CSE 3400 - Introduction to Computer & Network Security (aka: Introduction to Cybersecurity)

Lecture 7 Hash Functions – Part II

Ghada Almashaqbeh UConn

From Textbook Slides by Prof. Amir Herzberg UConn

Outline

- Hash based MACs.
- Domain extension.
- Merkle digest and Merkle trees.
- Blockchains.

Hash based MAC

- Hash-based MAC is often faster than block-cipher MAC
- How? Heuristic constructions:

Prepend Key: $MAC_k^{PK}(m) = h(k + m)$

Append Key: $MAC_k^{AK}(m) = h(m + k)$

Message-in-the-Middle: $MAC_k^{MitM}(m) = h(k + m + k)$

- Are these secure assuming CRHF ? OWF ? Both ?
 No.
- But: all 'secure in random oracle model'

Hash-based MAC: HMAC

• HMAC uses only the unkeyed hash function *h*:

 $HMAC_{k}(x) = h(k \oplus opad || h(k \oplus ipad || x))$

- □ *opad, ipad:* fixed sequences (of 36x, 5Cx resp.), for max hamming distance btw $k \oplus opad$ and $k \oplus ipad$.
- [BCK]: secure MAC under 'reasonable assumptions' [beyond our scope]
- Widely deployed for MAC, PRF and KDF
 - KDF Key Derivation Function
- More results, more exposure → confidence!
- Hash are useful for MACs in another way:
 - Hash then MAC.

Digest Schemes

- Generalization of collision-resistant hash
 - Input is a sequence of messages
 - Output is n-bit **digest**, denoted Δ
- Three types of schemes:
 - Digest-chain
 - Merkle Digest (and Merkle trees)
 - Blockchains (and Bitcoin)
- In other textbooks, this is referred to as Domain Extension.

Digest-Chain Schemes

Generalization of collision-resistant hash
 Input is a sequence of messages
 Output is n-bit digest, denoted Δ

Definition 4.13. A digest function Δ is an efficiently computable function (in PPT) that maps blocks (finite sequences of binary strings) to n-bit binary strings, i.e., $\Delta : (\{0,1\}^*)^* \to \{0,1\}^*$, where n is the security parameter.

Digest function Δ is collision resistant if the digest collision-resistance advantage $\varepsilon_{\mathcal{A},\Delta}^{DCR}(n)$ is negligible (in n), for every efficient adversary $\mathcal{A} \in PPT$, where:

$$\varepsilon_{\mathcal{A},\Delta}^{DCR}(n) \equiv \Pr\left((B,B') \leftarrow \mathcal{A}(1^n) \ s.t. \ B \neq B' \land \Delta(B) = \Delta(B')\right)$$
(4.21)

The Merkle-Damgard Digest Function

- The Merkle-Damgard construction of:
 - Collision-Resistant Digest function from CRHF
 - VIL CRHF from compression function (FIL CRHF): $|m_i| = n$
- Idea: hash iteratively, message by message:

 $\Delta(m_1, \ldots, m_l) = h(\Delta(m_1, \ldots, m_{l-1})||1||m_l) \ ; \ \Delta(m_1) = h(0^{n+1}||m_1)$

- Lemma 4.2: if h is a CRHF, then Δ is a collision-resistant digest
- Proof... (see details in textbook)

VIL CRHF from FIL CRHF

- Recall: design and cryptanalyze simple (FIL) function, use it to construct strong (VIL) function
- Build VIL CRHF $\{0,1\}^* \rightarrow \{0,1\}^n$ from FIL CRHF (aka compression function) $comp: \{0,1\}^m \rightarrow \{0,1\}^n$
 - **□** E.g. m=2n, i.e. $comp:\{0,1\}^{2n} \rightarrow \{0,1\}^n$

- The Merkle-Damgard constructs a CRHF from a compression function
- Requires `MD-strengthening' extension [see text]

Merkle - Damgard Length-Padding

- Aka Merkle Damgard Strengthening
- Let $pad(x) = 1 ||0^k| |bin(|x|); x' = x ||pad(x)|$
 - Where *bin* (|x|) is the *L*-bit binary representation of |x|
 - And: $|x| + |pad(x)| \equiv 0 \mod L$
 - Simplify: assume $|x| = 0 \mod L$, |pad(x)| = L
- Let y₀=IV be some fixed L bits (IV=Initialization Value)
- For i=1,..|x'|/L let $y_i=c(x'[i] || y_{i-1})$
- Output $MD[c]_{IV}(x) = y_{l+1}$

