CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

Lecture 10
Public Key Cryptography— Part I

Ghada Almashaqgbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline

Number theory review.

Intro to public key cryptography.

Key exchange.

Hardness assumptions: DL, CDH, DDH.

Number Theory Review

Our Focus

A brief overview of mainly modular
arithmetic.

d The minimalist set we need in topics covered in
this course.

The Modulo Operation

Definition 1.2 (The modulo operation). Let a,m € Z be integers such that
m > 0. We say that an integer r is a residue of a modulo m if 0 < r < m
and (31 € Z)(a =71 +1i-m). For any given a, m € Z, there is exactly one such
residue of a modulo m; we denote it by a mod m.

Properties (make it easier to compute complex modular arithmetic
expressions):

(a+b) modm = [(@ modm)+ (b modm)] modm (1.2)
(a—b) modm = [(@ modm)— (b modm) modm (1.3)
a-b modm = [(a modm)-(b modm)] modm (1.4)

> modm = (¢ modm)’ modm (1.5)

The Modulo Operation

Properties (extends also to polynomials):

Similar properties hold for any polynomial p(z) with integer coefficients and
input (x € Z), as well as for a polynomial p(z1, s, ...) with integer coefficients

and multiple integer parameters (r1,rs,... € Z):
p(z)] modm = [p(r modm)] modm (1.6)
p(z1, x2,...)] modm = p(ry mod m,zs,...) mod m= (1.7)
= p(xy modm,...) modm (1.8)

Examples

7 mod9="7
13 mod 8 =7
Omod 11 =7
4 mod4 ="
(30 + 66) mod 11 =?

How about: 445 - (8134 +83-33%%") mod 4 ?

Denote 445 - (81 - 3413 + 83 - 33345) mod 4 by x. Then we find x as
follows:

C 000 DO

r = 445.(81-34" +83-33°") mod 4
= (445 mod 4)- ((81 mod 4)- (34 mod 4)"+
+(83 mod 4)- (33 mod 4)**°) mod 4
= 1-(1-2"4+3-1°®) mod 4
= (2-46+3) mod 4
= 3 mod4=3

Multiplicative Inverse

d Needed to support division in modular arithmetic.
 Division not always produce integers.
1 Modular arithmetic requires integers to work with!!

d To compute a/b mod m, multiply a by the multiplicative
inverse of b.

[That is compute a/b mod m = ab’" mod m.

d Where b' is the multiplicative inverse such that bb-
modm=1

1 Not all integers have multiplicative inverses with respect
to a specific modulus m.

Multiplicative Inverse

Definition Let x,m € Z be integers such that x and m are a coprime.
Then there is a unique integer x— 1 such that x - z=! mod m =1 and m >
=1 > 0. We say that x~! is the multiplicative inverse of x modulo m.
d Examples:

d 3/5mod4=3.5"mod4="7

d 3/5mod6=3.5"mod6="

1 The algorithm used to compute the inverse is called the
Extended Euclidean algorithm (out of scope for this course).

Modular Exponentiation

d Will be encountered a lot; discrete log-based scheme,
RSA, etc.

d We have seen a property to reduce the base, but how
about the exponent?

 Its reduction will be with respect to a different
modulus than the one in the original operation.

J Fermat’s Little Theorem:

Theorem 1.1. For any integers a,b,p € Z, if p is a prime and p > 0, then

b

a® mod p = qb ™ed (P—1)

mod p 9
)b mod (p—1) (.)

= (a mod p mod p

10

Modular Exponentiation

d Examples; Use Fermat's Little theorem (if applicable) to
solve the following:

d 1332 mod 31 =7
d 1999 mod4 ="
d 199mod 7 ="

d Can we reduce the exponent for non-prime (composite)
modulus?

d We can use Euler’'s Theorem.

11

Euler’s Function

1 Called also Euler’s Totient function. For every integer n >
1, this function computes the number of positive integers
that are less than or equal to n and co-prime to n.

d(m) =|{i eN:i <n Agcd(i,n) =1}

Examples:
n 1 2 3 4 5 6 7 8 9 10
o(n) 1 1 2 2 4 2 6 4 6 4
factors? | none | none | none | 2-2 | none | 2-3 | none | 23 | 3-3|2-5

12

Fuler’s Function Properties

Lemma 1.1. For any prime p > 1 holds ¢(p) = p — 1. For prime q > 1 s.t.
q #p holds ¢(p-q) = (p—1)(¢ —1).

