CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

ILecture 6
Hash Functions — Part I

Ghada Almashaqgbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline

Introduction and motivation.
Collision resistant hash functions (CRHF).
CRHF applications.

Weaker notions of secuirity.
o TCR, SPR, OWF.

Randomness extraction.
The random oracle model.

Hash Functions

Input m: binary strings
Output h(m) :
o ‘Short’ (n-bit) binary strings
Aka message digest
Efficiently computable
Applications: cryptography, security, efficiency
Keyed h;, (m), where the key is public, or unkeyed h(m)

h(m) h(m)

Hash functions: simple examples

m

= For simplicity: input m is decimal integer h
o View as string of (three) digits h(m)

o Forexamplee m=127=2>m;=1m, =2, my =7
= Least Significant Digit hash:
hpsp(m) = ms
= Sum hash: hg,,,(m) = (m;+m, + my) mod 10

= Exercise: hyop(117) = 7_
hSum(117) =9

Motivation: Hashing for efficiency

Input: large set (e.g., integers or strings)
Goal: map randomly’ to few bins
o E.g., to ensure efficiency — load balancing, etc.

341, \\\ hisp ///

3342, e

870, 341, 3342, 870,
or1, 571, 452, 80,

31, 31 I

15 | -,

80, S — -

ee Y Tee

Collisions?

Input: large set (e.g., integers or strings)
Goal: map randomly’ to few bins

o E.g., to ensure efficiency — load balancing, etc.
o Adversary chooses inputs that hash to same bin

§

Inputs to

overload
the "2’ bin

Algorithmic
Complexity
Denial-of-Service
Attack

32,
42,
52,
62,
31,
452,
380,

31,

N s/

/\

32,42,
52, 62,
452,

380,

Security Goal: Collision Resistance

= A collision: two inputs (names) with same hash:
h('Bob")=h('Phil")
= Every hash has collisions, since |input|>>|output]| !

= Collision resistance: hard to find collisions

o Note: attacker can always try names randomly until a collision is found
o But this should be ineffective: must try about (on average) N names

(number of bins)

w A N\ Hash h(-) /

e o

Phil, Bob, ...

Colliston Resistant Hash Function (CRHF)
= his CRHF if it is hard to find collisions h(x)=h(x")

o Note: attacker can always try inputs randomly till finding collisions
o But this should be ineffective: must try about |Range| values

= Hard means that the probability that the attacker succeeds in
finding a collision is negligible.

111
" Domain {0,1}* Hash function h(-)
[Adversary } '
X o
<

Collision (x, x")

x' o
s.t. h(x) = h(x") \/

Collision Resistant Hash Function (CRHF)
h is CRHF if it is hard to find collisions h(x)=h(x")

o Note: attacker can always try inputs randomly till finding collisions
o But this should be ineffective: must try about |Range| values

Hard means that the probability that the attacker succeeds in
finding a collision is negligible.

Definition 4.1 (Keyless Collision Resistant Hash Function (CRHF)). A keyless
hash function h™ (-) : {0,1}* — {0,1}" is collision-resistant if for every efficient
(PPT) algorithm A, the advantage 5€%HF(77,) is negligible in n, i.e., smaller
than any positive polynomial for sufficiently large n (as n — oo), where:

CORHE () = Pr |(z,2)) « A(1") s.t. (z# 2') A (h) () = B (x’)] (4.1)

Where the probability is taken over the random coin tosses of A.

Keyless CRHF Do Not Exist!

|Range|<<|Domain| so there is a collision where
h(x")=h(x), x # x’

For a keyless CRHF there is a PPT algorithm A that can
always output a collision: A(1™) = {return x, x"}

o Proof: in textbook.

Intuitively, since the function is fixed (same input-output mapping), a
collision instance can be hardcoded in the attacker algorithm and just
output that collision and win the security game.

Solutions:

o keyed CRHF,
o Use functions that support weak-collision-resistance,

o orignore! (more like asking if the collision is useful for the
attacker?)

