
CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

Lecture 9
Shared Key Protocols – Part II

Ghada Almashaqbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline
q Handshake protocol extensions.
q Key distribution centers.
q Improving resilence to key exposure.

2

Handshake Protocols Extensions

3

Authenticated Request-Response Protocols

q Beside authenticating entities, these protocols
authenticate the exchange of a request and a response
between the entities.

q Required properties:
q Request authentication.

q The request was indeed sent by the peer.
q Response authentication

q The response was indeed sent by the peer.
q No replay.

q Every request/response was received at most the
number of times it was sent by the peer.

4

Authenticated Request-Response Protocols

q Five variants:
q 2PP-RR
q 2RT-2PP
q Counter-based-RR
q Time-based-RR.
q Key-exchange.

5

2PP-RR
n A three-flow nonce-based protocol.
n Significant drawback:

n The request is sent by the responder and the initiator sends the
response.

n So initiator has to wait for a request rather sending it!!
260 CHAPTER 5. SHARED-KEY PROTOCOLS

Nurse

Alice Bob

A, NA

req,NB ,MACk(2 ++ ‘A B’ ++NA ++NB ++ req)

resp,MACk(3 ++ ‘A! B’ ++NA ++NB ++ resp)

Figure 5.8: The 2PP-RR protocol: a three-flows nonce-based authenticated
Request-Response protocol, based on 2PP

since round trip times are so important, we next state it as a fact and briefly
explain it.

Fact 5.1 (Round trip times are significant). Typical round-trip times over the
Internet can be quite significant, often 0.1 second or more. This holds even
when using connections with fast transmission rate. For example, sending a
typical request-response, say, each containing 10,000 bytes, over a connection
with a (not very high) transmission rate of 10 million bytes/second, would take
the number of round-trips required (times, say, 0.1 seconds), plus 0.02 seconds
for the transmission time. Clearly, the transmission time is negligible compared
to the round-trip time. The delay is dominated by the number of round-trips
and their round-trip delay.

5.3.2 The 2PP-RR Authenticated Request-Response
Protocol.

We first discuss 2PP-RR, a three-flows nonce-based authenticated Request-
Response protocol, which is a minor extension to 2PP. The 2PP-RR protocol is
illustrated in Figure 5.8. In fact, the only change compared to the 2PP protocol
(Figure 5.6, is the addition of the request (req) from responder to initiator, and
of the response (resp) from initiator to responder, to the second and third flows,
respectively.

The 2PP-RR protocol is simple and not too di�cult to prove secure, by a
reduction to the security of the underlying MAC function. Namely, suppose
that we know an e�cient algorithm (adversary) M which shows that 2PP-RR
does not meet the definition of a secure authenticated request-response protocol
(Definition 5.3). We can show that M produces some MAC without knowing
the key, allowing an e�cient adversary against the MAC function. Hence, if we
use a secure MAC, then 2PP-RR is secure.

This protocol has, however, a significant drawback, which makes it ill-suited
for many applications. Specifically, in this protocol, the request is sent by the
responder, and the initiator sends the response. In most applications, it makes
sense for a party to initiate the protocol when it needs to make some request,
rather than to wait for the initiator to contact it and only then, as a responder,

Foundations of Cybersecurity: Applied Introduction to Cryptography

6

2RT-2PP
n A four-flow nonce-based protocol.
n Mainly fixes the drawback of 2PP-RR (see previous slide).

7

5.3. AUTHENTICATED REQUEST-RESPONSE PROTOCOLS 261

Nurse

Alice Bob

A, NA

NB

req,MACk(3 ++ ‘A! B’ ++NA ++NB ++ req)

resp,MACk(4 ++ ‘A B’ ++NA ++NB ++ resp)

Figure 5.9: 2RT-2PP RR: a two-round-trips Authenticated Request-Response
protocol

send the response. The next protocol is a di↵erent adaptation of 2PP which
avoids this drawback - but requires four flows, i.e., two full round trips.

5.3.3 2RT-2PP Authenticated Request-Response protocol

In Figure 5.9 we present 2RT-2PP RR, another authenticated request-response
protocol based on 2PP. As the name implies, the 2RT-2PP RR protocol requires
four flows, i.e., two round-trips; this is a significant drawback. However, 2RT-
2PP improves upon 2PP-RR in that it authenticates a request from the initiator,
and the corresponding response to it from the responder.

The 2RT-2PP Request-Response protocol involves two simple extensions of
the basic 2PP protocol. The first extension is the transmission and authentica-
tion of the request and response, similarly to their addition in 2PP-RR. The
second extension is an additional (fourth) flow, from the responder back to
the initiator, which carries the response of the responder to the request from
the initiator. In a sense, 2RT-2PP ‘splits’ the contents of the second flow of
the 2PP-RR. In 2RT-2PP, these contents are split between the second flow
(providing the nonce NB) and the fourth flow (providing the authenticated
response).

