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Outline
q Number theory review.
q Intro to public key cryptography.
q Key exchange.
q Hardness assumptions: DL, CDH, DDH.
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Number Theory Review
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Our Focus
q A brief overview of mainly modular 

arithmetic.
q The minimalist set we need in topics covered in 

this course.
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The Modulo Operation

1.2. BACKGROUND 13

It is not known whether factoring is in P , i.e., is e�ciently computable; if
it is, then there is an e�cient algorithm that finds the RSA private key and
allows decryption of messages. However, factoring definitely is in NP ; hence, if
P = NP , factoring is also in P , which would imply that RSA is insecure.

To see that factoring is in NP, we observe that there is an e�cient algorithm
to verify the factors of a large composite number such as n = pq. Namely, given
p and q, there is an e�cient algorithm that finds if n = pq. In fact, in this case,
verification consists simply of multiplying p by q and comparing the result to n.
In fact, even if given only one of the two, say p, verification is still easy: divide
n by p and confirm that the result is an integer q with no residue.

1.2.2 Background: modular arithmetic

Number theory is often used in the design and analysis of cryptographic schemes.
In this section, we introduce the minimal subset of number theory that is
necessary for our study of applied cryptography. The subset of number theory
that we need is mostly focused on modular arithmetic.

Modular arithmetic is based on the modulo operation, denoted mod , which
takes two inputs, an integer, say a, and a positive integer m which is called the
modulus. The modulo operation is denoted a mod m and returns the residue6

of division of the integer a by the modulus m. For example, 13 mod 4 = 1,
since 13 = 1 + 3 · 4. Note that for any given a,m 2 Z such that m > 0, there is
exactly one such residue of a modulo m, as the reader should be able to confirm.
The following definition tries to make this more clear.

Definition 1.2 (The modulo operation). Let a,m 2 Z be integers such that
m > 0. We say that an integer r is a residue of a modulo m if 0  r < m
and (9 i 2 Z)(a = r + i ·m). For any given a,m 2 Z, there is exactly one such
residue of a modulo m; we denote it by a mod m.

Note that a may be negative; in this case, i will also be negative. Similarly,
if m > a � 0, then a = a mod m, i.e., a = r + 0 ·m = r and i = 0.

Modular arithmetic is the computation of expressions involving arithmetic
operations over integers, where the operations include modulo operations. The
mod operation is applied after all ‘regular’ arithmetic operations such as
addition and multiplication; i.e., (a+ b mod m) = [(a+ b) mod m].

The reader should be able to confirm the following useful, basic properties of
the modular operation, which hold for every integers a, b,m 2 Z where m > 0:

(a+ b) mod m = [(a mod m) + (b mod m)] mod m (1.2)

(a� b) mod m = [(a mod m)� (b mod m)] mod m (1.3)

a · b mod m = [(a mod m) · (b mod m)] mod m (1.4)

ab mod m = (a mod m)b mod m (1.5)

6Some people use the term remainder in stead of residue.
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The Modulo Operation
Properties (extends also to polynomials):

14 CHAPTER 1. INTRODUCTION

Example 1.1. Let A = anan�1 . . . a2a1a0 be an n + 1-digits number. Let us
use Equations (1.2) and (1.4) to prove that A is divisible by 3 if and only if the
sum of its digits

Pn
i=0

ai is divisible by 3:

iX

i=0

(10iai) mod 3 =
iX

i=0

(10iai mod 3) mod 3

=
iX

i=0

[(10i mod 3)(ai mod 3)] mod 3

=
iX

i=0

[(1)(ai mod 3)] mod 3

=
iX

i=0

(ai mod 3) mod 3

=
iX

i=0

ai mod 3

The reader is encouraged to prove the similar rule for division by 9.

Exercise 1.1. Use Eq. (1.5) to show that for any integers a, b holds ab

mod (a� 1) = 1.

Similar properties hold for any polynomial p(x) with integer coe�cients and
input (x 2 Z), as well as for a polynomial p(x1, x2, . . .) with integer coe�cients
and multiple integer parameters (x1, x2, . . . 2 Z):

[p(x)] mod m = [p(x mod m)] mod m (1.6)

[p(x1, x2, . . .)] mod m = p(x1 mod m,x2, . . .) mod m = (1.7)

= p(x1 mod m, . . .) mod m (1.8)

These properties often make it much easier to compute the residue of a
complex expression or calculation, as the following exercise shows.

Exercise 1.2. Compute the following values:

1. 9 mod 7

2. 45 mod 7

3. 45

9
mod 7

4. 445 ·
�
81 · 3413 + 83 · 33345

�
mod 4

Solutions:

1. 9 mod 7 = 2 since 9 = 2 + 1 · 7.

2. 45 mod 7 = 3 since 45 = 3 + 6 · 7.

