CSE 3400 - Introduction to Computer & Network Security (aka: Introduction to Cybersecurity)

Lecture 9 Shared Key Protocols – Part II

Ghada Almashaqbeh UConn

From Textbook Slides by Prof. Amir Herzberg UConn

Outline

- □ Handshake protocol extensions.
- □ Key distribution centers.
- □ Improving resilence to key exposure.

Handshake Protocols Extensions

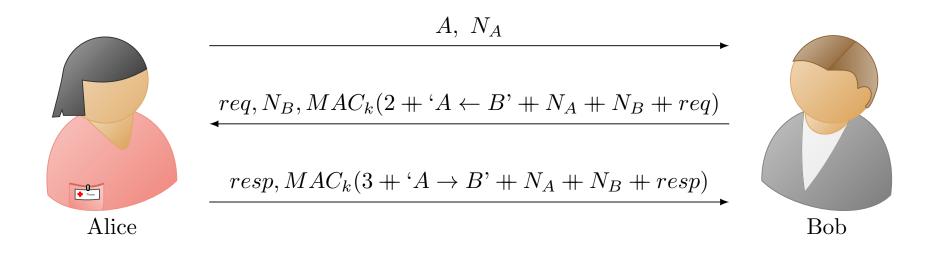
Authenticated Request-Response Protocols

- Beside authenticating entities, these protocols authenticate the exchange of a request and a response between the entities.
- □ Required properties:
 - **Request authentication.**

□ The request was indeed sent by the peer.

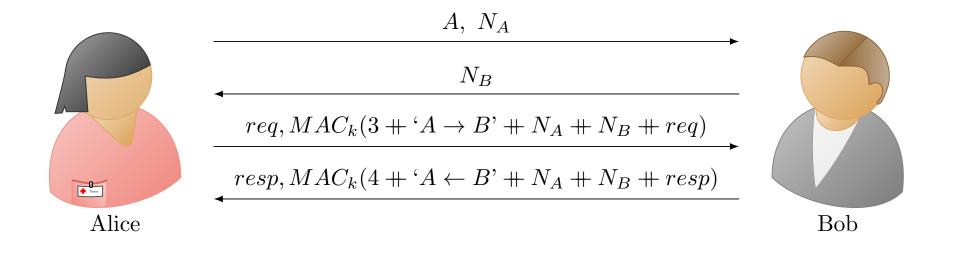
Response authentication

□ The response was indeed sent by the peer.


□ No replay.

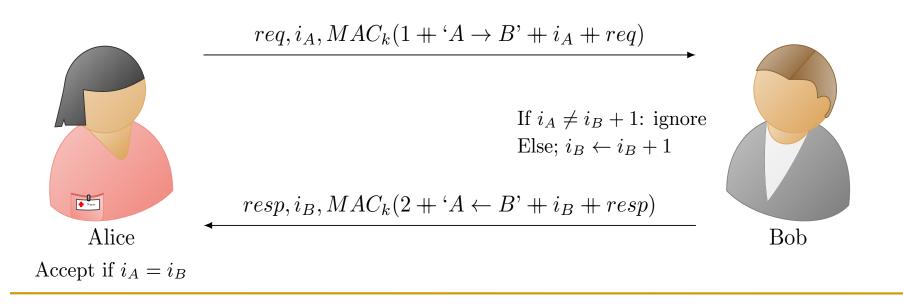
Every request/response was received at most the number of times it was sent by the peer. Authenticated Request-Response Protocols

- □ Five variants:
 - □ 2PP-RR
 - □ 2RT-2PP
 - Counter-based-RR
 - □ Time-based-RR.
 - □ Key-exchange.


2PP-RR

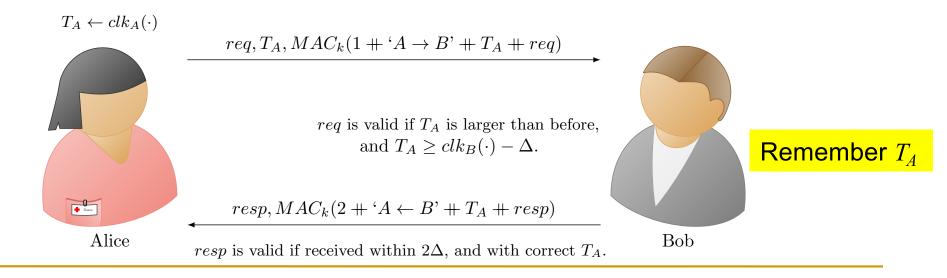
- A three-flow nonce-based protocol.
- Significant drawback:
 - The request is sent by the responder and the initiator sends the response.
 - So initiator has to wait for a request rather sending it!!