5.3.4 Counter-based Authenticated Request-Response
protocol

In Figure 5.10 we present the Counter-based Authenticated Request-Response
protocol. In contrast to the 2PP protocols, this protocol requires only one round
trip - sending the (authenticated) request and receiving the (authenticated)
response. However, to prevent replay of previously-sent requests, in only
one round-trip, this protocol requires both parties to maintain a synchronized
counter.

The challenge for this protocol, as well as for the time-based protocol
of the next subsection, is for the responder to verify the freshness of the
request, i.e., that the request is not a replay of a request already received
in the past. Freshness also implies no reordering; for example, a responder,
say Bob, should reject request x from Alice, if Bob already received request

Foundations of Cybersecurity: Applied Introduction to Cryptography

Counter-Based Authenticated RR
n Simple stateful (counter) solution, requiring only one round:

n Unidirectional (run once for each direction if both are needed).
n Parties maintain synchronized counter 𝑖 of requests (and

responses) to avoid replay attacks.
n Recipient (e.g. Bob) validates counter received is 𝑖 + 1
n Both parties must remember counter

8

262 CHAPTER 5. SHARED-KEY PROTOCOLS

Nurse

Alice Bob

req, iA,MACk(1 ++ ‘A! B’ ++ iA ++ req)

If iA 6= iB + 1: ignore

Else; iB iB + 1

resp, iB ,MACk(2 ++ ‘A B’ ++ iB ++ resp)

Accept if iA = iB

Figure 5.10: Counter-based Authenticated Request-Response protocol

x or a later-sent request x0 from Alice. Freshness prevents an attacker from
replaying information from previous exchanges. For example, consider the
request-response authentication of Figure 5.9; if NB is removed (or fixed), then
an eavesdropper to the flows between Alice and Bob in one request-response
session can copy these flows and cause Bob to process the same request again.
For some requests, e.g., Transfer $100 from my account to Eve, this can be a
concern.

To ensure freshness without requiring the extra flows, one may use state, as
in this subsection, or synchronization, as in the next subsection.

Specifically, the counter-based protocol of Figure 5.10 requires both parties
to maintain a counter; we denote the counter kept by Alice using iA, and the
counter kept by Bob using iB. Alice’s counter iA represents the number of
queries that Alice sent, and Bob’s counter iB represents the number of responses
that Bob sent; hence, both are initialized to zero. The protocol maintains these
two counters synchronized, in the sense that at any time holds: iB iA iB+1.

Note that this design implies that this protocol does not allow concurrent
transmission of requests. Furthermore, the protocol does not provide retrans-
missions or any other mechanisms to handle message-losses or corruptions; any
such loss or corruption is likely to prevent any further query/response. However,
it is not too di�cult to extend the protocol to handle such issues, in particular,
to allow concurrent requests and responses.

Exercise 5.2. Extend the protocol of Figure 5.10, to allow Alice to send
concurrent requests to Bob; allow Bob to respond to requests, even when they
are received out-of-order.

5.3.5 Time-based Authenticated Request-Response protocol

Fig. 5.11 presents another alternative single-round Authenticated Request-
Response protocol; this variant allows the Initiator (e.g., Alice) to be stateless,
and also limits the time that the responder (e.g., Bob) must keep state. Instead
of relying on a counter maintained, in synchronized way, by the two parties,
the protocol of Figure 5.11 relies on the use of time and on two synchronization
assumptions, specifically, bounded delay and bounded clock skew.

Foundations of Cybersecurity: Applied Introduction to Cryptography

Time-Based Authenticated RR
n Simple stateful (time) solution, requiring only one round:

n Use local clocks TA, TB instead of counters with two assumptions:
bounded delays and bounded clock skews.

n Responder (Bob):
n Rejects request if: 𝑇! > 𝑇" + Δ where
n Or if he received larger 𝑇" already
n Maintains last 𝑇" received, until 𝑇" + Δ

n Initiator (Alice) does not need any state, when can Bob discard his?

9

5.3. AUTHENTICATED REQUEST-RESPONSE PROTOCOLS 263

Nurse

Alice Bob

TA clkA(·)
req, TA,MACk(1 ++ ‘A! B’ ++ TA ++ req)

req is valid if TA is larger than before,

and TA � clkB(·)��.

resp,MACk(2 ++ ‘A B’ ++ TA ++ resp)

resp is valid if received within 2�, and with correct TA.

Figure 5.11: Time-based Authenticated Request-Response protocol, using a
bound � on the maximal delay plus maximal clock bias. We use clkA(·) to
denote the time according to the local clock of Alice upon sending req, and
clkB(·) for Bob’s clock upon receiving req. Alice sets TA clkA(·) when she
sends the request, and authenticates it with the request. Bob uses TA to validate
that the request is fresh, using the bound �, and ensuring TA is larger than
previously received TA values.