Foundations of Cybersecurity: Applied Introduction to Cryptography
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Examples
q 7 mod 9 = ?
q 13 mod 8 = ?
q 0 mod 11 = ?
q 4 mod 4 = ?
q (30 + 66) mod 11 = ?
q How about:                                                              ?
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3. 45

9
mod 7 = 5 mod 7 = 5.

4. Denote 445 ·
�
81 · 3413 + 83 · 33345

�
mod 4 by x. Then we find x as

follows:

x = 445 ·
�
81 · 3413 + 83 · 33345

�
mod 4

= (445 mod 4) ·
�
(81 mod 4) · (34 mod 4)13+

+(83 mod 4) · (33 mod 4)345
�

mod 4

= 1 ·
�
1 · 213 + 3 · 1345

�
mod 4

=
�
2 · 46 + 3

�
mod 4

= 3 mod 4 = 3

1.2.3 Background: Multiplicative inverses

Note that when we solved the third item of exercise 1.2, we did not compute the
modulo of the numerator and denominator and then divide - that would have
resulted in 3

2
mod 7, and 3

2
is not even an integer, so it would have no modulus.

Indeed, division was not included in equations 1.2 to 1.8; in fact, division of
two integers, a

b , is not always an integer - hence,
�
a
b

�
mod m may not even be

defined. Of course, we picked an example - 45

9
mod 7 - where 45

9
= 5, i.e., is

an integer, so 45

9
mod 7 was defined.

Of course, in ‘regular’ algebra, we often use division to solve equations; so
what can we do in modular arithmetic? The answer is that instead of dividing,
we can multiply by the multiplicative inverse. This actually also works in ‘regular’
algebra over the reals: every non-zero number x 6= 0 has a multiplicative inverse
which we denote by x�1 or 1

x , and for any y holds y
x = y · x�1. Let us show a

similar multiplicative inverse for modular arithmetic.

Definition 1.3. Let x,m 2 Z be integers such that m > 0 and x mod m 6= 0.
Then there is a unique integer x�1 such that x · x�1 mod m = 1 and m >
x�1 > 0. We say that x�1 is the multiplicative inverse of x modulo m.

Furthermore, the multiplicative inverse modulo m can be e�ciently found.

Fact 1.2. Let x,m 2 Z be integers such that m > 0 and x mod m 6= 0. Then
there is an e�cient algorithm that finds x�1 mod m.

Proof (partial): By definition, x · x�1 mod m = 1; hence, (x mod m) · x�1

mod m = 1. Let z ⌘ x mod m; then, by definition again (in the reverse direc-
tion), we have x�1 mod m = (x mod m)�1 mod m = z�1 mod m. There-
fore, we can find z�1 mod m, for z ⌘ x mod m, and it is the same as x�1

mod m. That’s a bit easier, since 0  z < m.
To finish the solution, find integers a, b that solve a · x+ b ·m = 1; it follows

that x�1 mod m = a mod m. To find a, b, use the (e�cient and simple)
Extended Euclidean algorithm; details omitted. In typical exercises, one can
find a, b by simple arithmetic; any pair of integers satisfying the equation will
do.

Foundations of Cybersecurity: Applied Introduction to Cryptography
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Multiplicative Inverse
q Needed to support division in modular arithmetic.

q Division not always produce integers.
q Modular arithmetic requires integers to work with!!

q To compute a/b mod m, multiply a by the multiplicative 
inverse of b.
q That is compute a/b mod m = ab-1 mod m.
q Where b-1 is the multiplicative inverse such that bb-1

mod m = 1
q Not all integers have multiplicative inverses with respect 

to a specific modulus m.
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Multiplicative Inverse

q The algorithm used to compute the inverse is called the 
Extended Euclidean algorithm (out of scope for this course).

1.2. BACKGROUND 15
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q 3/5 mod 4 = 3 . 5-1 mod 4 = ?
q 3/5 mod 6 = 3 . 5-1 mod 6 = ?
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Modular Exponentiation
q Will be encountered a lot; discrete log-based scheme, 

RSA, etc.
q We have seen a property to reduce the base, but how 

about the exponent?
q Its reduction will be with respect to a different 

modulus than the one in the original operation.
q Fermat’s Little Theorem:

1.2. BACKGROUND 17

n 1 2 3 4 5 6 7 8 9 10
�(n) 1 1 2 2 4 2 6 4 6 4

factors? none none none 2 · 2 none 2 · 3 none 23 3 · 3 2 · 5

Table 1.2: Euler’s function �(n), computed for small integers; see Equation 1.10.

In some cases, reducing the exponent is possible, and even simple and
e�cient; however, this reduction would not use the same modulus. In particular,
for computing exponentiation modulo a prime p, we may reduce the exponent
modulo p� 1; this is often referred to as Fermat’s little theorem, as follows.

Theorem 1.1. For any integers a, b, p 2 Z, if p is a prime and p > 0, then

ab mod p = ab mod (p�1) mod p

= (a mod p)b mod (p�1) mod p
(1.9)

Proof: See, e.g., [106].