This is just a high level idea, care needed to avoid collisions

The Digest-Chain Extend Function

- Beyond digest and collision resistance: sequence-related integrity mechanisms
- For digest-chain, the extend function:
 - Input: digest and 'next' sequence
 - Output: digest (of entire sequence)
 - Correctness requirement:

$$Extend(\Delta_l, M_{l+1,l'}) = \Delta(M_l + M_{l+1,l'})$$

Use to (1) extend chain, (2) validate new digest (with new seq.), or (3) use digest to validate a message

The Merkle-Damgard Extend Function

- We can define Extend for Merkle-Damgard:
 - Idea: Just continue last digest!

$$\mathcal{MD}^{h}.Extend\left(\Delta,\{m_{1},\ldots,m_{l}\}\right) \equiv \begin{cases} \text{Let } \Delta_{1} \leftarrow h(\Delta \# 1 \# m_{1}) \\ \text{For } l = 1: \ \Delta_{1} \\ \text{For } l > 1: \\ \mathcal{MD}^{h}.Extend\left(\Delta_{1},\{m_{2},\ldots,m_{l}\}\right) \end{cases}$$

Not secure to be used to construct a MAC!

Merkle Digest Schemes

- Digest function $\Delta: \{m_i \in \{0,1\}^*\} \rightarrow \{0,1\}^n$
 - Collision-resistance requirement
- Validation of Inclusion: Pol and VerPol
 - Pol function: compute Proof of Inclusion
 - VerPol function: verify Pol
 - Both: mandatory and optimized
 - Optional, also Proof-of-Non-Inclusion (PoNI)
- Extending the Sequence: PoC and VerPoC
 - □ *PoC*: Proof of Consistency (from old digest to new)
 - VerPoC function: verify PoC
 - Optional

Merkle digest scheme: definition

Definition 4.15 (Merkle digest scheme). A Merkle digest scheme \mathcal{M} is a tuple of three PPT functions $(\mathcal{M}.\Delta, \mathcal{M}.PoI, \mathcal{M}.VerPoI)$, where:

- $\mathcal{M}.\Delta$ is the Merkle tree digest function, whose input is a sequence of messages $B = \{m_i \in \{0,1\}^*\}_i$ and whose output is an n-bit digest: $\mathcal{M}.\Delta : (\{0,1\}^*)^* \to \{0,1\}^n$.
- $\mathcal{M}.PoI$ is the Proof-of-Inclusion function, whose input is a sequence of messages $B = \{m_i \in \{0,1\}^*\}_i$, an integer $i \in [1, |B|]$ (the index of one message in B), and whose output is a Proof-of-Inclusion (PoI): $\mathcal{M}.PoI : (\{0,1\}^*)^* \times \mathbb{N} \to \{0,1\}^*$.
- $\begin{array}{l} \mathcal{M}. VerPoI \ is \ the \ \mathrm{Verify}\text{-}\mathrm{Proof-of-Inclusion} \ predicate, \ whose \ inputs \ are \ digest \\ d \in \{0,1\}^n, \ message \ m \in \{0,1\}^*, \ index \ i \in \mathbb{N}, \ proof \ p \in \{0,1\}^*, \ and \\ whose \ output \ is \ a \ bit \ (1 \ for \ `true' \ or \ 0 \ for \ `false'): \ \mathcal{M}. VerPoI : \{0,1\}^n \times \\ \{0,1\}^* \times \mathbb{N} \times \{0,1\}^* \to \{0,1\}. \end{array}$

Merkle digest: correctness and security

A Merkle digest scheme \mathcal{M} is correct if for every sequence of messages $B = \{m_i \in \{0,1\}^*\}_i$ and every index $i \in [1, |B|]$, the Proof-of-Inclusion verifies correctly, i.e.:

$$\mathcal{M}.VerPoI(\mathcal{M}.\Delta(B), m_i, i, \mathcal{M}.PoI(B, i)) = \text{True}$$
 (4.29)