Bounded delay assumption. Let �delay � 0 denote a bound on the maxi-
mal delay. Namely, if one party sends a message at time t, then this message is
received by t+�delay or earlier.

Bounded clock skew. Let �skew � 0 denote a bound on the maximal clock
skew, i.e., the maximal di↵erence between the values of the clocks of two entities
at any given time. Let clkA(t) (clkB(t)) denote the value of the clock at Alice
(respectively, Bob) at time t; then we have:

clkA(t)��skew clkB(t) clkA(t) +�skew (5.5)

The protocol is illustrated in Figure 5.11, with Alice sending the request and
Bob responding. For simplicity, we use a combined bound: � ⌘ �skew+�delay,
and the notation clkA(·), clkB(·) for the value of clkA (respectively, clkB) at
the time Alice sends (Bob receives) the req message.

The protocol at Bob confirms the received request req is valid, as follows:

No modification: compare the received MAC value to the MAC computed
with the correct inputs.

req is a request from Alice to Bob: The fact that the input to the MAC
begins with 1 ++ ‘A! B’ ensures this is a request (first flow) from Alice
to Bob.

No replay: Bob validates that the received value of TA is larger than the
largest previously received value of TA.

Freshness (acceptable delay): Bob validates that the received TA is within
� from its own clock clkB(·) at the time the req is received.

Foundations of Cybersecurity: Applied Introduction to Cryptography

5.3. AUTHENTICATED REQUEST-RESPONSE PROTOCOLS 263

Nurse

Alice Bob

TA clkA(·)
req, TA,MACk(1 ++ ‘A! B’ ++ TA ++ req)

req is valid if TA is larger than before,

and TA � clkB(·)��.

resp,MACk(2 ++ ‘A B’ ++ TA ++ resp)

resp is valid if received within 2�, and with correct TA.

Figure 5.11: Time-based Authenticated Request-Response protocol, using a
bound � on the maximal delay plus maximal clock bias. We use clkA(·) to
denote the time according to the local clock of Alice upon sending req, and
clkB(·) for Bob’s clock upon receiving req. Alice sets TA clkA(·) when she
sends the request, and authenticates it with the request. Bob uses TA to validate
that the request is fresh, using the bound �, and ensuring TA is larger than
previously received TA values.

Bounded delay assumption. Let �delay � 0 denote a bound on the maxi-
mal delay. Namely, if one party sends a message at time t, then this message is
received by t+�delay or earlier.

Bounded clock skew. Let �skew � 0 denote a bound on the maximal clock
skew, i.e., the maximal di↵erence between the values of the clocks of two entities
at any given time. Let clkA(t) (clkB(t)) denote the value of the clock at Alice
(respectively, Bob) at time t; then we have:

clkA(t)��skew clkB(t) clkA(t) +�skew (5.5)

The protocol is illustrated in Figure 5.11, with Alice sending the request and
Bob responding. For simplicity, we use a combined bound: � ⌘ �skew+�delay,
and the notation clkA(·), clkB(·) for the value of clkA (respectively, clkB) at
the time Alice sends (Bob receives) the req message.

The protocol at Bob confirms the received request req is valid, as follows:

No modification: compare the received MAC value to the MAC computed
with the correct inputs.

req is a request from Alice to Bob: The fact that the input to the MAC
begins with 1 ++ ‘A! B’ ensures this is a request (first flow) from Alice
to Bob.

No replay: Bob validates that the received value of TA is larger than the
largest previously received value of TA.

Freshness (acceptable delay): Bob validates that the received TA is within
� from its own clock clkB(·) at the time the req is received.

Foundations of Cybersecurity: Applied Introduction to Cryptography

Remember TA

2RT-2PP with Confidentiality
n Secure connection: authentication, freshness, secrecy

n Independent keys: for encryption k.e, for authentication: k.a
n How can we derive them both from a single key k ?
n k.e=PRPk(“Encrypt”), k.a=PRPk(“MAC”)
n Hmm… same key encrypts all messages, in all sessions L

n Can we improve security, by changing keys, e.g., btw sessions ?