Exercise 1.4. Compute the following, without a calculator. Use Fermat’s little
theorem (Theorem 1.1), if it is applicable; and use, if/where necessary, the
modulo operation rules.

1. 1331 mod 31

2. 17734 mod 4

3. 1926 mod 17

We can often reduce the exponent even when p is not a prime, using Euler’s
Theorem (Theorem 1.2). Euler’s theorem is a fundamental result from number
theory, which is a generalization of Fermat’s little theorem.

Euler’s function �. Before we present Euler’s theorem, we must introduce
Euler’s function �(n), also referred to as Euler’s totient7 function. We define
�(1) = 1, and for every integer n > 1, we define �(n) as the number of positive
integers which are less than n and co-prime to n. Two integers i, n are co-prime
if they do not have any common divisor (except 1, of course, which divides all
integers). Namely:

�(n) ⌘ |{i 2 N|i < n ^ gcd(i, n) = 1}| (1.10)

Where gcd(i, n) is the greatest common divisor of i and n, i.e., the largest integer
j s.t. 0 = i mod j and 0 = n mod j.

Euler’s function �(n), computed for small integers, is shown in Table 1.2.
The following lemma shows that if p is a prime then �(p) = p� 1. Further-

more, for a multiplication of two primes p, q holds: �(p · q) = (p� 1) · (q � 1).
Notice how this holds for the respective values in Table 1.2, e.g., �(7) = 6,
�(10) = 4.

7The word ‘totient’ comes from ‘how many’ in Latin.

Foundations of Cybersecurity: Applied Introduction to Cryptography
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Modular Exponentiation
q Examples; Use Fermat’s Little theorem (if applicable) to 

solve the following:
q 1332 mod 31 = ?
q 19930 mod 4 = ?
q 1960 mod 7 = ?

q Can we reduce the exponent for non-prime (composite) 
modulus? 
q We can use Euler’s Theorem.
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Euler’s Function
q Called also Euler’s Totient function. For every integer n ≥

1, this function computes the number of positive integers 
that are less than or equal to n and co-prime to n.

𝜙 𝑛 = | {𝑖 ∈ ℕ: 𝑖 ≤ 𝑛 ∧ gcd 𝑖, 𝑛 = 1}|

1.2. BACKGROUND 17
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Euler’s Function Properties18 CHAPTER 1. INTRODUCTION

Lemma 1.1. For any prime p > 1 holds �(p) = p � 1. For prime q > 1 s.t.
q 6= p holds �(p · q) = (p� 1)(q � 1).

Proof: A prime p is clearly co-prime to any positive integer smaller than it,
hence �(p) = p� 1.

For primes p, q, the number of positive integers smaller than p · q is again
p ·q�1; but some of them are divided by either p or by q. Let Ap ⌘ {p, 2p, ·(q�
1)p} denote the set of positive integers smaller than p · q divided by p, and
Aq ⌘ {q, 2q, ·(p � 1)q} denote the set of positive integers smaller than p · q
divided by q. Then:

�(p · q) = (p · q � 1)� |Ap [Aq| (1.11)

Let us compute the size of |Ap [ Aq|. First note that no positive integer
smaller than p · q can be divided by both p and q, since they are (di↵erent)
primes. Hence |Ap [Aq| = |Ap|+ |Aq|. Directly from the definition of each of
these sets we see that |Ap| = q � 1 and |Aq| = p� 1.

By substituting in Equation 1.11, we have:

�(p · q) = (p · q � 1)� (p� 1)� (q � 1) = p · q � p� q + 1 = (p� 1)(q � 1)

The next lemma generalizes Lemma 1.1, and states that the Euler function
is multiplicative for co-prime inputs, as follows.

Lemma 1.2 (Euler function multiplicative property). If a and b are co-prime
positive integers, then �(a · b) = �(a) · �(b).

Proof: Omitted.
Note that if a is co-prime to both b and c, than a is co-prime to bc. Hence,

Lemma 1.2 generalizes to a multiplication of multiple co-primes, e.g., if each
pair among a, b and c is co-prime, then �(a · b · c) = �(a) · �(b) · �(c).

We are getting close to being able to compute the Euler function for any
integer, given its factors. However, the Lemmas so far do not allow us to
compute the Euler function of an integer which is a power of a prime, i.e., pi

where p is a prime and i is a positive integer. For example, 9 = 32 and �(3) = 2,
but �(9) = 6. Let us now compute the Euler function for pi.

Lemma 1.3. For any prime p and integer l > 0 holds �(pl) = pl � pl�1.

Proof: Left to the reader. Hint: use the same idea as in proof of Lemma 1.1.

We next observe that using the above lemmas, we can compute the Euler
function given any multiplication of primes. This also generalizes the previous
lemmas.