10

Keyed CRHF

$
k < {0,1}"

Hash function h; (-)

Domain {0,1}*

X o

[Adversary }

4

Collision (x, x’)
s.t. hk(X) = hk(x')

Adversary knows & but not in advance -
cannot know a collision

Often referred to as ACR-hash (ANY-collision resistance)

11

‘Keyed CRHF - Definition

Definition 4.3 (Keyed Collision Resistant Hash Function (CRHF)). Consider
a keyed hash function hg(-) : {0,1}™ x {0,1}* — {0,1}", defined for any n € N.
We say that h is collision-resistant if for every efficient (PPT) algorithm A, the
advantage eﬁ%HF (n) is negligible in n, i.e., 5(;’}}{11 F(n) e NEGL(n), where:

e (1) = e [(z,2") = A(k) s.t. (z# 2)A((hr(z) = ha(2'))] (42)

Where the probability is taken over the random coin tosses of the adversary A
and the random choice of k.

12

Generic Collision Attacks

Hash function h(-)

Domain {0,1}*

Range {0,1}"

X o
h(x) = h(x")

An attacker that runs in exponential time can always find

a collision (i.e., non PPT attacker)

o Easy: find collisions in 2" time by trying 2™ + 1 distinct inputs
(compute their hash and locate a collision).

An attacker finds a collision with 27" probability

(negligible probability).

o Choose x and x’ at random and check if they produce a collision.

13

The Birthday Paradox

The birthday paradox states that expected
number g of hashes until a collision is found is

0(2™2) not 0(2™).
0 ltis qéZ”/2-\/§§1.254-2"/2

For 80 bit of effective security, use n=160 !

n So to defend against an attacker who can perform 289
hashes set the digest length to be at least 160 bits.

So the range has a size of 21¢0 digests.

Why? Intuition?

14

The Birthday Attack (‘Paradox’)

= Probability of NO birthday-collision:

o Two persons: (364/3695) 1.0
o Three persons: (364/365)*(363/365) 0.
a ... 0.6

. n—1 365—i 0.4
0 N persons: | e ppa -

15

Collision-Resistance: Applications

Integrity (of object / file / message)

0 Send hash(m) securely to validate m

o Later we will see how a hash function can be used
to construct a MAC (called HMAC).

Hash-then-Sign

o Instead of signing m sign hash(m)

More efficient!

We will explore this in detail once we study digital
signatures.

16

CRHF and Software Distribution

o Developer in LA develops large software m
o Repository in DC obtains copy of m

o Userin NY wants to obtain m — securely and efficiently
= Don’t send m from LA to both NY and DC

o How?

User

» Repository

17

CRHEF: secure, etficient SW distribution

1. Repository in DC downloads software m from developer in LA
2. User download from (nearby) repository; receives m’
o Ism’ = m ? User should validate! How?

3. User securely downloads h(m) directly from developer
o Digest h(m) is short — much less overhead than downloading m

4. User validates: h(m) = h(m’)=2m =m’

» Repository

18

Weaker Notions of Security

Collision resistance provides the strongest guarantee.

o Gives more freedom to the adversary; the adversary wins if it finds
any two inputs with the same digest.

No conditions on these two inputs other than being in the domain of the hash
function.

Weaker security notions (but sufficient for many
applications):

o Target collision resistance (TCR).

o Second preimage resistance.

o First preimage resistance.

Birthday paradox (or attack) does not work against these
weaker notions.

o ltis for collision resistance; find any two inputs that collide!

19

‘Target CRHF (TCR Hash Function)

1" ﬂ{Adversary }
<

k013 L;J
h[Adversary }

R V2

Collision: x' s.t.
hy(x) = hy(x")

Hash function h ()

Adversary has to select target before knowing key

1"); / /
2. k) } s.t. (x #£x') N (hg(x) = hp(z)

™
N
Q
e
S
Il
oy
/]\
ST
=
3
—N—
g\
e

20

TCR and Birthday Paradox?

-’E } = First: adversary selects x
©EASEEY L Probability for NO birthday-collision

e & oy @ with x:

o Two persons: (364/365)
L[Adversary } o Three persons: (364/365)*(364/365)
‘ (|
Collision: x’ s.t.

i 0) = e (%) - Iy 260 = (224)"

365

Jan |4 | Mar | Apr May | Jun | Jur| Aug | Sop | ct| Nov | Dec

21

We (mostly) focus on keyless hash...