2RT-2PP


- A four-flow nonce-based protocol.
- Mainly fixes the drawback of 2PP-RR (see previous slide).

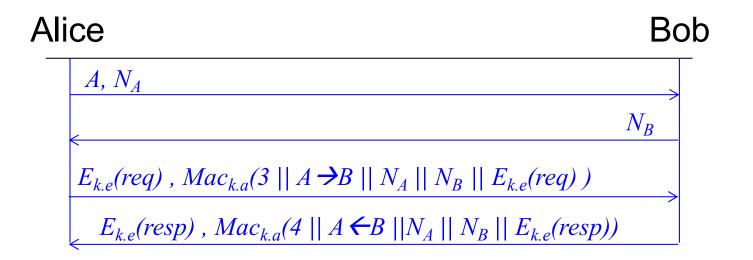
Counter-Based Authenticated RR

Simple stateful (counter) solution, requiring only one round:


- Unidirectional (run once for each direction if both are needed).
- Parties maintain synchronized counter *i* of requests (and responses) to avoid replay attacks.
- Recipient (e.g. Bob) validates counter received is i + 1
- Both parties must remember counter

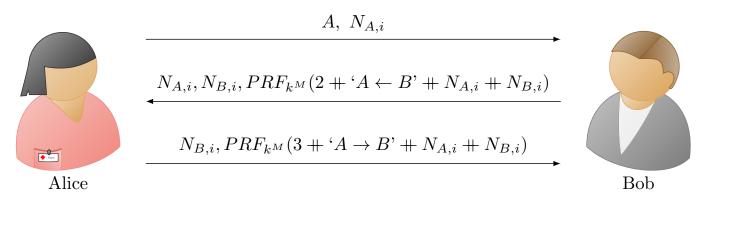
Time-Based Authenticated RR

Simple stateful (time) solution, requiring only one round:


- Use local clocks T_A , T_B instead of counters with two assumptions: bounded delays and bounded clock skews.
- Responder (Bob):
 - Rejects request if: $T_B > T_A + \Delta$ where $\Delta \equiv \Delta_{skew} + \Delta_{delay}$
 - Or if he received larger T_A already
 - Maintains last T_A received, until $T_A + \Delta$
- Initiator (Alice) does not need **any** state, when can Bob discard his?

2RT-2PP with Confidentiality

Secure connection: authentication, freshness, secrecy


- Independent keys: for encryption *k.e*, for authentication: *k.a*
- How can we derive them both from a single key k?
- $k.e=PRP_k("Encrypt"), k.a=PRP_k("MAC")$
- Hmm... same key encrypts all messages, in all sessions ⊗
- Can we improve security, by changing keys, e.g., btw sessions?

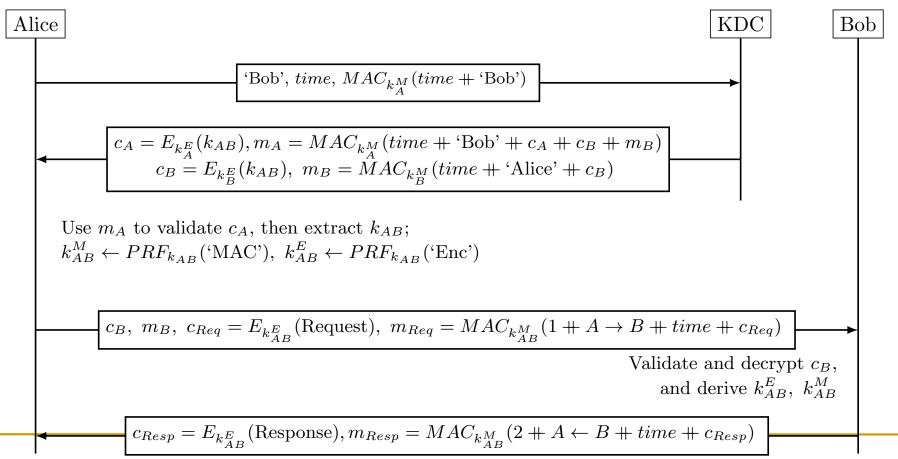
2PP Key Exchange Protocol

- Independent session keys, e.g. $k = PRF_{MK}(N_A, N_B)$
- Or, `directly' for authentication and for encryption: k.e=PRF_{MK}("Encrypt", N_A,N_B), k.a=PRF_{MK}("MAC", N_A,N_B)
- Improves security:
 - Exposure of session key does not expose (long-term) 'master key' MK
 - And does not expose keys of other sessions
 - Limited amount of ciphertext exposed with each session key k
- Later: reduce risk also from exposure of Master Key MK

Why a PRF is used instead of the MAC as before?