A, NA

NB

Ek.e(req) , Mack.a(3 || AàB || NA || NB || Ek.e(req))

BobAlice

Ek.e(resp) , Mack.a(4 || AßB ||NA || NB || Ek.e(resp))

10

2PP Key Exchange Protocol
n Independent session keys, e.g. k=PRFMK(NA,NB)
n Or, `directly’ for authentication and for encryption:

k.e=PRFMK(“Encrypt”, NA,NB), k.a=PRFMK(“MAC”, NA,NB)
n Improves security:

n Exposure of session key does not expose (long-term) ‘master key’ MK
n And does not expose keys of other sessions

n Limited amount of ciphertext exposed with each session key k
n Later: reduce risk also from exposure of Master Key MK

266 CHAPTER 5. SHARED-KEY PROTOCOLS

Nurse

Alice

kSi = PRFkM (NA,i ++NB,i)

Bob

kSi = PRFkM (NA,i ++NB,i)

A, NA,i

NA,i, NB,i, PRFkM (2 ++ ‘A B’ ++NA,i ++NB,i)

NB,i, PRFkM (3 ++ ‘A! B’ ++NA,i ++NB,i)

Figure 5.12: The 2PP Key Exchange protocol, shown generating ith session key,
kSi .

5.4.1 The Key Exchange extension of 2PP

In this subsection we discuss a simple extension to the 2PP protocol, which
ensures secure key-setup. This is achieved by outputting the session key kSi as:

kSi = PRFk(NA,i ++NB,i) (5.6)

In Equation 5.6, NA,i and NB,i are the nonces exchanged in the ith session of the
protocol, and kSi is the derived ith session key. We use kM to denote the master
(long-term) shared secret key, provided to both parties during initialization.
The protocol is illustrated in Figure 5.12.

Since both parties compute the session key kSi in the same way from NA,i ++
NB,i and the master key kMi , it follows that they will receive the same key,
i.e., the Key Exchange 2PP extension ensures key agreement. Since the session
keys are computed using a pseudo-random function, kSi = PRFk(NA,i ++NB,i),
it follows that the key of each session is pseudo-random, even given all other
session keys. Namely, the Key Exchange 2PP extension ensures secure key
setup.

Notice that there is another, seemingly unrelated change between the Mutual
Authentication 2PP (Figure 5.6) and the Key Exchange 2PP (Figure 5.12)
protocols, namely, the use of PRF instead ofMAC to authenticate the messages
in the protocol. This change is needed to avoid using the same key in two
di↵erent cryptographic schemes (MAC and PRF), which could, at least in some
‘absurd’ scenarios, be insecure. The change is also allowed, since every PRF is
also a MAC.

5.4.2 Deriving Per-Goal Keys

Following the key-separation principle (principle 7), session protocols often
use two separate keyed cryptographic functions, one for encryption and one
for authentication (MAC); the key used for each of the two goals should be
pseudo-random, even given the key to the other goal. We refer to such keys are
per-goal keys. The next exercise explains how we can use a single shared session

Foundations of Cybersecurity: Applied Introduction to Cryptography

11

Why a PRF is used
instead of the MAC as
before?

Key Distribution Centers (KDCs)

Establish a shared key between two or more entities,
usually with the help of a trusted third party referred

to as KDC

12

Key Distribution Center (KDC)
n Will focus on three party protocols; Alice,

Bob, and KDC.
n KDC: shares keys with all parties (kA, kB…)
n Goal: help parties (A, B) establish kAB
n We will study two protocols; simplified

versions of:
n The Kerberos protocol (secure) widely used in

computer networks.
n The GSM protocol (insecure) used by cellular

networks.

13

The Kerberos KDC Protocol
q KDC shares keys 𝑘!" (enc.), 𝑘!# (MAC) with Alice and 𝑘$" , 𝑘$# with Bob

q Goal: Alice and Bob share 𝑘!$, then derive: 𝑘!$" , 𝑘!$#

q KDC performs access control as well; controlling whom Alice can contact.
5.5. KEY DISTRIBUTION CENTER PROTOCOLS 269

Alice BobKDC

‘Bob’, time, MACkM

A

(time++ ‘Bob’)

cA = EkE

A

(kAB),mA = MACkM

A

(time++ ‘Bob’ ++ cA ++ cB ++mB)

cB = EkE

B

(kAB), mB = MACkM

B

(time++ ‘Alice’ ++ cB)

Use mA to validate cA, then extract kAB ;

k
M
AB PRFkAB

(‘MAC’), k
E
AB PRFkAB

(‘Enc’)

cB , mB , cReq = EkE

AB

(Request), mReq = MACkM

AB

(1 ++A! B ++ time++ cReq)

Validate and decrypt cB ,

and derive k
E
AB , k

M
AB

cResp = EkE

AB

(Response),mResp = MACkM

AB

(2 ++A B ++ time++ cResp)

Figure 5.13: Simplified Kerberos Key Distribution Center Protocol. The KDC
shares with Alice kEA for encryption and kMA for MAC, and with Bob, kEB for
encryption and kMB for MAC. The KDC selects a shared session key kAB to
be used by Alice and Bob for the specific session (request-response). Alice
and Bob use kAB and a pseudo-random function PRF to derive two shared
keys, kEAB = PRFkAB

(‘Enc’) (for encryption) and kMAB = PRFkAB
(‘MAC’)

(for authentication, i.e., MAC). All parties validate contents of MACs before
decrypting authenticated ciphertexts.