Lemma 1.2 (Euler function multiplicative property). If a and b are co-prime
positive integers, then ¢(a-b) = ¢(a) - ¢(b).

Lemma 1.3. For any prime p and integer | > 0 holds ¢(p') = p' — p'~L.

Lemma 1.4. Letn = I}, (pé"), where {p;} is a set of distinct primes (all

different), and l; is a set of positive integers (exponents of the different primes).

Then:
P(n) = ¢ (H?:i (ﬁ;)) =117, (Pflf —pf;i_1> (1.12)

13

Euler’s Theorem

Theorem 1.2 (Euler’s theorem). For any co-prime integers m,n holds m®n) =
1 mod n. Furthermore, for any integer | holds:

m! mod n=m! ™M mod n (1.19)

d Examples:
d 133" mod 31 =7
d 2726 mod 10 =7

14

Last Stop

1 Congruence:e=0 (modm)

d Used when two expressions have the same residue with
respect to some modulus.

O It is an equivalence relation, so it satisfies:
Reflexivity: a = a (mod m).
Symmetry: a =b (mod m) if b = a (mod m).

Transitivity: if a = b (mod m) and b = ¢ (mod m) then a = ¢ (mod m).

 Lastly, we have the fundamental theorem of arithmetic.

Theorem 1.3 (The fundamental theorem of arithmetic). Fvery number n > 1
has a unique representation as a product of powers of distinct primes.

15

Intro to Public Key Cryptography

16

Public Key Cryptology

Kerckhoff: cryptosystem (algorithm) is public

What we learned until now:
o Only the key is secret (unknown to attacker)

2 Same key for encryption, decryption
=» if you can encrypt, you can also decrypt!

But can we give encryption capability
without a decryption capability?

2 Yes, using public key cryptography!

17

‘ Public Key Cryptosystem (PKC)

= Kerckhoff: cryptosystem (algorithm) is public

= [DH76]: can encryption key be public, too??
o Decryption key will be different (and private)
o Everybody can send me mail, only | can read it.

Key length [‘_

Encryption Key e (e.d) Decryption Key d

@ubV \{i‘:ate)

e d

Plaintext Ciphertext
m c=E,(m)

Plaintext
m=D4(E (m))

18

‘ Is it Only About Encryption?

= Also: Digital signatures
o Sign with private key s, verify with public key v

0 (Recall MAC:s; a shared key cryptosystem for
message authentication).

Key length | ‘_

Private signing Public validation

key s / w
Message m, 6=Sy(m) m if V,(m, 6)=0OK
Error otherwise

19

More: Key-Exchange Protocol

= Key Exchange Protocols

o Establish shared key between Alice and Bob without assuming
an existing shared (‘master’) key !!

o Use public information from A and B to setup shared secret key k.
o Eavesdropper cannot learn the key k.

o /| What’s k 7777
.

Alice

20

Public keys solve more problems...

Signatures provide evidences
o Everyone can validate, only ‘owner’ can sign

Establish shared secret keys

o Use authenticated public keys
Signed by trusted certificate authority (CA)

a Or: use DH (Diffie Hellman) key exchange

Stronger resiliency to key exposure

o Perfect forward secrecy and recover security
Protect confidentiality from possible key exposures

o Threshold (and proactive) security
Resilient to exposure of k out of n parties (every period)

21

Public keys are easier...

To distribute:

o From directory or from incoming message (still
need to be authenticated)

o Less keys to distribute (same public key to all)

To maintain:

o Can keep in non-secure storage as long as
being validated (e.g. using MAC) before using

o Less keys: O(|parties|), not O(|parties|?)
S0: why not always use public key crypto?

22

The Price of PKC

Assumptions

o Applied PKC algorithms are based on a small
number of specific computational assumptions
Mainly: hardness of factoring and discrete-log

o Both may fail against quantum computers
Overhead

o Computational

0 Key length

o Output length (ciphertext/signature)

23

Public key crypto 1s harder...