 $k_{i}^{S} = PRF_{k^{M}}(N_{A,i} + N_{B,i}) \qquad \qquad k_{i}^{S} = PRF_{k^{M}}(N_{A,i} + N_{B,i})$

Key Distribution Centers (KDCs)

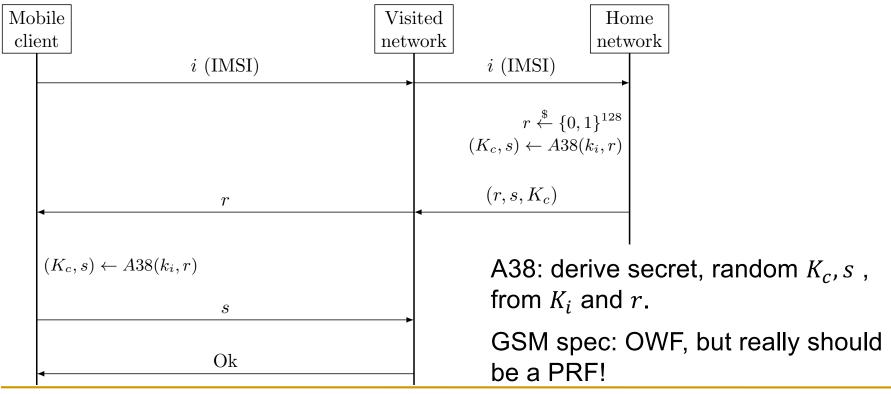

Establish a shared key between two or more entities, usually with the help of a trusted third party referred to as KDC

Key Distribution Center (KDC)

- Will focus on three party protocols; Alice, Bob, and KDC.
- KDC: shares keys with all parties $(k_A, k_B...)$
- Goal: help parties (A, B) establish k_{AB}
- We will study two protocols; simplified versions of:
 - The Kerberos protocol (secure) widely used in computer networks.
 - The GSM protocol (insecure) used by cellular networks.

The Kerberos KDC Protocol

- □ KDC shares keys k_A^E (enc.), k_A^M (MAC) with Alice and k_B^E , k_B^M with Bob
- Goal: Alice and Bob share k_{AB} , then derive: k_{AB}^E , k_{AB}^M
- ❑ KDC performs access control as well; controlling whom Alice can contact.


The GSM Handshake Protocol

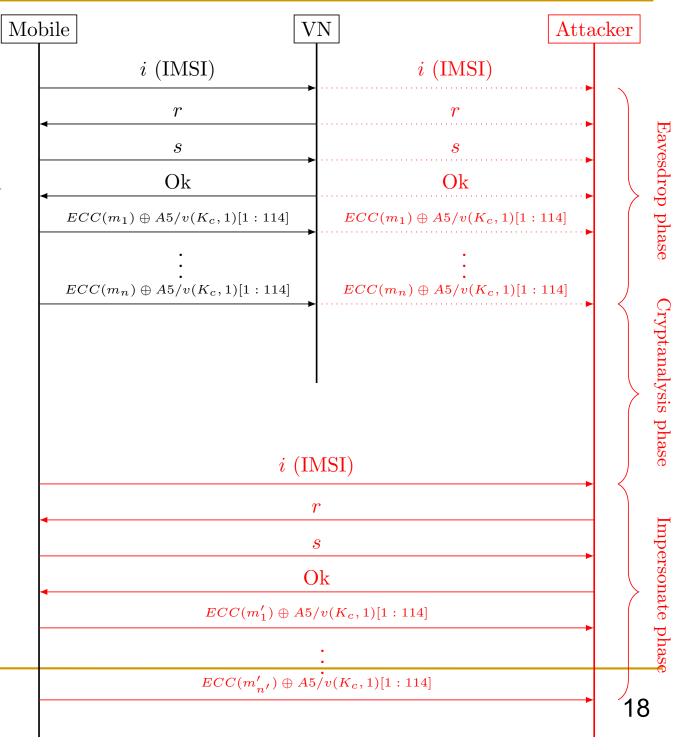
Mobile client

□ Identified by *i* (IMSI: International Mobile Subscriber Identifier)

Visited network (aka Base station); not fully trusted !