Lemma 1.4. Let n = ⇧n
i=i

⇣
plii

⌘
, where {pi} is a set of distinct primes (all

di↵erent), and li is a set of positive integers (exponents of the di↵erent primes).
Then:

�(n) = �
⇣
⇧n

i=i

⇣
plii

⌘⌘
= ⇧n

i=1

⇣
plii � pli�1

i

⌘
(1.12)
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Lemma 1.2 generalizes to a multiplication of multiple co-primes, e.g., if each
pair among a, b and c is co-prime, then �(a · b · c) = �(a) · �(b) · �(c).

We are getting close to being able to compute the Euler function for any
integer, given its factors. However, the Lemmas so far do not allow us to
compute the Euler function of an integer which is a power of a prime, i.e., pi

where p is a prime and i is a positive integer. For example, 9 = 32 and �(3) = 2,
but �(9) = 6. Let us now compute the Euler function for pi.

Lemma 1.3. For any prime p and integer l > 0 holds �(pl) = pl � pl�1.

Proof: Left to the reader. Hint: use the same idea as in proof of Lemma 1.1.

We next observe that using the above lemmas, we can compute the Euler
function given any multiplication of primes. This also generalizes the previous
lemmas.

Lemma 1.4. Let n = ⇧n
i=i

⇣
plii

⌘
, where {pi} is a set of distinct primes (all

di↵erent), and li is a set of positive integers (exponents of the di↵erent primes).
Then:

�(n) = �
⇣
⇧n

i=i

⇣
plii

⌘⌘
= ⇧n

i=1

⇣
plii � pli�1

i

⌘
(1.12)
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Proof: Every pair of powers of distinct primes (plii , p
lj
j ) are co-primes; hence

from Lemma 1.2, generalized to a multiplication of multiple co-primes, it follows
that �(n) = ⇧n

i=1
�(plii ). The claim follows from Lemma 1.3.

The following exercise may improve your understanding of the Euler function
and the di↵erent ways to compute it.

Exercise 1.5. Compute the following; use the lemmas and facts above, as
necessary.

1. �(31)

2. �(93)

3. �(29)

4. �(125)

5. �(603)

Solution of item 5: first notice that 60 = 3 · 4 · 5 = 3 · 22 · 5.
To compute �(60), we apply Lemma 1.2:

�(60) = �(3 · 22 · 5) (1.13)

= �(3) · �(22) · �(5) (1.14)

= 2 · 2 · 4 = 16 (1.15)

To compute �(603), we apply Lemma 1.4:

�(607) = �(33 · 26 · 53) (1.16)

= (33 � 32) · (26 � 25) · �(53 � 52) (1.17)

= 18 · 32 · 100 = 57600 (1.18)

Euler’s theorem. Finally, we can now present Euler’s theorem:

Theorem 1.2 (Euler’s theorem). For any co-prime integers m,n holds m�(n) =
1 mod n. Furthermore, for any integer l holds:

ml mod n = ml mod �(n) mod n (1.19)

With Euler’s theorem, we now have several modular arithmetic tools. First,
we have the ‘basic’ modular-reduction rules (Equations 1.2 to 1.8). Second, we
have Fermat’s little theorem and Euler’s theorem. Finally, to apply Euler’s
theorem, we can use Lemma 1.4 to compute the Euler’s function �(m) for an
integer m, if we have the factorization of m.

The following exercise requires the use of these tools to compute several
modular computations. The challenge, of course, is to identify and use the
‘right tool’ for each exercise.

Foundations of Cybersecurity: Applied Introduction to Cryptography
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q Examples:
q 1331 mod 31 = ?
q 2726 mod 10 = ?



Last Stop
q Congruence:

q Used when two expressions have the same residue with 
respect to some modulus.

q It is an equivalence relation, so it satisfies:

q Lastly, we have the fundamental theorem of arithmetic.

15

20 CHAPTER 1. INTRODUCTION

Exercise 1.6. Prove the following, using the appropriate ‘tools’ among these
we learned. There may be more than one way to prove.

1. 1331 mod 31 = 13

2. 17734 mod 4 = 1

3. 2726 mod 10 = 9

4. 35841 mod 12 = 11

Congruence (mod m). Quite often in modular arithmetic, and in particular
in cryptography, we use equations of the form:

a mod m = b mod m (1.20)

Where a and b are some expressions, variables or values. Namely, in such
equations, we have two expressions, a and b, with the same residue modulo m.

There is an equivalent notation to such relation between expressions a and
b, called congruence modulo m, and denoted:

a ⌘ b (mod m) (1.21)

We may sometimes err and write a = b (mod m), but really that would be
just a typo. The meaning should still be clear from the use of (mod m) rather
than just mod m, as in a = b mod m. Note that a = b mod m means that
a is the residue of b modulo m; if the meaning was congruence, this is an error,
which could be misleading.

The reader should be able to show that congruence modulom is an equivalence
relation, namely, that it satisfies the following properties:

Reflexivity: a ⌘ a (mod m).

Symmetry: a ⌘ b (mod m) if b ⌘ a (mod m).

