomorphic with respect to multiplication.
Namely, there is a ‘ciphertext multiplication’ operation, such that the multi-
plication of two ciphertexts is an encryption of the multiplication of the two

Foundations of Cybersecurity: Applied Introduction to Cryptography

ElGamal Public Key Cryptosystem
n Problem: 𝑔!"#! mod p may leak bit(s)…
n `Classical’ DH solution: securely derive a key:
ℎ 𝑔$"!"𝑚𝑜𝑑 𝑝

n El-Gamal’s solution: use a group where DDH
believed to hold

n Note: message must be encoded as member of
the group!

n So why use it? Some special properties…

10

ElGamal PKC: homomorphism
n Multiplying two ciphertexts produces a ciphertext of

the multiplication of the two plaintexts.
n Given two ciphertexts:

n 𝐸!! 𝑚" = 𝑥", 𝑦" = (𝑔#" mod p, 𝑚" ∗ 𝑔!""#! mod p)
n 𝐸!! 𝑚$ = 𝑥$, 𝑦$ = (𝑔## mod p, 𝑚$ ∗ 𝑔!!"#" mod p)

n 𝑀𝑢𝑙𝑡 𝑥%, 𝑦% , 𝑥&, 𝑦& ≡ 𝑥%𝑥&, 𝑦%𝑦&
n Homomorphism:
n = (𝑔#"%## mod p, 𝑚" + 𝑚$∗ 𝑔 !"$!# "#! mod p) =

= 𝐸%! 𝑚& $ 𝑚'

n è compute 𝐸'! 𝑚% 0 𝑚& from 𝐸'! 𝑚% , 𝐸'! 𝑚%

11

12

2002
Turing
Award

RSA Public Key Encryption

n First proposed – and still widely used
n Not really covered in this course – take crypto!
n Select two large primes p,q ; let n=pq

n Select prime e (public key: <n,e>)
q Or co-prime with Φ(n) =(p-1)(q-1)

n Let private key be d=e-1 mod Φ(n) (i.e., ed=1 mod Φ(n))
n Encryption: RSA.Ee,n(m)=me mod n
n Decryption: RSA.Dd,n(c)=cd mod n
n Correctness: Dd,n(Ee,n(m))= (me)d = med = m mod n

q Intuitively: ed=1 mod Φ(n) è med = m mod n
n But why? Remember Euler’s theorem.

13

RSA Public Key Cryptosystem
n Correctness: Dd,n(Ee,n(m))= med mod n
n med=med= m1+l Φ(n) =m ml Φ(n) =m (mΦ(n))l

n med mod n =m (mΦ(n) mod n)l mod n
n !"#$%&'()$*%$+,-mΦ(n) mod n=1 mod n
n è Dd,n(Ee,n(m))= med mod n=m 1l mod n =m
n Comments:

q m<n è m= m mod n
q !"#$%&'-()$*%$+-)*#.&-/*0#12-34-m, n 5%$-6*78%3+$&
q !"#$%&#'%()*+,-./#0.-#12+$-.-#3-,+$4-*#52-%*-,

n !"#$%&'"#()"*&+,"%(-./&0"1+23-&#)
n 43)5"6&,(#7"(3+"8%(.&"9)1:&";+,.)(<

The RSA Problem and Assumption
n RSA problem: Find m , given (n,e) and ‘ciphertext’ value

c=me mod n
n RSA assumption: if (n,e) are chosen `correctly’, then the

RSA problem is `hard’
q I.e., no efficient algorithm can find m with non-

negligible probability

q For `large’ n and 𝑚←
$
{1,… , 𝑛}

n RSA and factoring
q Factoring alg è alg to ‘break’ RSA
q Algorithm to find RSA private key è factoring alg
q But: RSA-breaking may not allow factoring

14

RSA PKC Security
n It is a deterministic encryption scheme à

cannot IND-CPA secure.
n RSA assumption does not rule out exposure

of partial information about the plaintext.
n It is not CCA secure.

A solution: apply a random padding to the
plaintext then encryption using RSA.