Although there are no CRHFs
And theory papers focus on keyed hash

But...

a It's a bit less complicated and easier to work with.
2 No need to consider both ACR and TCR
Why?
2 Modifying to ACR is quite trivial
Just make it keyed!
o Usually used in practice: libraries, standards, ...

22

‘2ﬂd—Preimage—Resistant Hash (SPR)

= Hard to find collision with a specific random x.

$
x < {0,1} Hash function h(-)
-y Domain {0,1}"
[Adversary] First preimage X o
-) Second 4/ o
X st x #x =T
SPR _ / / L /
Epa (n) = Pr " A(x) s.t. x £ 2" AN h(x) = h(x)]

z&-{0,11A0™)

Use with care!
(think carefully about the security you want to achieve and see if SPR suffices)

23

CRHF/SPR vs. Applications
CRHF secure for signing, SW-distribution

How about SPR hash (weak-CRHF)?
o SW-distribution? YES
o Hash-then-sign? NO

Why?
o Attacker can’'t impact SW to be distributed
o But... attacker may be able to impact signed msg!

5 Will/Contract/. ..

J Sign(h(Will/Contract/...))

24

SPR: Collisions to Chosen Messages

= Or: Alice and Mal, the corrupt lawyer
= Mal finds two "colliding wills’, GoodW and BadW:

o GoodW: contents agreeable to Alice
a0 h(GoodW)=h(BadW)
o Alice Signs good will: Sign(h(GoodW))

h(GoodP)
=h(BadP)
S

“

GoodW: ‘| leave all to Bob’
£ <

Sign(h(GoodW))

= Later... Mal presents to the court:

BadW: ‘| leave all to Mal’, Signa(h(BadW))
$$6%

25

SPR: collisions to chosen message
= Or: Alice and Mal, the corrupt lawyer
= Mal finds two "colliding wills’, GoodW and BadW:

o GoodW: contents agreeable to Alice

s such attack realistic?

Or SPR is enough ‘in practice’?

« BadV\L: ‘| leave all to Mal’, SignA(h(BadW))
- - >

26

SPR & Chosen-prefix vulnerability

Chosen-prefix vulnerability :

o Mal selects "prefix string’ p
o Efficient algorithm finds :
x # x'st. h(p||lx) = h(p||x")
o Or, also for any suffix: (Vs)h(p||x]|s) = h(p||x'||s)
Hash may be SPR yet allow chosen-prefix attacks

Such attacks found for several proposed, standard
cryptographic hash function, e.g., MD5 and SHA1

We show chosen prefix attack on HtS
o Example of possible attack on HtS with SPR

27

Chosen-prefix Attack

Let x < x’ be collision for prefix: p="Pay Mal $

Mal tricks Alice into signing him an IOU for $x

Alice signs, sends s=S(m) where m="Pay Mal $'||x
S3(m)=Ss(h(pl|x))=Ss(h(pllx) =S5 (m’)

o m’="Pay Mal $’||x’

Mal sends s, m’ to Alice’s bank

o Bank validates “Ok”=Verify jjico ,(m’,S)

Bank gives $x’ of Alice to Mal!!

This attack is simplified:
o Mal has to find "good’ collision (high profit, convince Alice to sign)
o People sign (PDF) files, not plain text...

In reality, attacker also chooses suffix =» stronger attack

28

Examples

Let h, be a keyed CRHF. Is h,’ = h,(h,(x)) a CRHF? Why?

Let h(x4||X2||x5) = X4 + X, + X3 mod p, is his a CRHF? Why? Is it SPR?
Why?

Let h,(m) be a TCR function. Construct h,’(m) = 0" if m[1: |k|] = k and
h,(m) otherwise.

o Is hy’ CRHF? Why?
o Is hy’ TCR? Why?