Transitivity: if a ⌘ b (mod m) and b ⌘ c (mod m) then a ⌘ c (mod m).

The fundamental theorem of arithmetic. We finish this section with the
‘classical’ fundamental theorem of arithmetic, also referred to as the unique
factorization theorem. We mention this result due to its importance and relation
to factorization; but we do not use it, so it is just informative. The theorem
states that each integer n > 1 can be represented as a multiplication of primes;
hence, once we are given this factorization, we can compute the Euler function
of n, using Lemma 1.4. The theorem also states that this representation is
unique. The first presentation and proof of this theorem are due to Euclid.

Theorem 1.3 (The fundamental theorem of arithmetic). Every number n > 1
has a unique representation as a product of powers of distinct primes.

Proof: omitted. Note that 1 is not considered a prime.
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Public Key Cryptology
n Kerckhoff: cryptosystem (algorithm) is public
n What we learned until now:

q Only the key is secret (unknown to attacker)
q Same key for encryption, decryption
è if you can encrypt, you can also decrypt!

n But can we give encryption capability 
without a decryption capability?
q Yes, using public key cryptography!
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Public Key Cryptosystem (PKC)
n Kerckhoff: cryptosystem (algorithm) is public
n [DH76]: can encryption key be public, too??

q Decryption key will be different (and private)
q Everybody can send me mail, only I can read it.

Encrypt E Decrypt D
Plaintext

m
Plaintext
m=Dd(Ee(m))

Ciphertext
c=Ee(m)

Encryption Key e
(public)

KeyGen KG

(e,d)

Key length l

e d

Decryption Key d
(private)
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Is it Only About Encryption? 
n Also: Digital signatures

q Sign with private key s, verify with public key v
q (Recall MACs; a shared key cryptosystem for 

message authentication). 

Sign S Validate V
Message

m
m if Vv(m, σ)=OK
Error otherwise

m, σ=Ss(m)

Private signing
key s

KeyGen KG

(s,v)

Key length l

s v

Public validation
key v
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More: Key-Exchange Protocol
n Key Exchange Protocols 

q Establish shared key between Alice and Bob without assuming 
an existing shared (‘master’) key !!

q Use public information from A and B to setup shared secret key 𝑘.
q Eavesdropper cannot learn the key 𝑘. 
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Nurse

Alice

k

Bob

k

What’s k ????

mA

mB

mA mB

Figure 6.2: Intuitive model of key exchange protocols. Alice and Bob have,
initially, no shared secret information (e.g., no ‘master key’); they exchange
messages between them (two shown, but in principle, could be more), and at
the end, they should both output the same shared secret key k. The goal is
that the adversary learns nothing about k, i.e., k is pseudorandom. Typically,
key-exchange protocols are designed using the eavesdropper adversary model,
i.e., during the run of the protocol, the adversary may only eavesdrop on, and
not to modify or inject, messages between the parties.

Security without assuming shared key. Using public key cryptology, we
can establish secure communication between parties, without requiring
them to previously share a secret key between them, or to share a secret
key and communicate with an additional party (such as a KDC, see § 5.5).
One method to do so is to use a key-exchange protocol; this is secure
if the attacker only has eavesdropping capabilities during the exchange
(this is not secure against a MitM attacker). Another alternative is when
one party (e.g., the client) knows the public key of the other party (e.g.,
the server); in this case, the client can encrypt a shared key and send to
the server. Finally, one party, e.g., the server (Bob), can send its public
key PB to the other party, e.g., the client (Alice), we can send the public
key PB signed by a trusted party, allowing the client to validate the key
and then use it (to encrypt a shared key and send to Bob). We refer to
the signed pubic key as a public key certificate; public key certificates are
a very important aspect of applied cryptography, and we discuss them
extensively in chapter 8.

Stronger resiliency to exposure. In § 5.6 we discussed the goal of resiliency
to exposure of secret information, in particular, of the ‘master key’ of
shared-key key-setup protocols, and presented the forward secrecy key-
setup handshake. In subsection 5.6.3, we also briefly discussed some
stronger resiliency properties, including Perfect Forward Secrecy (PFS),
Threshold security and Proactive security. Designs for achieving such

Foundations of Cybersecurity: Applied Introduction to Cryptography
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Public keys solve more problems…
n Signatures provide evidences

q Everyone can validate, only ‘owner’ can sign 
n Establish shared secret keys

q Use authenticated public keys
n Signed by trusted certificate authority (CA)

q Or: use DH (Diffie Hellman) key exchange
n Stronger resiliency to key exposure

q Perfect forward secrecy and recover security
n Protect confidentiality from possible key exposures

q Threshold (and proactive) security
n Resilient to exposure of 𝑘 out of 𝑛 parties (every period)
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Public keys are easier…

n To distribute: 
q From directory or from incoming message (still 

need to be authenticated)
q Less keys to distribute (same public key to all)

n To maintain:
q Can keep in non-secure storage as long as

being validated (e.g. using MAC) before using
q Less keys: O(|parties|), not O(|parties|2)

n So: why not always use public key crypto?