15

16

Padding RSA
n Pad and Unpad functions:

q Encryption with padding:
q Decryption with unpad:

n Required to…
q Add randomization

n Prevent detection of repeating plaintext

q Prevent ‘related message’ attack (to allow use of tiny e)
q Detect, prevent (some) chosen-ciphertext attacks

n Early paddings schemes subject to CCA attacks
q Even ‘Feedback-only CCA’ (aware of unpad failure)

)mod(
,mod)],([

ncUnpadm
nrmPadc

d

e

=

=

));((rmPadUnpadm =

17

How does Bob know Alice’s public key?

n Depends on threat model…
q Passive (`eavesdropping`) adversary: just send it
q Man-in-the-Middle (MITM): authenticate

n Authenticate – how?
q MAC: requires shared secret key
q Public key signature scheme:

authenticate using public key
q Certificate: public key of entity – signed by

certificate authority (CA)
n This comes under what is called Public Key

Infrastructure (PKI)

Digital Signature

18

19

Public Key Digital Signatures

n Sign using a private, secret signature key (A.s for Alice)
n Validate using a public key (A.v for Alice)
n Everybody can validate signatures at any time

q Provides authentication, integrity and evidence / non-repudiation
q MAC: ‘just’ authentication+integrity, no evidence, can repudiate

Sign 𝜎← SA.s(m) Verify VA.v(m, σ)
Message

m

Alice’s private
signing key A.s

Key Generation

(A.s,A.v) ←
$

KG 1%

A.s A.v

Alice’s public
verification key A.v

Key length n

𝜎 (m, 𝜎)

20

Digital Signatures Security: Unforgeability

n Unforgeability: given 𝑣, attacker should be
unable to find any ‘valid’ (𝑚, σ), i.e., Vv(m, σ)=OK
n Even when attacker can select messages 𝑚’, receive

σ’=Ss(m’)
n For any message except chosen m

Sign 𝜎← SA.s(m) Verify VA.v(m, σ)
Message

m

Alice’s private
signing key A.s

Key Generation

(A.s,A.v) ←
$

KG 1%

A.s A.v

Alice’s public
verification key A.v

Key length n

𝜎 (m, 𝜎)

Digital Signature Scheme Definition

21

32 CHAPTER 1. INTRODUCTION

1.3.4 Defining correctness requirements

Correctness requirements verify that the scheme operates as expected under
benign operating conditions. For a signature scheme, this simply means that
verification and signing interact as expected. Namely, if (s, v) is a pair of signing
key and corresponding validation key, then validation, using v, of a signature
produced using s would always return ‘Ok’. Let us define more formally a
signature scheme and its correctness requirement. Note that the definition uses
the dot notation introduced above.

Definition 1.4 (Signature scheme and its correctness). A signature scheme is
defined by a tuple of three e�cient (PPT) algorithms, S = (KG,Sign,Verify),
and a set M of messages, such that:

KG is a randomized algorithm that maps a unary string (security parameter
1l) to a pair of binary strings (KG.s(1l),KG.v(1l)).

Sign is an algorithm8 that receives two binary strings as input, a signing key
s 2 {0, 1}⇤ and a message m 2 M , and outputs another binary string
� 2 {0, 1}⇤. We call � the signature of m using signing key s.

Verify is a predicate that receives three binary strings as input: a verification
key v, a message m, and �, a purported signature over m. Verify should
output True if � is the signature of m using s, where s is the signature
key corresponding to v (generated with v).

Usually, M is a set of binary strings of some length. If M is not defined, then
this means that any binary string may be input, i.e., the same as M = {0, 1}⇤.

We say that a signature scheme (KG,Sign,Verify) is correct, if for every
security parameter 1l holds:

⇣
8(s, v) $ KG(1l), m 2M

⌘
Verifyv(m,Signs(m)) = ‘Ok’ (1.31)

Why signing and verifying are deterministic? Note that, for simplicity,
Definition 1.4 requires the signing and verifying algorithms (Sign,Verify, resp.)
to be deterministic, i.e., they cannot use randomness. Extending the definitions
to allow randomized signing and verifying algorithms is not very di�cult - but
a bit hairy - and we will not do that in this textbook.

Now that we have defined signature schemes and their correctness require-
ments, it is time to define also their security requirements, and indeed we do
this in Definition 1.8. However, before we do that, we must introduce some
further notions, used in most definitions of security of cryptographic schemes;
we do this in the following three subsections.

In subsection 1.3.5, we discuss general challenges to defining security of
cryptographic schemes, and how to deal with them. Then, in subsection 1.3.6 we

8In this textbook we only discuss deterministic signing algorithms. However, there are
also randomized signing algorithms, most notably, using the PSS encoding ([21,152]).

Foundations of Cybersecurity: Applied Introduction to Cryptography

Digital Signature Scheme Security

22

1.3. SECURITY GOALS AND DEFINITIONS: INTRODUCTION AND
SIGNATURES 35

schemes we define.