A Merkle digest scheme \mathcal{M} is secure if for every efficient (PPT) algorithm \mathcal{A} , both the collision advantage $\varepsilon_{\mathcal{M},\mathcal{A}}^{Coll}(n)$ and the PoI advantage $\varepsilon_{\mathcal{M},\mathcal{A}}^{PoI}(n)$ are negligible in n, i.e., smaller than any positive polynomial for sufficiently large n (as $n \to \infty$), where:

$$\varepsilon_{\mathcal{M},\mathcal{A}}^{Coll}(n) \equiv \Pr \left[\begin{array}{cc} (x,x') \leftarrow \mathcal{A}(1^n) \ s.t. \ (x \neq x') \\ \wedge (\mathcal{M}.\Delta(x) = \mathcal{M}.\Delta(x') \end{array} \right]$$

$$\varepsilon_{\mathcal{M},\mathcal{A}}^{PoI}(n) \equiv \Pr \left[\begin{array}{cc} (\{m_1,\ldots,m_l\},d,m,i,p) \leftarrow \mathcal{A}(1^n) \ s.t. \ m_i \neq m \wedge \\ d = \mathcal{M}.\Delta(\{m_1,\ldots,m_l\}) \wedge \\ \mathcal{M}.VerPoI(d,m,i,p) = \mathrm{TRUE} \end{array} \right]$$

Where the probability is taken over the random coin tosses of \mathcal{A} .

Simply put, security means that a PPT adversary cannot find collisions and cannot forge a valid Pol

Proof of Consistency (PoC)

A Merkle digest scheme supports PoC if it has two more functions:

 $\mathcal{M}.PoC(B_C, B_N)$ is the Extend and Proof-of-Consistency function PoC, whose input are two sequences, B_C and B_N , and whose output $\gamma_{CN} = \mathcal{M}.PoC(B_C, B_N)$ is a binary string which we call the Proof-of-Consistency from $\Delta_C \equiv \mathcal{M}.\Delta(B_C)$ to $\Delta_{CN} \equiv \mathcal{M}.\Delta(B_{CN})$.

 $\mathcal{M}.VerPoC(\Delta_C, \Delta_{CN}, l_C, l_N, p) \in \{\text{True}, \text{False}\}\$ is the Verify-Proof-of-Consistency predicate, whose inputs are the two digests Δ_C, Δ_{CN} , the numbers of entries $(l_C \text{ and } l_N)$, and a string (PoC) p.

Correct PoC:

 $\mathcal{M}.VerPoC\left(\mathcal{M}.\Delta(B_C), \mathcal{M}.\Delta(B_C + B_N), l_C, l_N, \mathcal{M}.PoC(B_C, B_N)\right) = TRUE$

Secure Proof of Consistency

We say that \mathcal{M} has secure PoC, if for every efficient (PPT) algorithm \mathcal{A} , the PoC-advantage $\varepsilon_{\mathcal{M},\mathcal{A}}^{PoC}(n)$ is negligible in n, where:

$$\varepsilon_{\mathcal{M},\mathcal{A}}^{PoC}(n) \equiv \Pr\left[\begin{array}{cc} (B_C, B_A, l_C, l_A, p) \leftarrow \mathcal{A}(1^n) \ s.t. \\ \mathcal{M}.VerPoC(\mathcal{M}.\Delta(B_C), \mathcal{M}.\Delta(B_A), l_C, l_A, p) = \text{TRUE} \land \\ \land B_C \ is \ not \ a \ prefix \ of \ B_A \end{array}\right]$$

Where the probability is taken over the random coin tosses of \mathcal{A} .

To be consistent with previous slides, replace B_A with B_{CN}

Simply put, the above says that a PPT adversary cannot forge a valid PoC

Two-layered Merkle tree

- Short digest validates integrity of large object
 - Often, object consists of multiple 'files'
- Merkle tree : integrity for many 'messages'
 - Hash each 'message' in block, then hash-of-hashes

 $\delta = h(h(m_1)||h(m_2)||h(m_3)||h(m_4))$

- Validate each 'message' independently
 - Advantages: efficiency (computation, communication) and privacy

Allows each user to receive, validate only required items. How?

To verify inclusion of m_2 ... $2l\mathcal{MT}.\Delta(m_1,...,m_l) \equiv h[h(m_1) + ... + h(m_l)]$ $2l\mathcal{MT}.PoI((m_1,...,m_l),j) \equiv \{h(m_i)\}_{i=1}^l$ $2l\mathcal{MT}.VerPoI(d,m,i,\{x_i\}_{i=1}^l) \equiv \begin{bmatrix} \text{TRUE if } x_i = h(m), \text{ and} \\ d = h(x_1 + ... + x_l) \end{bmatrix}$

Receive and validate only m_2 . Other hashes still required, though.

The Merkle Tree Construction

Reduce length of 'proofs' – send less hashes of 'other msgs'

Merkle Tree: Proof of Inclusion (PoI)

- To prove inclusion of m_3 , send also 'proofs': h_{1-2} , h_4

Blockchains

Next slides set.

Covered Material From the Textbook

• Chapter 4

Sections 4.6, 4.7, and 4.8

Thank You!