The Price of PKC
n Assumptions

q Applied PKC algorithms are based on a small 
number of specific computational assumptions
n Mainly: hardness of factoring and discrete-log

q Both may fail against quantum computers
n Overhead

q Computational 
q Key length
q Output length (ciphertext/signature)
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Public key crypto is harder… 
n Requires related public, private keys

q Private key `reverses` public key
q Public key does not expose private key

n Substantial overhead
q Successful cryptanalytic shortcuts à

need long keys 
q Elliptic Curves (EC) may allow shorter 

key (almost no shortcuts found)
q Complex computations
q RSA: very complex (slow) key 

generation
n Most: based on hard modular math 

problems

[LV02] Required key size
Year AES RSA, 

DH
EC

2010 78 1369 160
2020 86 1881 161
2030 93 2493 176
2040 101 3214 191

Commercial-grade security
Lenstra & Verheul [LV02]



In Sum
n Minimize the use of PKC
n In particular: apply PKC only to short inputs
n How ??

q For signatures:
n Hash-then-sign

q For public-key encryption: 
n Hybrid encryption

25



Hybrid Encryption
n Challenge: public key cryptosystems are slow
n Hybrid encryption:

n Use a shared key encryption scheme to encrypt all messages.
n But use a public key encryption system to exchange the shared 

key (Alice generates the k, encrypt it under Bob’s public key and 
send it to Bob, Bob can then recover this key).

k ß{0,1}n ckß PKEe(k)

cMßSKEk(m)

Encryption

Plaintext 
m

Decryption

kß PKDd(ck)

SKDk(cM)

ck

m
cM
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Hard Modular Math Problems
n No efficient solution, in spite of extensive efforts

q But: verification of solutions is easy (`one-way’ hardness)
q Discrete log: exponentiation

n Problem 1: Factoring 
q Choose randomly p,q ÎR LargePrimes
q Given  n = pq, it is infeasible to find p,q
q Verification? Easy, just multiply factors
q Basis for the RSA cryptosystem and many other tools

n Problem 2: Discrete logarithm in cyclic group 𝒁𝒑∗
q Where 𝑝 is a safe prime [details in textbook]
q Given random number, find its (discrete) logarithm
q Verification is efficient by exponentiation: O((lg n)3)
q Basis for the Diffie-Hellman Key Exchange and many other tools
q We first discuss key-Exchange problem, then [DH] and disc-log



Key Exchange
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The Key Exchange Problem
n Alice and Bob want to agree on secret (key)

q Secure against eavesdropper adversary
q Assume no prior shared secrets (key)

n Otherwise seems trivial 
n Actually, we’ll later show it’s also useful in this case…

Aka key agreement



Defining a Key Exchange Protocol

30
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Figure 6.5: Key Exchange protocol. Each party, Alice and Bob, runs the Key-
Generation algorithm KG, which outputs a (private, public) key-pair: a, PA for
Alice and b, PB for Bob. The parties exchange their public keys (PA and PB).
Then, each party applies a key-combining function KC to its own private key (a
for Alice and b for Bob), and to the public key received from the peer (PA from
Alice and PB from Bob). A key-exchange protocol should ensure correctness
(kA = KC(a, PB) = KC(b, PA) = kB) and key-indistinguishability (kA = kB is
pseudorandom), allowing use of kA = kB as a shared key.

A key exchange protocol should ensure correctness and key-secrecy. The
correctness requirement is that both parties will derive the same key, namely
that for every security parameter 1n holds:

⇣
8(a, PA)

$ KG(1n), (b, PB)
$ KG(1n)

⌘
KC(a, PB) = KC(b, PA) (6.5)

Key-indistinguishability requires, intuitively, that an eavesdropping adversary,
who ‘sees’ PA and PB , cannot learn anything about the shared key; equivalently,
it requires that the adversary cannot distinguish between being given randomly-
generated PA, PB and the key derived from them, versus being given randomly-
generated PA, PB and a random string of the same length as the key. The
following definition states this requirement more precisely.

Definition 6.5 (The key indistinguishability requirement). Let (KG,KC) be
a key-exchange protocol, and A be an e�cient (PPT) adversary. We say that
(KG,KC) ensures key-indistinguishability if for every PPT adversary A and
for su�ciently-large security parameter 1l, holds:

Pr

2

6664

A (PA, PB ,KC(a, PA)) = 1
where

(a, PA)
$ KG(1l),

(b, PB)
$ KG(1l)

3

7775
�Pr

2

666664

A (PA, PB , r) = 1
where

(a, PA)
$ KG(1l),

(b, PB)
$ KG(1l),

r
$ {0, 1}|KC(a,PA)|

3

777775
2 NEGL(1l)

(6.6)

6.2.3 Some candidate key exchange protocol

In this subsection, we present few ‘prototype’ key-exchange protocols, which
help us to properly explain the Di�e-Hellman protocol. Unlike the physical
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Must satisfy correctness; both parties compute the same 
shared key, and key indistinguishability (the key that the 
two parties establish is indistinguishable from random).