Requires related public, private keys
o Private key reverses public key
o Public key does not expose private key

Substantial overhead

o Successful cryptanalytic shortcuts -2
need long keys

o Elliptic Curves (EC) may allow shorter
key (almost no shortcuts found)

o Complex computations

o RSA: very complex (slow) key
generation

Most: based on hard modular math
problems

[LVOZ2] | Required key size

Year |AES |RSA, [EC
DH

2010 78| 1369|160

2020 86| 1881|161

2030 93| 2493|176

2040 101 | 3214 | 191

Commercial-grade security
Lenstra & Verheul [LV02]

24

In Sum

Minimize the use of PKC

In particular: apply PKC only to short inputs
How 77
o For signatures:

Hash-then-sign

o For public-key encryption:
Hybrid encryption

25

Hybrid Encryption

Challenge: public key cryptosystems are slow

Hybrid encryption:

Use a shared key encryption scheme to encrypt all messages.

But use a public key encryption system to exchange the shared
key (Alice generates the k, encrypt it under Bob’s public key and

send it to Bob, Bob can then recover this key).

Encryption

k €40,1)" | ¢, € PKE, k)

A

Plaintext

y

Cyy €SKE,(m)

Decryption
Cy
> k€ PKD,(Cy)
CM . v
| SKD,(cyy) > m

26

Hard Modular Math Problems

No efficient solution, in spite of extensive efforts
o But: verification of solutions is easy (‘one-way’ hardness)
o Discrete log: exponentiation

Problem 1: Factoring

o Choose randomly p,q e LargePrimes

o Given n = pgq, itis infeasible to find p,q

o Verification? Easy, just multiply factors

o Basis for the RSA cryptosystem and many other tools

Problem 2: Discrete logarithm in cyclic group Z,,
o Where p is a safe prime [details in textbook]
o Given random number, find its (discrete) logarithm

o Verification is efficient by exponentiation: O((lg n)°)
o Basis for the Diffie-Hellman Key Exchange and many other tools
o We first discuss key-Exchange problem, then [DH] and disc-log

27

Key Exchange

28

The Key Exchange Problem

Alice and Bob want to agree on secret (key)
0 Secure against eavesdropper adversary

a2 Assume no prior shared secrets (key)
Otherwise seems trivial
Actually, we’ll later show it's also useful in this case...

Aka key agreement

29

‘Deﬁning a Key Exchange Protocol

D P,

a ' “Shared key: KC(a, Pg) = KC(b, P,)

Must satisfy correctness; both parties compute the same
shared key, and key indistinguishability (the key that the
two parties establish is indistinguishable from random).

30

Discrete Log (DL) Assumption
and
The Computational/Decisional Diffie-
Hellman Assumptions (CDH/DDH)
and
The DH Key Exchange Protocol

31

The Discrete L.og Problem

Computing logarithm is quite efficient over the reals
Consider a cyclic multiplicative group G

Q

Q

Q

Q

Cyclic group: exists generator g s.t. (Va € 6)(3i)(a = g')

Discrete log problem: given generator g and a € G, find i such that
a=g

Verification: exponentiation (efficient algorithm)

For prime p , the group Z,={1,...p-1} is cyclic

Is discrete-log hard?

Q

Q

Q

Some ‘weak’ groups, i.e., where discrete log is not hard:

L, for prime p, where (p — 1) has only ‘small’ prime factors
0 Using the Pohlig-Hellman algorithm

Check!! Mistakes/trapdoors found, e.g., in OpenSSL’16
Other groups studied, considered Ok (‘hard’)
Safe-prime groups: Zyfor safe prime: p = 2q + 1 for prime q

32

Discrete LLog Assumption
[for sate prime group: p = 2q + 1 for prime q

Given PPT adversary A, and n-bit safe prime p:

" g < Generator(Z3);

Pr o iZ; ~ negl(n)

A(x) = a|lx = g%mod p.