Note that in the above protocol, the KDC never initiates communication, but
only responds to an incoming request; this communication pattern, where a server
machine (in this case, the KDC) only responds to incoming requests, is referred
to as client-server. Server machines usually use client-server communication,
since it relieves the server (e.g., KDC) from the need to maintain state for
di↵erent clients, except for the long-term keys (e.g., kA and kB). This makes
it easier to implement an e�cient service, especially when clients may access
di↵erent servers.

In Kerberos, the TTP has an additional role: access control. Namely, the
TTP controls the ability of the client (Alice) to contact the service (Bob). In
this case, the mB authenticator will also be a ticket or permit for the use of the
server. Access control is an important aspect of computer and network security.

5.5.2 The GSM Key Exchange Protocol

We next discuss the GSM Key Distribution and Key Exchange protocol, an
important-yet-vulnerable shared-key Key Exchange protocol. This protocol
is performed at the beginning of each connection between a Mobile device
belonging to a user, e.g., mobile phone, a Visited Network (VN), and the user’s
Home Network. The mobile is only connected via the Visited Network, i.e., any
communication between the mobile and the Home Network must be via the

Foundations of Cybersecurity: Applied Introduction to Cryptography

14

The GSM Handshake Protocol
q Mobile client

q Identified by 𝑖 (IMSI: International Mobile Subscriber Identifier)

q Visited network (aka Base station); not fully trusted !
q Home network; trusted, shares key 𝑘% with client 𝑖

272 CHAPTER 5. SHARED-KEY PROTOCOLS

Mobile
client

Visited
network

Home
network

i (IMSI) i (IMSI)

r
$ {0, 1}128

(Kc, s) A38(ki, r)

(r, s,Kc)r

(Kc, s) A38(ki, r)

s

Ok

ECC(m1)�A5/v(Kc, 1)[1 : 114]

ECC(resp1)�A5/v(Kc, 1)[115 : 228]

ECC(m2)�A5/v(Kc, 2)[1 : 114]

ECC(resp2)�A5/v(Kc, 2)[115 : 228]

(...and so on for more messages)

Figure 5.14: The GSM Key Exchange Protocol; the standard defines ‘crypto-
graphic functions’ A38 (defined in the specifications as a OWF, but actually
used as a PRF) and A5 (referred in the specifications as encryption, but actually
also used as a PRF). The standard defines three variants of A5 denoted A5/v
for v 2 {0, 1, 2, 3}, where A5/0 denotes no encryption. The GSM standard also
specifies the Error Correction Code function ECC(·).

Fig. 5.14 also shows an example of two messages m1,m2 sent from Mobile
client to the Visited Network, and two corresponding ‘responses’, resp1, resp2,
sent from the Visited Network to the Mobile client. Note that these do not
have to be really responses to the messages; the Visited Network would send in
the same way any other message to the Mobile client, e.g., from some remote
communicating client - we just used ‘resp’ (for ‘response’) since it seems a bit
clearer, avoiding confusion with messages from the Mobile client. Of course, in
typical real use, the mobile and the Visited Network exchange more that two
messages and responses.

Foundations of Cybersecurity: Applied Introduction to Cryptography

A38: derive secret, random 𝐾# , 𝑠 ,
from 𝐾$ and 𝑟.
GSM spec: OWF, but really should
be a PRF!

15

A5: provide ‘pad’ for encryption

Several variants:
A5/1 - `regular’
A5/2 - `weak’
A5/3 – more secure
Really should be a PRF!

272 CHAPTER 5. SHARED-KEY PROTOCOLS

Mobile
client

Visited
network

Home
network

i (IMSI) i (IMSI)

r
$ {0, 1}128

(Kc, s) A38(ki, r)

(r, s,Kc)r

(Kc, s) A38(ki, r)

s

Ok

ECC(m1)�A5/v(Kc, 1)[1 : 114]

ECC(resp1)�A5/v(Kc, 1)[115 : 228]

ECC(m2)�A5/v(Kc, 2)[1 : 114]

ECC(resp2)�A5/v(Kc, 2)[115 : 228]

(...and so on for more messages)

Figure 5.14: The GSM Key Exchange Protocol; the standard defines ‘crypto-
graphic functions’ A38 (defined in the specifications as a OWF, but actually
used as a PRF) and A5 (referred in the specifications as encryption, but actually
also used as a PRF). The standard defines three variants of A5 denoted A5/v
for v 2 {0, 1, 2, 3}, where A5/0 denotes no encryption. The GSM standard also
specifies the Error Correction Code function ECC(·).