Algorithm 1 The existential unforgeability game EUFSign
A,S (1l)(1l) between

signature scheme S = (KG,Sign,Verify) and adversary A.

(s, v)
$ S.KG(1l) ;

(m,�)
$ AS.Sign

s
(·)(v, 1l);

return (S.Verifyv(m,�) ^ (A didn’t request Ss(m)));

Algorithm 1 presents the algorithm for the existential unforgeability game
EUFSign

A,S (1l)(1l), which is the most commonly used security requirement for
signature schemes. The game returns True if the adversary ‘wins’, i.e., if the
attack succeeds, and False if the attack fails. Intuitively, a secure signature
scheme S should ensure that every ‘feasible’ adversary A would ‘almost always’
lose, i.e., Pr(EUFSign

A,S (1l)(1l) = True) would be tiny or negligible, provided

that the security parameter 1l is ‘su�ciently large’. We will properly define
this requirement in Definition 1.6 and Definition 1.8.

Oracle notation. To explain Algorithm 1, let us first explain the expression
AS.Sign

s
(·)(1l) in the second line. This expression uses the oracle notation,

an important notation widely used in complexity theory and cryptography,
sometimes referred to as ‘black box access’ or ‘subroutine access’. We say that
S.Signs(·) is an oracle to the adversary A. This means that A can provide
input binary string x 2 {0, 1}⇤ and receive S.Signs(x), i.e., a signature of x
using the secret key s. Notice that A does not receive details on the ‘internals’
of S.Signs(·), and in particular is not given the secret signing key s. Let us
define oracle access more clearly.

Definition 1.5 (Oracle notation). Let f be a function (or an algorithm im-
plementing a function) and A be an algorithm. We use the notation Af(·) to
denote that algorithm A can provide input strings to f , e.g., x, and receive the
corresponding outputs, e.g., f(x). We refer to f(·) as an oracle.

Explanation of the existential unforgeability game EUFSign
A,S (1l) (Al-

gorithm 1). The game receives only one input, the security parameters 1l, and
has only three steps:

1. Use the key-generation algorithm of the signature scheme, to generate the

signing and verification keys: (s, v)
$ S.KG(1l). We use the

$ symbol
to emphasize that S.KG is a randomized algorithm, i.e., return a random
key pair.

2. Then, we let (m,�)
$ AS.Sign

s
(·)(1l), i.e., the adversary outputs a message

m and a purported forged signature for it, �. The adversary receives oracle
access to the signing algorithm, i.e., can receive the values S.Signs(x) for
any input x chosen by the adversary.

Foundations of Cybersecurity: Applied Introduction to Cryptography

1.3. SECURITY GOALS AND DEFINITIONS: INTRODUCTION AND
SIGNATURES 37

A, are bounded by a polynomial in the size of their inputs. The inputs to
S.Sign and S.verify include keys generated by S.KG(1l), which allows the
scheme to run time polynomial in 1l. It is therefore ‘only fair’ to give 1l as
input also to the adversary A.

1.3.7 The unforgeability advantage function,
concrete/asymptotic security and negligible functions

The "EUF�Sign
S,A advantage function. The existential unforgeability game

(Algorithm 1) is a random process, which returns the outcome of a random run
of the game, with the given adversary A and signature scheme S. The outcome
is True in runs where the adversary ‘wins’, i.e., outputs a forgery, and False

in runs where the adversary ‘loses’, i.e., does not output a forgery.
The outcome of the game may depend on the (random) keys output by

the (probabilistic) KG algorithm, as well as the outputs of the (randomized)
adversary A. The probability that the adversary wins usually depends on the
security parameter 1l. This probability is called the existential unforgeability
advantage of A against S.

Definition 1.6. The existential unforgeability advantage function of adversary
A against signature scheme S is defined as:

"EUF�Sign
S,A (1l) ⌘ Pr

⇣
EUFSign

A,S (1l)(1l) = True

⌘
(1.32)

Where the probability is taken over the random coin tosses of A and of S during
the run of EUFSign

A,S (1l) with input (security parameter) 1l, and EUFSign
A,S (1l)

is the game defined in Algorithm 1.

The advantage function gives us a measure of the security of the signature
scheme; in particular, clearly, a scheme is secure only if for any e�cient adversary
A, the advantage is small, or better yet, negligible10. Note, however, that for
any fixed value of the security parameter 1l, there is an adversary A that
always wins - i.e., such that "EUF�Sign

S,A (1l) = 1 (Exercise 1.13). Therefore, our
definition of security cannot be bounded to a specific security parameter, and
must consider the advantage as a function.