29

30

" One-Way Function (OWF)

h(x) (random x)
e

[Adversary }
-

X’ (or x)

o One-way function or first preimage resistance: given /(x)
for random x, it is hard to find x, or any x’s.t. 4(x')=h(x)

Compare to:
o Collision-Resistance (CR): hard to find collision, i.e., any
(x,x’) s.t. h(x")=h(x), x # x’

o Second-preimage resistance (SPR): hard to find collision
with random x, i.e., x’ s.t. h(x')=h(x), x + x’

31

‘ Application: One-time Password Authentication

h(x) (random x)
e

[Adversary }
-

X’ (or x)

o One-time password authentication:

= Select random x : ‘one-time password’ (keep secret!)
= Validate using non-secret ‘one-time validation token’: /1(x)

o Extend to one-time public-key signatures.

= Will be covered later when we study digital signatures.

How about a one-time password chain?

32

Not an Application: One-time Password Chain

Alice computes a hash chain instead of one hash:

0 Select random x, then compute a chain of length [of
hashes: x;,1 = h(x;)

o This allows Alice to authenticate [times instead of
one.

Alice gives the server x; then each time she wants to
authenticate she sends x;_;

The server can check by verifying that x; = h(x;_;)

A one-way function property alone may not
sufficient, h has also to be a permutation.
0 x; need to be uniformly distributed.

33

Example

Let h(x) be a OWF, construct g(x) as:
o g(x)=02ifxmod 2"=0
o g(x) = h(x) || 0" otherwise

g(x) is a OWF.

o Why?

But f(x) = g(g(x)) is not a OWF.
o Why?

And recall that a one time password chain is a nested
calls of the hash function.

o So g(x) cannot be used to construct such a chain.

o Why?

34

35

Exercise

Let /1, i, be both CRHF and OWF

Use them to construct:

a hegpe - CRHF but not OWF

2 hoyr - OWF but not CRHF

One possible solution:

Q hegpr (m)={1||m if |m|=n, O||h;(m) otherwise }

b (m) = hi(m) if |m| =n
» OWEEE T by (my n@hy (M) if M=y |0

36

Randomness Extraction

_ $
Let x be string chosen Select random bit b < {0,1} | (vo, ¥1) G b
by adversary, except for Yp = h(x) » Hess o,
m random bits $ n Adv wins
Yp—1 < {0,1}" (random) ifb’ =b

o If input is sufficiently random, then output is random’
o Multiple “sufficiently random’ models
o Randomness extraction: if any m input bits are random =
all n output bits are pseudorandom
For sufficiently large m

Pseudorandom: it is not computationally-feasible to distinguish
between these bits and truly random bits

a2 How to model random extraction? Two models are

discussed next!
37

Von Neuman’s Randomness Extractor

o Assume each bit is result of flip of coin with fixed bias
The bit 1 is produced with probability p and the bit 0 is produced
with a probability 7 —p
Coin tosses are independent.

o Von Neuman's solution:
Arrange input in pairs of bits: {(x;, y;)}
Remove pairs where bits are the same, so now x; # y;
Output x;

o If assumption holds (independent biased coin flips) —

output is uniform !

Bit 0 or 1 is produced with probability exactly 2

38

Bitwise Randomness Extraction

o ‘If input is sufficiently random, then output is random’

o Simple model: if any n input bits are random,
=» all n output bits are pseudorandom
For sufficiently large n

o Simplified process:

Select the missing n random

Adv(1™): select bits of input o,y h)- p| Adv wins
input, exceptiorn Select a random bit b I Adv B ifb’ =b

(random) bits

$
yp < h(input), y,_p < {0,1}"

39

Random Oracle Model (ROM)

Use a fixed, keyless hash function %
Analyse as if hash A() is a random function

o An invalid assumption: 4() is fixed!

o Whenever 4() is used, use oracle (black box) for random
function

Good for screening insecure solutions
o Random oracle security =» many attacks fail

In practice: assume random oracle and use a standard hash
function

o It was shown that in some cases the construction will
become insecure.

Better to have security with standard assumption than the
non-standard ROM.

40

Covered Material From the Textbook

Chapter 4

0 Sections 4.1, 4.2 (except 4.2.6), 4.3, 4.4 (except
4.4.2), 4.5 (except 4.5.3).

41

Tnanx Youl

’)

?%2;? '2’?%@

