CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

l.ecture 7/
Hash Functions — Part 11

Ghada Almashaqgbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline

Hash based MACs.

Domain extension.

Merkle digest and Merkle trees.
Blockchains.

Hash based MAC

Hash-based MAC is often faster than
block-cipher MAC

How? Heuristic constructions:

Prepend Key: MACF® (m) = h(k 4+ m)

Append Key: MAC{E (m) = h(m 4 k)
Message-in-the-Middle: M ACM*M (m) = h(k # m + k)

Are these secure assuming CRHF ? OWF ? Both ?
2 No.

o But: all ‘secure in random oracle model’

Hash-based MAC: HMAC

HMAC uses only the unkeyed hash function h:
HMAC, (x)=h(k@opad || h(k @Pipad || x))
0 opad, ipad: fixed sequences (of 36x, 5Cx resp.), for max
hamming distance btw & @opad and k @ ipad.

[BCK]: secure MAC under ‘reasonable assumptions’ [beyond
our scope]

Widely deployed — for MAC, PRF and KDF
o KDF — Key Derivation Function

More results, more exposure = confidence!
Hash are useful for MACs in another way:

o Hash then MAC.

Digest Schemes

Generalization of collision-resistant hash
o Input is a sequence of messages
o Output is n-bit digest, denoted A

Three types of schemes:

o Digest-chain

o Merkle Digest (and Merkle trees)
o Blockchains (and Bitcoin)

In other textbooks, this is referred to as
Domain Extension.

Digest-Chain Schemes

Generalization of collision-resistant hash
o Input is a sequence of messages
o Output is n-bit digest, denoted A

Definition 4.13. A digest function A is an efficiently computable function
(in PPT) that maps blocks (finite sequences of binary strings) to n-bit binary
strings, i.e., A : ({0,1}*)" — {0,1}*, where n is the security parameter.
Digest function A 1is collision resistant if the digest collision-resistance
advantage sgiR(n) is negligible (in n), for every efficient adversary A € PPT,

where:

eV (n) =Pr((B,B') + A(1") s.t. B# B'ANA(B) = A(B')) (4.21)

The Merkle-Damgard Digest Function

The Merkle-Damgard construction of:
o Collision-Resistant Digest function from CRHF
o VIL CRHF from compression function (FIL CRHF): |m;| = n

|dea: hash iteratively, message by message:

A(my, ..., m) = h(A(my, ..., m_y)|1llmy) ; A(my) = (0" ||m,)
Lemma 4.2: if h is a CRHF, then A is a collision-resistant digest
Proof... (see details in textbook)

mi ma ms3 ma
0 —» 1 —>» 1 —» 1 —»
on ,7‘ :7‘ :7‘ > h —=
/ A({m1}) / A({m1,m2}) / A({m1, m2,m3}) A({m1,m2,m3,m4})

VIL CRHF from FIIL. CRHF

Recall: design and cryptanalyze simple (FIL)
function, use it to construct strong (VIL) function

Build VIL CRHF {0,1}"2{0,1}" from FIL CRHF
(aka compression function) comp:{0,1}"2{0,1}"

0 E.g. m=2n,1.e. comp:{0,1)?">{0,1}"

X, € {0’]}n _’\ comp (x]’x j e {0’]}n
comp g
XZ E{O,]}n _’/

o The Merkle-Damgard constructs a CRHF from a
compression function

o Requires "MD-strengthening’ extension [see text]

Merkle - Damgard Length-Padding

Aka Merkle - Damgard Strengthening
Let pad(x)=1||0||bin (|x|) ; x '=x||pad(x)
o Where bin (|x|) is the L-bit binary representation of |x]|
o And: |x|+|pad(x)|=0 mod L
o Simplify: assume |x|=0 mod L, |pad(x)|=L
Let y,=IV be some fixed L bits (IV=Initialization Value)
Fori=1,.|x’|/Llety=cx’[i] || y.;)

_ This is just a high level

Output MD/c] 1 (x) =y, idea, care needed to
x[1] | x/2] . |xsy)10x | bin()x|) avoid collisions

1V

h()=yer=c(lx[|| v

The Digest-Chain Extend Function

Beyond digest and collision resistance:
sequence-related integrity mechanisms

For digest-chain, the extend function:
o Input: digest and ‘next’ sequence

o Output: digest (of entire sequence)

a Correctness requirement:

E:Utend(Al, Ml—l—l,l’) — A(Ml I Ml—l—l,l’)

Use to (1) extend chain, (2) validate new digest (with
new seq.), or (3) use digest to validate a message

10

The Merkle-Damgard Extend Function

We can define Extend for Merkle-Damgard:
o ldea: Just continue last digest!

mo" Exztend (A, {m,, . .

.,ml}) = <

’

\

Let Ay < h(A + 14 mq)
For [= 1: Al
For [> 1:
Mmo" Exztend (Aq, {ma, ..., m})

Not secure to be used to construct a MAC!

1:’

A

h(All1]lmy)

1—>

—h— Ext(A, (my, ..., myp))

11

Merkle Digest Schemes
Digest function A: {m;e{0,1}*} — {0,1}"

Collision-resistance requirement
Validation of Inclusion: Pol and VerPol
Pol function: compute Proof of Inclusion
VerPol function: verify Pol
Both: mandatory and optimized
Optional, also Proof-of-Non-Inclusion (PoNI)

Extending the Sequence: PoC and VerPoC
o PoC: Proof of Consistency (from old digest to new)

o VerPoC function: verify PoC
o Optional

a
a
a
a

12

Merkle digest scheme: definition

Definition 4.15 (Merkle digest scheme). A Merkle digest scheme 171 is a tuple
of three PPT functions (NL.A,1.Pol,1M.VerPol), where:

M.A s the Merkle tree digest function, whose input is a sequence of mes-
sages B = {m; € {0,1}*}; and whose output is an n-bit digest: 1M.A :
({0,1}*)" — {0, 1}".