But which advantage functions are su�ciently-small (or negligible)? There
are two main ways in which we can deal with this question: asymptotic security
and concrete security. In this textbook we will adopt the asymptotic security
approach, which we explain below; but first let us briefly explain the alternative
approach of concrete security.

Concrete security. The concrete security approach uses the advantage func-
tion directly as the measure of security. Namely, in this approach, there is no
explicit definition of a ‘secure’ scheme; each scheme is only associated with

10Unfortunately, no e�cient signature scheme can ensure zero advantage; see Exercise 1.14.

Foundations of Cybersecurity: Applied Introduction to Cryptography

23

RSA Signatures
n Secret signing key s, public verification key v
n Short (<n) messages: RSA signing with message recovery
n 𝜎 =RSA.Ss(m)= msmod n,

RSA.Vv(m, 𝜎)={ OK if m= 𝜎 v mod n; else, FAIL }
n Long messages: ??

q Hint: use collision resistant hash function (CRHF)
q 𝜎 = RSA.Ss(m)= h(m)s mod n,

RSA.Vv(m, 𝜎)={ OK if h(m)= 𝜎 v mod n; else, FAIL }

Message 𝑚

Hash ℎ

ℎ(𝑚)

Sign 𝑆
𝑆01 𝑚

Discrete-Log Digital Signature?
n RSA allowed encryption and signing…

based on assuming factoring is hard
n Can we sign based on assuming

discrete log is hard?
n Most well-known, popular scheme: DSA

q Digital Signature Algorithm, by NSA/NIST
q Details: crypto course

24

Public Key Infrastructure
PKI

25

Public keys are very useful…
n Secure web connections
n Software signing (against malware)
n Secure messaging, email
n Cryptocurrency and blockchains.
n But …

q How do we know the PK of an entity?
n Mainly: signed by a trusted Certificate Authority
n E.g., in TLS, browsers maintain list of ‘root CAs’

26

Public Key Certificates & Authorities
n Certificate: signature by Issuer / Certificate Authority (CA) over

subject’s public key and attributes
n Attributes: identity (ID) and others…

q Validated by CA (liability?)
q Used by relying party for decisions (e.g., use this website?)

388 CHAPTER 8. PUBLIC KEY INFRASTRUCTURE (PKI)

Certificate Authority
(Aka CA or Issuer)

Subject
(e.g, website bob.com))

Alice
(relying party)

Nurse

Certificate
CB

Bob’s public key
Bob.e

Certificate CB :
CB = SignCA.s(bob.com,Bob.e, . . .)

Figure 8.1: PKI Entities and typical application for server-authentication in
Web-PKI process. Here, we show the simple case of a typical identity certificate
issued by a trusted CA (‘trust anchor’ or ‘root CA’) to website bob.com. Some
PKIs also allow relying parties to use certificates issued by an intermediate-CA
(Figure 8.6) or a path of multiple intermediate-CAs (Figure 8.7). Dashed arrow
represent certificate issuing process, occurring once, before client connections.

Basic PKI concepts: certificate, issuer (CA) and subject. All main-
stream PKIs, including X.509, distribute a public key pk together with a set
ATTR of attributes and a digital signature �, which is the result of a signa-
ture algorithm applied to input containing both pk and ATTR. The tuple
(pk,ATTR,�) is called a public key certificate or simply a certificate. The
certificate is issued by an entity referred to as a Certificate Authority (CA) or
simply as the issuer.

Most attributes refer to the subject of the certificate, i.e., the entity who
knows (‘owns’) the private key corresponding to the certified public key pk. In
addition, there are often few additional attributes related to the certificate itself
rather than to the subject, such as the certificate validity period and serial
number.

The CA provides the certificate to the subject, who (often) provides it to
the relying party - for example, during the TLS/SSL handshake.

Identity certificates. Many certificates include an identifying attribute, i.e.,
an identifier of the subject; such certificates are referred to as identity certificates.
In the typical server-authentication use by TLS/SSL of Web PKI, the relying-
party is the browser, the subject is the web-site, and the relevant identifier is the
domain name of the website, e.g., bob.com. This typical use-case is illustrated
in Figure 8.1. Identity certificates may include multiple identifiers, as well as
non-identity attributes.