1 Home network; trusted, shares key k_i with client *i*

Example – Sending two messages


Attacks on GSM

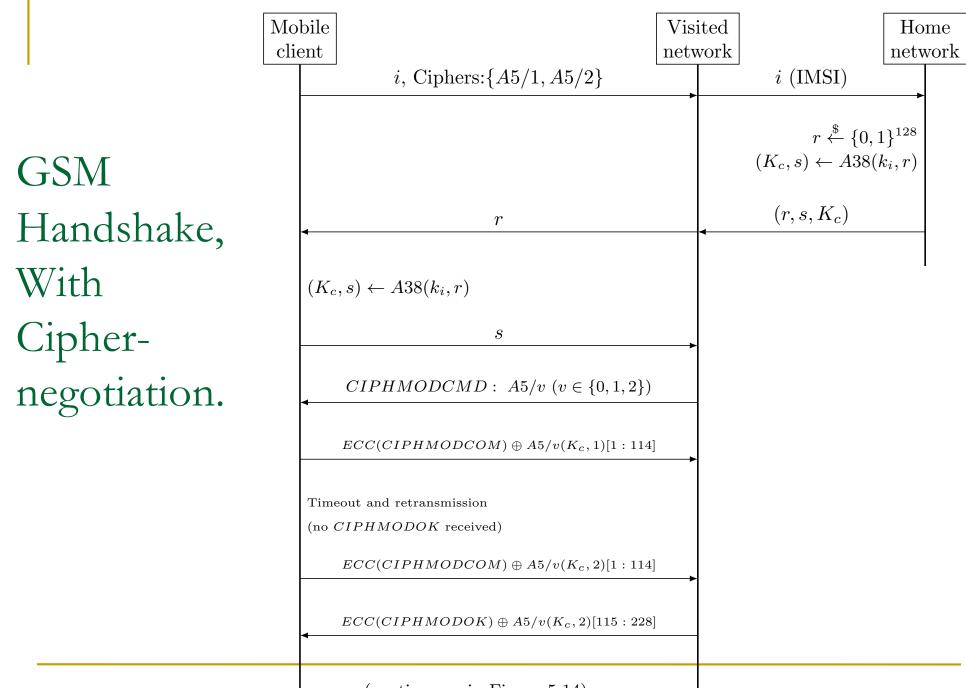
- We will explore two such attacks:
 - Visited network impersonation replay attack.
 - Downgrade attack.

Visited-network Impersonation Attack

Note: does NOT Impersonate **mobile**, only Visited network.

In the cryptanalysis phase, the attacker will try to obtain Kc based on the cyphertexts it collected in the eavesdropping phase (recall A5/1 and A5/2 are not secure)