Comments:

1. Similar assumptions for (some) other groups
2. Knowing g, it is easy to find a generator g

3. Any generator (primitive element) will do

33

Dittie-Hellman [DH] Key Exchange

Using cyclic group Z,
Simplified Discrete Exponentiation Key Exchange

Agree on a random safe prime p
o And generator g for the cyclic group z;

Alice: secret key a, public key P,= g% mod p
Bob: secret key b, public key Py= g” mod p
To set up a shared key :

Alice Bob
Select a Py=g*modp

‘S
\"(:

>

Pyz= g’ mod p

(g?)*=g**=(g*)® mod p

34

Caution: Authenticate Public Keys!

Diffie-Hellman key exchange is only secure
using the authentic public keys

o Or (equivalently): against eavesdropper

If Bob simply receives Alice’s public key, [DH]
Is vulnerable to "Man in the Middle attack

g® mod p

~

35

‘ Security of [DH]| Key Exchange

= Assume authenticated communication
= Based on Computational Discrete Log Assumption
= But DH requires stronger assumption than Discrete Log:

o Maybe from g? mod p and g% mod p, adversary can compute
2% mod p (without knowing/learning a,b or ab)?

P,=g" mod p
Pr=g9” mod p

36

Computational DH (CDH) Assumption

[for sate prime group]

Given PPT adversary A:

(p,q) « primes s.t. p = 2q + 1;
g < Generator(Zy,);
a,b<{1..p—1} ~ negl(n)

- A(g% g° modp) = g** mod p

Pr

Assume CDH holds. Can we use g®’as key?

Not necessarily; maybe finding some bits of g¢° is easy?

37

Using DH securely?

Consider Z, (multiplicative group for (safe) prime p)

Can g, gb expose something about g¢® mod p ?

Bad news:

o Finding (at least) one bit about g% mod p is easy!
0 (details in textbook if interested)

So0...how to use DH ‘securely’?

38

Using DH securely?

Two options!
o Option 1: Use DH but with a "stronger’ group, e.g.,
Schnorr’'s - not Z;, (mod safe-prime p)

The (stronger) Decisional DH (DDH) Assumption:

adversary can’t distinguish between [g%, g?, g%°]
and [g%, g°, g°], for random q, b, c.

o Option 2: use DH with safe prime p... (where only CDH
holds) but use a key derivation function (KDF) to derive a
secure shared key

o Applied crypto mostly uses KDF... and we too ©

39

Using DH ‘securely’: CDH+KDF
Key Derivation Function (KDF)

o Two variants: random-keyed and unkeyed (deterministic)
Randomized - KDF: k = KDF,(g**mod p) where KDF is a
Key derivation function and s is public random (‘salt’)
Deterministic - crypto-hash: k = h(g**mod p) where £ is

randomness-extracting crypto-hash
o No need in salt, but not provably-secure

40

Resilience to Key Exposure

41

Authenticated DH

Recall: DH is not secure against MitM
attacker

Use DH for resiliency to key exposure
o Do authenticated DH periodically

0 Use derived key for confidentiality, authentication
Some protocols use key to authenticate next exchange

o =» Perfect Forward Secrecy (PFS):

Confidentiality of session i is resilient to exposure of all
keys, except i-th session key, after session i ended

42

Authenticated DH: using KDF/PRF s
Assume f which is both a PRF and a KDF
MK is secret + f is PRF (& MAC) =» authentication

o And, assuming MK is secret, session keys are secure — even if
discrete-log would be easy (quantum computers or math breakthrough)

Assuming CDH and that f is KDF: secure if MK exposed

o Since most bits of g#?i are secret

o Against eavesdropping or if MK is exposed only after session ends.
o Perfect forward secrecy (PFS) !

Alice | g% modp, fux (9% mod p) Bob
S . . 2y
:) g" modp, fux (g modp) | Nig:
Session key: k; = fux (g%’ mod p) s
MAC,, (A, B, m)

43

Resilience to Key Exposure: Recover Security

The previous DH protocol does not achieve
recover security, why?

o Exposing ML makes all future session vulnerable to
MitM (this adversary can authenticate any public key
he wants to the other party).

There is another version, called Ratchet DH,

that achieves perfect recover security.
o WIll not be covered in this class.

Covered Material From the Textbook

J Appendix A.2

J Chapter 6: sections 6.1, 6.2, and 6.3 (except
6.3.2)

45

Tnanx Youl