Fig. 5.14 also shows an example of two messages m1,m2 sent from Mobile
client to the Visited Network, and two corresponding ‘responses’, resp1, resp2,
sent from the Visited Network to the Mobile client. Note that these do not
have to be really responses to the messages; the Visited Network would send in
the same way any other message to the Mobile client, e.g., from some remote
communicating client - we just used ‘resp’ (for ‘response’) since it seems a bit
clearer, avoiding confusion with messages from the Mobile client. Of course, in
typical real use, the mobile and the Visited Network exchange more that two
messages and responses.

Foundations of Cybersecurity: Applied Introduction to Cryptography

ECC: error correcting code.
Used to allow recovery from
errors.

Example – Sending two messages

16

Kc is the session key
s is called a secret
authenticator

Attacks on GSM
n We will explore two such attacks:

n Visited network impersonation replay attack.
n Downgrade attack.

17

Visited-network
Impersonation
Attack

Note: does NOT
Impersonate mobile,
only Visited network.

274 CHAPTER 5. SHARED-KEY PROTOCOLS

Mobile VN Attacker

i (IMSI) i (IMSI)

r r

s s

Ok Ok

ECC(m1) � A5/v(Kc, 1)[1 : 114] ECC(m1) � A5/v(Kc, 1)[1 : 114]

...

...

ECC(mn) � A5/v(Kc, 1)[1 : 114] ECC(mn) � A5/v(Kc, 1)[1 : 114]

E
avesd

rop
p
h
ase

C
ry
p
tan

aly
sis

p
h
ase

i (IMSI)

r

s

Ok

ECC(m0
1) � A5/v(Kc, 1)[1 : 114]

...

ECC(m0
n0) � A5/v(Kc, 1)[1 : 114]

Im
p
erson

ate
p
h
ase

Figure 5.15: The VN-impersonation attack by a MitM attacker on the GSM
Key Exchange. The Key Exchange between the client and the Home Network
is exactly like in Figure 5.14, but here we omit the Home Network and the
messages exchanged between the Visited Network and the Home Network. This
figure is simplified, in particular, it does not include the cipher-negotiation
details; see these in Figure 5.16. A5/v denotes the GSM encryption scheme;
standard values are for v 2 {0, 1, 2, 3}.

in Figure 5.14, except that, for simplicity, Figure 5.15 does not show the
Home Network and the messages exchanged between the Visited Network
and the Home Network.

Cryptanalysis: in the second phase, the attacker cryptanalyzes the cipher-
texts collected during the eavesdrop phase. Assume that the attacker is

Foundations of Cybersecurity: Applied Introduction to Cryptography

18

In the cryptanalysis
phase, the attacker will
try to obtain Kc based on
the cyphertexts it
collected in the
eavesdropping phase
(recall A5/1 and A5/2 are
not secure)

GSM Ciphersuites Downgrade Attack
• A ciphersuite is the set of cryptographic schemes used

in a protocol execution.
• Ciphersuite negotiation:

• Mobile sends list of cipher-suites it supports
• Visited-network selects best one that it also supports

• GSM encryption algorithms 𝐸*:
• A5/0: none, A5/1: broken, A5/2: useless (break with only

1sec), A5/3: ‘other’
• A MitM attacker may trick these parties to use a weak

suite although the parties can support a stronger one.
• Let’s first see how ciphersuite negotiation happened in

GSM.

19

Cipher mode messages, negotiation
q Mobile sends list of supported ciphers
q VN sends choice in: CIPHMODCMD

q Cipher Mode Command
q Mobile confirms by sending encrypted:

CIPHMODCOM: cipher mode complete
q If not received (in few msecs), VN disconnects

q VN Acks: CIPHMODOK: cipher mode Ok
q If not received, mobile resends CIPHMODCOM

20

GSM
Handshake,
With
Cipher-
negotiation.

5.5. KEY DISTRIBUTION CENTER PROTOCOLS 277

Mobile
client

Visited
network

Home
network

i, Ciphers:{A5/1, A5/2} i (IMSI)

r
$ {0, 1}128

(Kc, s) A38(ki, r)

(r, s,Kc)r

(Kc, s) A38(ki, r)

s

CIPHMODCMD : A5/v (v 2 {0, 1, 2})

ECC(CIPHMODCOM) � A5/v(Kc, 1)[1 : 114]

Timeout and retransmission

(no CIPHMODOK received)

ECC(CIPHMODCOM) � A5/v(Kc, 2)[1 : 114]

ECC(CIPHMODOK) � A5/v(Kc, 2)[115 : 228]

(continue as in Figure 5.14)

Figure 5.16: The GSM Key Exchange Protocol, including details of ciphersuite
negotiation (omitted in Figure 5.14).

list. Usually, the Visited Network would select the stream cipher considered
most secure among those that this Visited Network supports.