GSM Ciphersuites Downgrade Attack

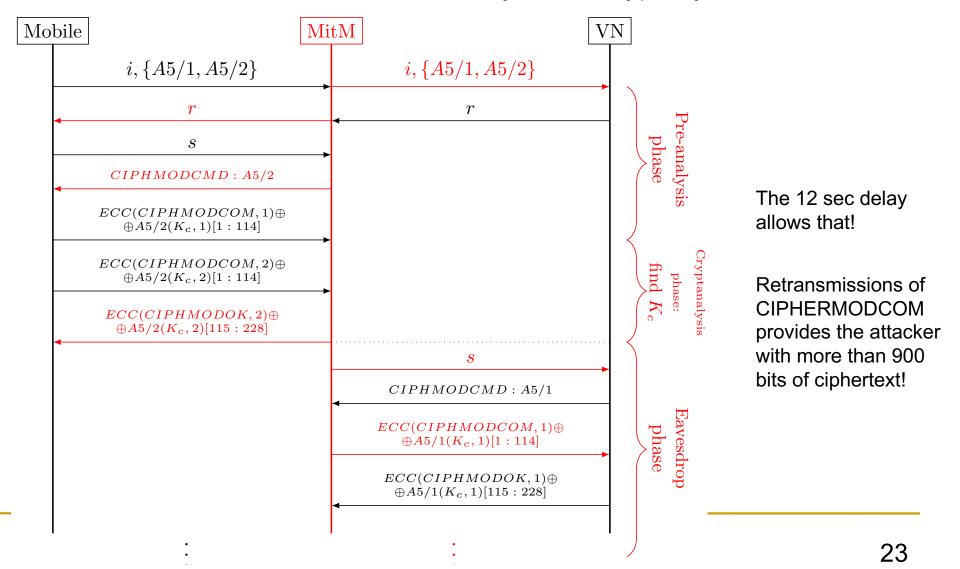

- A ciphersuite is the set of cryptographic schemes used in a protocol execution.
- Ciphersuite negotiation:
 - Mobile sends list of cipher-suites it supports
 - Visited-network selects best one that it also supports
- GSM encryption algorithms E_k :
 - A5/0: none, A5/1: broken, A5/2: useless (break with only 1sec), A5/3: 'other'
- A MitM attacker may trick these parties to use a weak suite although the parties can support a stronger one.
- Let's first see how ciphersuite negotiation happened in GSM.

Cipher mode messages, negotiation

- Mobile sends list of supported ciphers
- □ VN sends choice in: CIPHMODCMD
 - **Cipher Mode Command**
- Mobile confirms by sending <u>encrypted</u>: CIPHMODCOM: cipher mode complete

□ If not received (in few msecs), VN disconnects

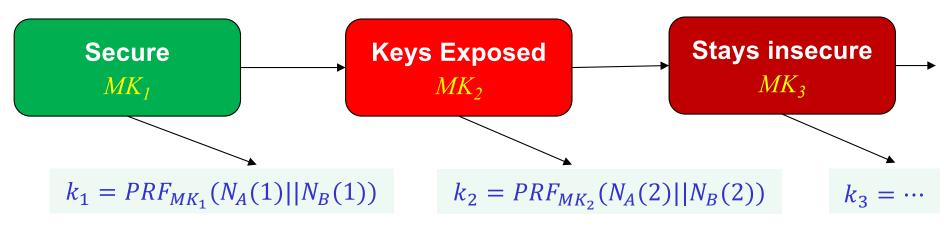
- □ VN Acks: CIPHMODOK: cipher mode Ok
 - □ If not received, mobile resends CIPHMODCOM



GSM ciphersuite facts: for fun and profit

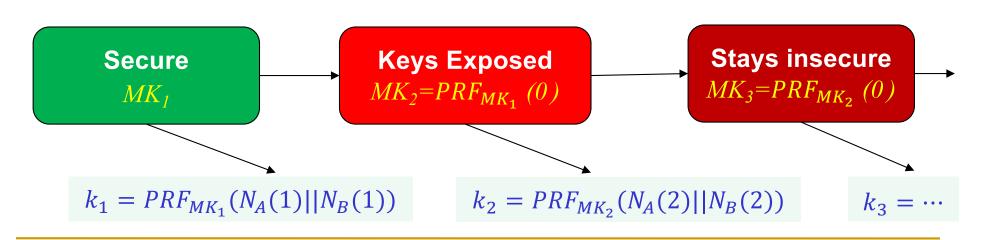
- \Box GSM uses same K_c for all ciphers
- □ CTO attack on A5/2 requires 900 bits, 1 sec
 - If ciphertext is after GSM's ECC, of course
 - Lots of redundancy
- □ Visited networks don't downgrade to A5/2
- □ Mobile encrypts, sends CIPHMODCOM
 - Resends (in few msecs) if no CIPHMODOK
 - □ New encryption each time (counter)
 - 456bit message (after ECC)
- □ Allow 12s delay for the *s* message

Real Downgrade Attack

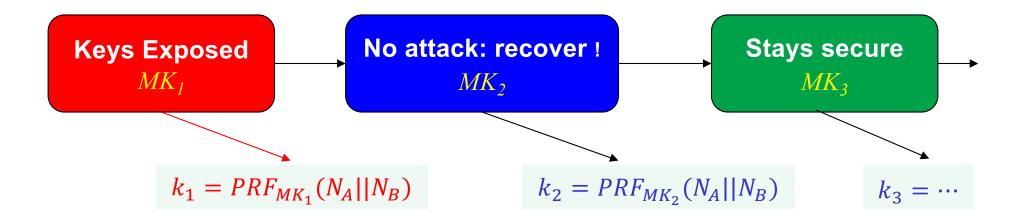

Works even if VN insists to use A5/1; attacker tricks client to use A5/2. That suffices, since GSM uses same key for all cryptosystems!