M.Pol 1s the Proof-of-Inclusion function, whose input is a sequence of messages
B ={m; € {0,1}*};, an integer i € [1,|B]|| (the index of one message in
B), and whose output is a Proof-of-Inclusion (Pol): M.Pol : ({0,1}*)" x
N — {0,1}*.

M.VerPol is the Verify-Proof-of-Inclusion predicate, whose inputs are digest
d € {0,1}"™, message m € {0,1}*, index i € N, proof p € {0,1}*, and
whose output is a bit (1 for ‘true’ or 0 for ‘false’): NM.VerPol : {0,1}" X
{0,1}* x N x {0,1}* — {0,1}.

13

Merkle digest: correctness and security

A Merkle digest scheme 111 is correct if for every sequence of messages
B ={m; € {0,1}*}; and every index i € [1,|B||, the Proof-of-Inclusion verifies
correctly, i.e.:

M.VerPol(MM.A(B), m;,i,1M.Pol(B,i)) = TRUE (4.29)

A Merkle digest scheme 11 is secure if for every efficient (PPT) algorithm
A, both the collision advantage €% (n) and the Pol advantage ey,°% (n) are
negligible in n, i.e., smaller than any positive polynomial for sufficiently large

n (as n — o), where:

(x,2") < A(1") s.t. (x #a')

Coll —
ema(n) = Prf T on Alz) = mLA®G)
{ma,...,my},d,m,i,p) < A(1") s.t. m; #mA
ema(n) = Pr d=MA{my,...,m})A

M.VerPol(d,m,i,p) = TRUE

Where the probability is taken over the random coin tosses of A.

Simply put, security means that a PPT adversary cannot find collisions

and cannot forge a valid Pol 14

Proot ot Consistency (PoC)

A Merkle digest scheme supports PoC if it
has two more functions:

M.PoC (B¢, By) is the Extend and Proof-of-Consistency function PoC', whose
input are two sequences, Bo and By, and whose output yon = 1.PoC(B¢c, By)
1s a binary string which we call the Proof-of-Consistency from Ac =

mA(Bc) to AC’N = mA(BCN)

M.VerPoC(Ac,Acn,lo,In,p) € {True, False} is the Verify-Proof-of-Consistency
predicate, whose inputs are the two digests Ac, Acn, the numbers of en-
tries (lc and ly), and a string (PoC') p.

Correct PoC:

Mm.VerPoC <mA(Bc),mA<BC —+H BN), lc,lN,m.POC(Bc,BN)) = TRUE

15

Secure Proof of Consistency

We say that 111 has secure PoC, if for every efficient (PPT) algorithm A,

the PoC-advantage 571%‘?% (n) is negligible in n, where:

(Bc, Ba,lc,la,p) + A(1") s.t.
ep’G(n) = Pr| M.VerPoC(M.A(Bc),M.A(Ba),lc,la,p) = TRUE A
N Be 1s not a prefiz of Ba

Where the probability is taken over the random coin tosses of A.

To be consistent with previous
slides, replace B, with By

Simply put, the above says that a PPT
adversary cannot forge a valid PoC

16

Two-layered Merkle tree

Short digest validates integrity of large object
a Often, object consists of multiple ‘files’

Merkle tree : integrity for many ‘'messages’
o Hash each ‘message’ in block, then hash-of-hashes
6 = h(h(my)||h(m2)||h(m3)||h(my))
2o Validate each ‘message’ independently
Advantages: efficiency (computation, communication) and privacy

my m, ms my

h h h U h

h(my) h(m) h(ms) h(m,)
\\> /

N kS
o

17

‘Two—layered Merkle tree

2IMT . A(mq,..., my) = hlh(my)#...H# h(my)
2IMT .Pol((m,q,.. ., m;),7) {h(m;)}:_,
[TRUE if z; = h(m), and]

2QAMT .VerPol(d,m,i,{z;}._,) d=h(z; ... 4%)

mq m, ms my

h h h U h

h(mq) h(m,) h(m3) h(m,)
N 4/4%

[Allows each user to receive, validate only required items. How?]

18

To verity inclusion ot m; ...

2IMT . A(mq,..., my)

2IMT .Pol((m,q,..., mp),7) = {h(m,-)}i-_1
. : : TRUE if z; = h(m), and
- f 9) I. — l s
2IMT .VerPol(d,m,i,{z;};—,) = [d=h(zy 4 ... 4)

X1

Il

mp
N\ h

h(m;) X3
\;\xz, /

N

d

hlh(my) # ... # h(my)]

<Receive and validate only m,. Other hashes still required, though.)

|

‘ The Merkle Tree Construction

= Reduce length of ‘proofs’ — send less hashes of ‘other msgs’

g

MT.A(M)

ms3

iy

\ hi 4 =h(hi 2 # hs 1) /

|

HIL=0:
Else

h(ml)

h(MTA (ml, . ,mzl,-l) 1

"H"MT.A (m2L—1+1, « e

-3 TNL))

20

Merkle Tree: Proot of Inclusion (Pol)

= To prove inclusion of ms , send also ‘proofs’: h{_5, hy

ma ms ms3 my /

>

\ hi 4 =h(hyi 24 h3 4) /

21

‘ Blockchains

o Next slides set.

22

‘Covered Material From the Textbook

o Chapter 4
0 Sections 4.6, 4.7, and 4.8

23

Tnanx Youl

’)

?%2;? '2’?%@