Figure 8.1 illustrates the basic PKI entities and interactions. The simple

Foundations of Cybersecurity: Applied Introduction to Cryptography

27

Certificates are all about Trust
n Certificate: 𝐶!"# = 𝑆𝑖𝑔𝑛$%.' 𝐵𝑜𝑏. 𝑐𝑜𝑚, 𝐵𝑜𝑏. 𝑒, …

q CA attests that Bob’s public key is 𝐵𝑜𝑏. 𝑒
n Do we trust this attestation to be true?
n Special case of trust management

q Important problem far beyond PKI… still not resolved !

28

Rogue Certificates
n Rogue cert: equivocating or misleading (domain) name
n Attacker goals:

q Impersonate: web-site, phishing email, signed malware..
q Equivocating (same name): circumvent name-based security

mechanisms, such as Same-Origin-Policy (SOP), blacklists,
whitelists, access-control …

q Name may be misleading even if not equivocating
n Types of misleading names (‘cybersquatting’):

q Combo names: bank.com vs. accts-bank.com, bank.accts.com, …
q Domain-name hacking: accts.bank.com vs. accts-bank.com, … or

accts-bank.co
q Homographic: paypal.com [l is L] vs. paypaI.com [i is I]
q Typo-squatting: bank.com vs. banc.com, baank.com, banl.com,…

29

PKI Failures
n Although the signature over the certificate verifies

correctly, there is still a failure and the certificate must be
revoked.
q This is called a PKI failure.

n PKI failures include:
q Subject key exposure.
q CA failure.
q Cryptanalysis certificate forgery.

n Find collisions in the hash function used in the HtS
paradigm,

n or exploit some vulnerability in the digital signature
scheme used for signing.

30

Some Infamous PKI Failures394 CHAPTER 8. PUBLIC KEY INFRASTRUCTURE (PKI)

2001 VeriSign: attacker gets code-signing certs
2008 Thawte: email-validation (attackers’ mailbox)
2008,11 Comodo not performing domain validation
2011 DigiNotar compromised, 531 rogue certs (discovered); a rogue

cert for *.google.com used for MitM against 300,000 Iranian
users.

2011 TurkTrust issued intermediate-CA certs to users
2012 Trustwave issued intermediate-CA certificate for eavesdropping
2013 ANSSI, the French Network and Information Security Agency,

issued intermediate-CA certificate to MitM tra�c management
device

2014 India CCA / NIC compromised (and issued rogue certs)
2015 CNNIC (China) issued CA-cert to MCS (Egypt), who issued

rogue certs. Google and Mozilla removed CNNIC from their
root programs.

2013-17 Audio driver of Savitech install root CA in Windows
2015,17 Symantec issued unauthorized certs for over 176 domains, caus-

ing removal from all root programs.
2019 Mozilla, Google browsers block customer-installed Kazakhstan

root CA (Qaznet)
2019 Mozilla, Google revoke intermediate-CA of DarkMatter, and

refuse to add them to root program

Table 8.1: Some PKI failures.

design, concerns that X.500 interoperability may cause exposure of sensitive
information, and lack of su�cient trust among di↵erent directory providers.

However, some concepts from X.500 live on; we already mentioned LDAP
as one example. More relevantly to our subject, the X.500 recommendation
contributed extensively to the development of PKI schemes. The X.500 designers
observed that an interoperable directory should bind standard identifiers to
standard attributes.

One important set of attributes define the public key(s) of each entity. The
entity’s public encryption key allows relying parties to encrypt messages so that
only the intended recipient may decrypt them. Similarly, the entity’s public
validation key allows relying parties to validate statements signed by the entity.

We next discuss the main form of standard identifier defined in X.500: the
distinguished name.

8.2.2 The X.500 Distinguished Name

The design of X.500 was extensively informed by the experience of telecommu-
nication companies at the time, which included provision of directory services
to phone users. Phone directory services are mostly based on looking up the
person’s common name; the common name has the obvious advantage of being

Foundations of Cybersecurity: Applied Introduction to Cryptography

31

PKI Goals/Requirements
Trustworthy issuers: Trust anchor/root CAs and Intermediary CAs;
Limitations on Intermediary CAs (e.g., restricted domain names)

Accountability: identify issuer of given certificate

Timeliness: limited validity period, timely revocation

Transparency: public log of all certificate; no ‘hidden’ certs!

Non-Equivocation: one entity – one certificate

Privacy: why should CA know which site I use?

32

Covered Material From the Textbook
q Chapter 1: Section: 1.4
q Chapter 6: Sections 6.4, 6.5 (except 6.5.6 and

6.5.7), and 6.6 (except RSA with message
recovery)

q Chapter 8: Section 8.1

33