Note that the GSM specification requires that every Mobile device will
support A5/1. Furthermore, GSM specifies that Visited networks that support
A5/1, as most do, should refuse to use A5/2 - even if A5/2 is the only option
on the list. This is an important fact which has significant impact on GSM
downgrade attacks:

Fact 5.3 (GSM Visited Networks refuse to downgrade to A5/2.). Most GSM
Visited networks support A5/1, and refuse to open a connection if the ciphersuite
o↵ered does not include A5/1.

The reason for Fact 5.3 is that the A5/2 cipher is known to have been
designed intentionally to provide vulnerable encryption. This vulnerable cipher

Foundations of Cybersecurity: Applied Introduction to Cryptography

21

GSM ciphersuite facts: for fun and profit
q GSM uses same 𝐾! for all ciphers
q CTO attack on A5/2 requires 900 bits, 1 sec

q If ciphertext is after GSM’s ECC, of course
q Lots of redundancy

q Visited networks don’t downgrade to A5/2
q Mobile encrypts, sends CIPHMODCOM

q Resends (in few msecs) if no CIPHMODOK
q New encryption each time (counter)
q 456bit message (after ECC)

q Allow 12s delay for the 𝑠 message

22

Real Downgrade Attack
Works even if VN insists to use A5/1; attacker tricks client to use A5/2.
That suffices, since GSM uses same key for all cryptosystems!

23

5.5. KEY DISTRIBUTION CENTER PROTOCOLS 281

Mobile VNMitM

i, {A5/1, A5/2} i, {A5/1, A5/2}

r r

s

CIPHMODCMD : A5/2

ECC(CIPHMODCOM, 1)�
�A5/2(Kc, 1)[1 : 114]

P
re-an

aly
sis

p
h
ase

ECC(CIPHMODCOM, 2)�
�A5/2(Kc, 2)[1 : 114]

ECC(CIPHMODOK, 2)�
�A5/2(Kc, 2)[115 : 228]

C
ry

p
ta

n
a
ly
sis

p
h
a
se

:

fi
n
d
K

c

s

CIPHMODCMD : A5/1

ECC(CIPHMODCOM, 1)�
�A5/1(Kc, 1)[1 : 114]

ECC(CIPHMODOK, 1)�
�A5/1(Kc, 1)[115 : 228]

...

...

E
avesd

rop

p
h
ase

Figure 5.18: A ‘real’ downgrade attack on GSM Key Exchange.

‘combined replay and downgrade attack’, allowing this attacker to decrypt all
of that ciphertext communication by later impersonating as a Visited Network,
and performing a downgrade attack.

Hint: the attacker will resend the value of r from the eavesdropped-upon
communication (encrypted using a ‘strong’ cipher) to cause the mobile to re-use
the same key - but with a weak cipher, allowing the attacker to expose the
key.

Protecting GSM against downgrade attacks.

Downgrade attacks involve modification of information sent by the parties -
specifically, the possible and/or chosen ciphers. Hence, the standard method to
defend against downgrade attacks is to authenticate the exchange, or at least,
the ciphersuite-related indicators.

Note that this requires the parties to agree on the authentication mech-
anism, typically, a MAC scheme. It may be desirable to also negotiate the
authentication mechanism. In such case, the negotiation should be bounded
to reasonable time, and the use of the authentication scheme and key limited
to a few messages, to foil downgrade attacks on the authentication mechanism.

Foundations of Cybersecurity: Applied Introduction to Cryptography

The 12 sec delay
allows that!

Retransmissions of
CIPHERMODCOM
provides the attacker
with more than 900
bits of ciphertext!

Improving Resiliency to Key Exposure

24

Forward Secrecy I
n So far: session key 𝑘" ⇏ 𝑘# (expose no other keys)

n And master key was fixed for all sessions
n Idea: we can do better!

n Change the master key each session: MK1 , MK2 ,…
n Forward Secrecy (FS): master key MKi⇏ 𝑘#(𝑗 < 𝑖)

n I.e., MK% (and 𝑘%) don’t expose keys, communication of
previous sessions (𝑗 < 𝑖)

Secure
MK1

Keys Exposed
MK2

Stays insecure
MK3

𝑘% = 𝑃𝑅𝐹&'!(𝑁"(1)||𝑁!(1)) 𝑘(= 𝑃𝑅𝐹&'"(𝑁"(2)||𝑁!(2)) 𝑘) = ⋯

25

Forward Secrecy II
n Forward Secrecy (FS): master key MKj⇏ 𝑘"(𝑗 > 𝑖)

n Session 𝑖 is secret even if any state of later sessions is
exposed.

n Uni-directional: MK%à MK%78 , but MK%78à MK%
n How? Solution: PRF!