Discrete Log (DL) Assumption 
and 

The Computational/Decisional Diffie-
Hellman Assumptions (CDH/DDH) 

and
The DH Key Exchange Protocol
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The Discrete Log Problem
n Computing logarithm is quite efficient over the reals
n Consider a cyclic multiplicative group G 

q Cyclic group: exists generator 𝑔 s.t. (∀𝑎 ∈ 𝐺) ∃𝑖 𝑎 = 𝑔!

q Discrete log problem: given generator 𝑔 and 𝑎 ∈ 𝐺, find 𝑖 such that 
𝑎 = 𝑔!

q Verification: exponentiation (efficient algorithm)
q For prime 𝑝 , the group ℤ"∗ ={1,…p-1} is cyclic 

n Is discrete-log hard? 
q Some ‘weak’ groups, i.e., where discrete log is not hard:

n ℤ"∗ for prime 𝑝, where (𝑝 − 1) has only ‘small’ prime factors
q Using the Pohlig-Hellman algorithm

n Check!! Mistakes/trapdoors found, e.g., in OpenSSL’16
q Other groups studied, considered Ok (‘hard’)
q Safe-prime groups: ℤ"∗ for safe prime: 𝒑 = 𝟐𝐪 + 𝟏 for prime 𝒒



Discrete Log Assumption
[for safe prime group: 𝒑 = 𝟐𝐪 + 𝟏 for prime 𝒒]

Given PPT adversary A, and n-bit safe prime p:
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Pr
𝑔 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑍!∗ ;

𝑥 ←
$
𝑍!∗

𝐴 𝑥 = 𝑎|𝑥 = 𝑔$𝑚𝑜𝑑 𝑝

≈ 𝑛𝑒𝑔𝑙(𝑛)

Comments: 
1. Similar assumptions for (some) other groups
2. Knowing 𝑞, it is easy to find a generator 𝑔
3. Any generator (primitive element) will do



Diffie-Hellman [DH] Key Exchange
n Simplified Discrete Exponentiation Key Exchange
n Agree on a random safe prime p 

q And generator g for the cyclic group ℤ!∗

n Alice: secret key a, public key PA= ga mod p
n Bob: secret key b, public key PB= gb mod p
n To set up a shared key :
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PA= ga mod p

PB= gb mod p

BobAlice

Using cyclic group ℤ!∗

Select a Select b

𝑔$ %=𝑔%$= 𝑔% $ 𝑚𝑜𝑑 𝑝
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Caution: Authenticate Public Keys!
n Diffie-Hellman key exchange is only secure 

using the authentic public keys
q Or (equivalently): against eavesdropper

n If Bob simply receives Alice’s public key, [DH] 
is vulnerable to `Man in the Middle` attack316 CHAPTER 6. PUBLIC KEY CRYPTOLOGY

Nurse

Alice

a
$ {1, . . . , p}

(ge)a = ga·e mod p

Bob

b
$ {1, . . . , p}

(ge)b = gb·e mod p

MitM Adversary

e
$ {1, . . . , p}

(ga)e = ga·e mod p,�
gb
�e

= gb·e mod p

ga mod p ge mod p

gb mod pge mod p

Figure 6.10: MitM attack on the DH key-exchange protocol. The DH protocol
is believed to be secure against an eavesdropping adversary - or if the messages
are authenticated.

Definition 6.6 (Computational DH (CDH) for safe prime groups). The Com-
putational DH (CDH) assumption for safe prime groups holds, if for every PPT
algorithm A, every constant c 2 R, and every su�ciently-large integer n 2 N,
holds:

Pr
a,b

$ Z⇤
p

⇥
A(ga mod p, gb mod p) = gab mod p

⇤
2 NEGL (6.7)

for every safe prime p of at least n bits and every generator g of Z⇤p =
{1, 2, . . . , p� 1}.

However, note that even if the CDH assumption for safe prime groups holds,
an eavesdropper may still be able to learn some partial information about gab

mod p. The following claim shows that this allows immediate deduction of
whether gab mod p is a quadratic residue modulo p, i.e., exposes ‘one bit of
information’ about gab mod p: whether it is a quadratic residue or not.

Claim 6.3. Let PA = ga mod p and PB = gb mod p, where p is a prime, g
is a generator for Z⇤p, and a, b are positive integers. Given PA, PB, we can

e�ciently deduce if gab mod p is a quadratic residue modulo p.

Proof: from Claim 6.1, the attacker can e�ciently find if ga mod p and
gb mod p are quadratic residues modulo p. From Claim 6.2, this gives us the
least significant bit (LSb) of a and b, since, e.g., LSb(a) = 0 if and only if ga

mod p is a quadratic residue modulo p. Clearly, ab is even, i.e., LSb(ab) = 0, if
either a or b is even. Hence, given PA = ga mod p and PB = gb mod p, we

Foundations of Cybersecurity: Applied Introduction to Cryptography
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Security of [DH] Key Exchange
n Assume authenticated communication
n Based on Computational Discrete Log Assumption 
n But DH requires stronger assumption than Discrete Log: 

q Maybe from gb mod p and ga mod p, adversary can compute 
gab mod p (without knowing/learning a,b or ab)? 

Alice Bob
PA=ga mod p

PB=gb mod p



Computational DH (CDH) Assumption
[for safe prime group] 
Given PPT adversary A:
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Pr

𝑝, 𝑞 ← 𝑝𝑟𝑖𝑚𝑒𝑠 𝑠. 𝑡. 𝑝 = 2𝑞 + 1;
𝑔 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑍!∗);
𝑎, 𝑏 ← 1…𝑝 − 1 ;

𝐴 𝑔$, 𝑔% 𝑚𝑜𝑑 𝑝 = 𝑔$% 𝑚𝑜𝑑 𝑝

≈ 𝑛𝑒𝑔𝑙(𝑛)

Assume CDH holds. Can we use 𝑔%$as key?

Not necessarily; maybe finding some bits of 𝑔%$ is easy?
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Using DH securely?
n Consider ℤ!∗ (multiplicative group for (safe) prime 𝑝)
n Can ga , gb expose something about gab mod p ?
n Bad news:  

q Finding (at least) one bit about gab mod p is easy!
q (details in textbook if interested)

n So…how to use DH ‘securely’? 
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Using DH securely?
n Two options!

q Option 1: Use DH but with a `stronger’ group, e.g., 
Schnorr’s - not ℤ"∗ (mod safe-prime 𝑝)
n The (stronger) Decisional DH (DDH) Assumption: 

adversary can’t distinguish between [𝑔# , 𝑔$ , 𝑔#$]
and [𝑔# , 𝑔$ , 𝑔%] , for random 𝑎, 𝑏, 𝑐. 

q Option 2: use DH with safe prime p… (where only CDH 
holds) but use a key derivation function (KDF) to derive a 
secure shared key

q Applied crypto mostly uses KDF… and we too J
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Using DH ‘securely’: CDH+KDF
n Key Derivation Function (KDF)

q Two variants: random-keyed and unkeyed (deterministic)
n Randomized - KDF: 𝑘 = 𝐾𝐷𝐹- 𝑔%$𝑚𝑜𝑑 𝑝 where KDF is a 

key derivation function and 𝑠 is public random (‘salt’) 
n Deterministic - crypto-hash: 𝑘 = ℎ 𝑔%$𝑚𝑜𝑑 𝑝 where h is 

randomness-extracting crypto-hash
q No need in salt, but not provably-secure 



Resilience to Key Exposure
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Authenticated DH
n Recall: DH is not secure against MitM 

attacker
n Use DH for resiliency to key exposure

q Do authenticated DH periodically
q Use derived key for confidentiality, authentication

n Some protocols use key to authenticate next exchange
q è Perfect Forward Secrecy (PFS):

n Confidentiality of session 𝑖 is resilient to exposure of all 
keys, except 𝑖-th session key, after session 𝑖 ended
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Authenticated DH: using KDF/PRF [TLS]

n Assume 𝑓 which is both a PRF and a KDF
n 𝑀𝐾 is secret + 𝑓 is PRF (& MAC) è authentication 

q And, assuming 𝑀𝐾 is secret, session keys are secure – even if 
discrete-log would be easy (quantum computers or math breakthrough)

n Assuming CDH and that 𝑓 is KDF: secure if MK exposed
q Since most bits of 𝑔$!%! are secret
q Against eavesdropping or if MK is exposed only after session ends.
q Perfect forward secrecy (PFS) !
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𝑔$! 𝑚𝑜𝑑 𝑝, 𝑓&' (𝑔$! 𝑚𝑜𝑑 𝑝)
BobAlice 𝑓&' (𝑔#! 𝑚𝑜𝑑 𝑝)𝑔#! 𝑚𝑜𝑑 𝑝,

Session key: 𝑘( = 𝑓&' 𝑔#!$! 𝑚𝑜𝑑 𝑝
𝑀𝐴𝐶)! (𝐴, 𝐵,𝑚)



Resilience to Key Exposure: Recover Security

q The previous DH protocol does not achieve 
recover security, why?

q Exposing ML makes all future session vulnerable to 
MitM (this adversary can authenticate any public key 
he wants to the other party).

n There is another version, called Ratchet DH, 
that achieves perfect recover security.

q Will not be covered in this class.



Covered Material From the Textbook
q Appendix A.2
q Chapter 6: sections 6.1, 6.2, and 6.3 (except 

6.3.2)
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