Improving Resiliency to Key Exposure

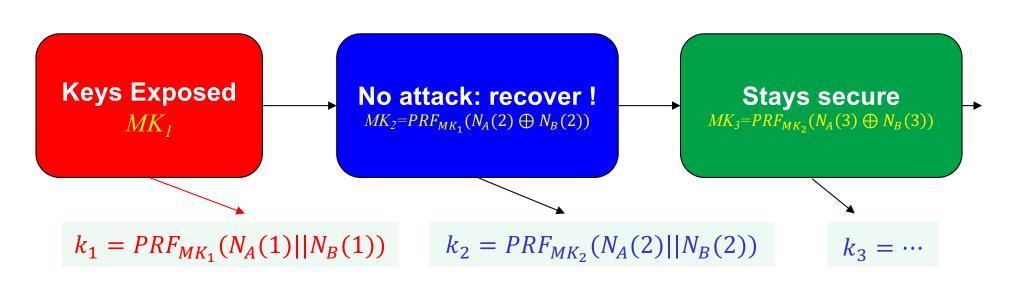
Forward Secrecy I


- **So far:** session key $k_i \neq k_j$ (expose no other keys)
 - And master key was fixed for all sessions
- Idea: we can do better!
 - Change the master key each session: MK_1 , MK_2 ,...
- Forward Secrecy (FS): master key $MK_i \Rightarrow k_j (j < i)$
 - I.e., MK_i (and k_i) don't expose keys, communication of previous sessions (j < i)

Forward Secrecy II


- Forward Secrecy (FS): <u>master</u> key $MK_i \neq k_i (j > i)$
 - Session *i* is secret even if any state of later sessions is exposed.
 - Uni-directional: $MK_i \rightarrow MK_{i+1}$, but $MK_{i+1} \not\models MK_i$
 - How? Solution: PRF!

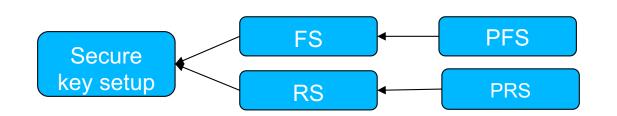
$$MK_i = PRF_{MK_{i-1}}(0)$$


Recover Security

- Can we also **recover** security?
 - MK_{i_R-1} exposed, yet MK_{i_R} , $MK_{i_{R+1}}$... secure ?
 - Idea: assume **no attack** during 'recovery session' i_R

Recover Security (RS)

- Recover security: key setup protocols where a single session without eavesdropping or other attacks, suffices to recover security from previous key exposures.
- That is, session *i* is secure if it's keys are not given to attacker, and either session i 1 is secure, or there is no attack during session *i*
- How? The RS-Ratchet Protocol:
 - Let $N_A(i)$, $N_B(i)$ denote session's *i* nonces
 - Then: $MK_i = PRF_{MK_{i-1}}(N_A(i) \bigoplus N_B(i))$



Stronger Notion of Resiliency

- Perfect Forward Secrecy (PFS): session *i* is secure even if attacker is given, only <u>after</u> session *i* ends, all keys of all other sessions, and Master Key of session *i*
 - *All include future and past sessions.*
- Perfect Recover Security (PRS): session *i* is secure if it's keys are not given to attacker, and either session *i* 1 is secure, or there is no MitM attack during session *i*
- How? <u>public-key</u> (key exchange) protocols next topic!

Resiliency Notions: Shared + Public Key

Notion	Session i is secure, when:	Crypto
Secure	Attacker is given <i>session</i> keys of other sessions, but	Shared
key-setup	master key is never exposed.	key
Forward	Attacker is given all keys, but only of sessions after session i .	Shared
Secrecy		key
(FS)		КСу
Perfect	Attacker is given all keys of sessions $except i$, but only after session i ends.	
Forward		Public
Secrecy		key
(PFS)		
Recover	Attacker is given keys of other sessions, but session $i-1$ is secure (or no attack during session i).	Shared
Security		
(RS)		
Perfect	Attacker is given keys of other sessions, but either session $i - 1$ is secure, or only eavesdropping in session i .	
Recover		Public
Security		
(PRS)		

MitM is an active attacker, not like an eavesdropper!

Covered Material From the Textbook

Chapter 5

□ Sections 5.3 – 5.7

Thank You!