MKi=𝑃𝑅𝐹#%!"# (0)

Secure
MK1

Keys Exposed
MK2=𝑃𝑅𝐹&'! (0)

Stays insecure
MK3=𝑃𝑅𝐹&'" (0)

𝑘% = 𝑃𝑅𝐹&'!(𝑁"(1)||𝑁!(1)) 𝑘(= 𝑃𝑅𝐹&'"(𝑁"(2)||𝑁!(2)) 𝑘) = ⋯

26

Recover Security
n Can we also recover security?

n 𝑀𝐾%!98 exposed, yet 𝑀𝐾%!, 𝑀𝐾%!"#… secure ?
n Idea: assume no attack during ‘recovery session’ 𝑖:

Keys Exposed
MK1

No attack: recover !
MK2

Stays secure
MK3

𝑘% = 𝑃𝑅𝐹&'!(𝑁"||𝑁!) 𝑘(= 𝑃𝑅𝐹&'"(𝑁"||𝑁!) 𝑘) = ⋯

27

Recover Security (RS)
n Recover security: key setup protocols where a single session without

eavesdropping or other attacks, suffices to recover security from previous key
exposures.

n That is, session i is secure if it’s keys are not given to attacker, and either
session 𝑖 − 1 is secure, or there is no attack during session i

n How? The RS-Ratchet Protocol:
n Let 𝑁"(𝑖), 𝑁!(𝑖) denote session’s 𝑖 nonces
n Then: MKi = 𝑃𝑅𝐹&'#$!(𝑁" 𝑖 ⊕ 𝑁! 𝑖)

Keys Exposed
MK1

No attack: recover !
MK2=𝑃𝑅𝐹!"!(𝑁#(2)⊕𝑁$(2))

Stays secure
MK3=𝑃𝑅𝐹!""(𝑁# 3 ⊕𝑁$ 3)

𝑘% = 𝑃𝑅𝐹&'!(𝑁"(1)||𝑁!(1)) 𝑘(= 𝑃𝑅𝐹&'"(𝑁"(2)||𝑁!(2)) 𝑘) = ⋯

28

Stronger Notion of Resiliency
n Perfect Forward Secrecy (PFS): session i is secure even

if attacker is given, only after session 𝑖 ends, all keys of
all other sessions, and Master Key of session i
n All include future and past sessions.

n Perfect Recover Security (PRS): session i is secure if it’s
keys are not given to attacker, and either session 𝑖 − 1 is
secure, or there is no MitM attack during session i

n How? public-key (key exchange) protocols – next topic!

29

Resiliency Notions: Shared + Public Key

Secure
key setup

FS

RS

PFS

PRS

30

MitM is an active
attacker, not like
an eavesdropper!

5.7. RESILIENCY TO EXPOSURE: FORWARD SECRECY AND RECOVER
SECURITY 303

Notion Session i is secure, when: Crypto

Secure
key-setup

Attacker is given session keys of other sessions, but
master key is never exposed.

Shared
key

Forward
Secrecy
(FS)

Attacker is given all keys, but only of sessions after
session i.

Shared
key

Perfect
Forward
Secrecy
(PFS)

Attacker is given all keys of sessions except i, but
only after session i ends.

Public
key

Recover
Security
(RS)

Attacker is given keys of other sessions, but session
i� 1 is secure (or no attack during session i).

Shared

Perfect
Recover
Security
(PRS)

Attacker is given keys of other sessions, but either
session i� 1 is secure, or only eavesdropping in

session i.
Public

Table 5.2: Notions of resiliency to key exposures of key-setup Key Exchange pro-
tocols. See implementations of forward and recover security in subsection 5.7.1
and subsection 5.7.2 respectively, and for the corresponding ‘perfect’ notions
(PFS and PRS) in subsection 6.3.1 and subsection 6.3.2, respectively.

Perfect Recover Security (PRS). We introduce the term perfect recover
security to refer to Key Exchange protocols where a single session without
exposure orMitM attacks su�ces to recover security from previous key exposures.
Definition follows.

Definition 5.7 (Perfect Recover Security (PRS) Key Exchange). A Key Ex-
change protocol ensures Perfect Recover Security (PRS), if security (confiden-
tiality and authentication) is ensured for messages exchanged during session
i, provided that there is no exposure during session i and either (1) session
i� 1 is secure, or (2) there is no MitM attack during session i (session i is a
recovery session).

Note the similarity to PFS, in allowing only eavesdropping during the
‘recovery’ session i. Similarly to PFS, we also discuss some PRS Key Exchange
protocols in the next chapter, which deals with asymmetric cryptography.
Known PRS protocols are all based on asymmetric cryptography.

Comparison of the four notions of resiliency. We compare the four
notions of resiliency (forward secrecy, PFS, recover security and PRS) in
Table 5.2, along with ‘regular’ secure Key Exchange protocols. We also present
the relationships between the five notions in Fig. 5.22.

Foundations of Cybersecurity: Applied Introduction to Cryptography

Covered Material From the Textbook
q Chapter 5

q Sections 5.3 – 5.7

31

