
CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

Lecture 3
Encryption – Part II

(and Pseudo-randomness)
Ghada Almashaqbeh

UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline
• One time pad (OTP) encryption.
• Pseudorandom number generators (PRGs).
• Pseudorandom number functions (PRFs).
• Encryption schemes from PRGs and PRFs.

2

We can apply generic, exhaustive attacks to
every cryptosystem. So, is breaking just a
question of resources?

Can encryption be secure unconditionally –
even against attacker with unbounded time
and storage?

Yes it can!

3

4

One-Time-Pad (OTP)
n To encrypt message m, compute the bitwise

XOR of the key k with the message m:
q Ek(m)=c where c[i] = k[i] Å m[i]

n To decrypt ciphertext c, compute the bitwise
XOR of the key with the ciphertext:
q Dk(c)=m where m[i] = k[i] Å c[i]

... 1 1 1 0 0 0 1 0

1 0 0 0 1... 0 0 0 1 0 0 1 1
+Plaintext m Ciphertext c

Key k (pad)

[Frank Miller, 1882] and
[Vernham (and Mauborgne?), 1919]

12345678

12345678

12345678

5

One-Time-Pad: Example, Properties
k = 11001
m = 10011
c = 01010

k = 11001
c = 01010
m = 10011

• Correctness: k Å c = k Å (k Å m) = (k Å k) Å m = 0 Å m = m
• Very simple, and efficient… but:

• Stateful encryption
• And size of key must be (at least) equal to the message size.
• Key cannot be reused for several encryptions (one time!).

• Shannon [1949; simplified]: OTP is Unconditionally secure,
and for every unconditionally-secure cipher, |k|≥|m|

• Proofs of these claims? See crypto course / books J
To go around the above limitations: we assume attackers are

computationally limited

Recall: Unconditional vs. Computational Security
• Unconditional security

• No matter how much computing power is available, the cipher
cannot be broken

• Computational security
• The cost of breaking the cipher exceeds the value of the

encrypted info
• The time required to break the cipher exceeds the useful

lifetime of the info
• So it deals with Probabilistic Polynomial Time (PPT) attackers.

Looking ahead: Stream Ciphers vs. Block Ciphers
• Stream cipher

• Encrypts a message bit by bit (stream of bits).
• Inherently stateful; needs to keep track of the location of last

encrypted bit.
• Block cipher

• Encrypts a block (string) of bits all at once.
• Can be stateless or stateful

Can we do computationally-secure
variant of OTP, with ‘short key’

(|k|<<|m|) ?

Yes, using pseudorandom number
generators (PRGs)!

9

PRG Stream Cipher
n Idea: `similar’ to OTP, but with bounded-length key k
q How?

q Use a pseudorandom generator 𝑓!"#(#)
q 𝑓!"#(𝑘) outputs a long stream of bits (longer than |k|)

q This stream is `indistinguishable from random’ bit-stream
q What is this ‘indistinguishability’ requirement??

q This is related to the famous Turing Test!

10

PRG Stream Cipher - Example

+Plaintext m Ciphertext c

Seed s
(as key)

PRG

Bit i of PRG(s)

Bit i of m ci

... 0 0 0 1 0 0 1 1
12345678

... 1 1 1 0 0 0 1 0
12345678

1 0 0 0 1
12345678

11

The Turing Test [1950]
q Defined by Alan Turing
q Machine M is intelligent, if an evaluator cannot distinguish

between M and a human
q Only textual communication, to avoid `technicalities’

q If M is ‘intelligent’, judge will only be able to guess
q I.e., probability of distinguishing would be (at most) ½

12

The PRG Indistinguishabity Test
q Consider function f from n-bits to m-bits (m>n)
q Let seed and rand be random strings s.t.: |seed|=n, |rand|=m
q f is a PRG if no efficient distinguisher D can tell which is which.

q i.e., cannot output 1 for f(seed) and 0 given rand with non-negligible
advantage.

rand
f()seed

(n-bits)

f(seed) m-bits m-bits?

1 if input is f(seed),
0 if input is rand

Recall: An Efficient (PPT) Algorithm
q An algorithm A is efficient if its running time is bounded

by some polynomial in the length of its inputs.
q ‘Robust’ : does not depend on ‘machine’

q PPT (Probabilistic Polynomial Time) is the set of all
randomized efficient algorithms

q Given 𝑛 bit input 𝑥 𝑎𝑛𝑑 𝑦 (i.e., 𝑛 = 𝑥 = |𝑦|), is there an
efficient algorithm that:
q Finds 𝑥𝑦 (multiplication)?
q Finds the factors of 𝑥?

13

Recall: Negligible Functions

q Informally, 𝜀(𝑛) converges to zero as 𝑛 approaches
infinity.

q Useful propositions:
q If 𝜀1(𝑛) and 𝜀2(𝑛) are negligible, then 𝜀3(𝑛)

= 𝜀1(𝑛) +𝜀2(𝑛) is also negligible.
q For any polynomial 𝑝(n) and negligible function 𝜀(𝑛),

the function 𝜀4(𝑛) = 𝑝 n . 𝜀(𝑛) is also negligible.

14

Definition: a function 𝜀(𝑛) that maps natural numbers
to non-negative real numbers is negligible if for every
positive polynomial 𝑝 and all sufficiently large 𝑛 it
holds that 𝜀 𝑛 < !

"($)

15

The PRG Advantage
q A random guess is correct half of the time
q A good distinguisher will have an advantage:

rand
f()seed

(n-bits)

f(seed) m-bits m-bits?

1 if input is f(seed),
0 if input is rand

Pseudo-Random Generator: Definition
A PRG is an efficiently-computable function 𝑓 ∈ 𝑃𝑃𝑇, which

is length-increasing (∀𝑘 𝑓(𝑘) > 𝑘), and whose output
is indistinguishable from random, i.e.:

∀𝑫 ∈ 𝑷𝑷𝑻 𝝐𝑫,𝒇𝑷𝑹𝑮 𝒏 ∈ 𝑵𝑬𝑮𝑳 𝒏

randf(.)𝑘
(n-bits)

𝑓(𝑘) 𝑟𝑥

𝐷(𝑥)

16

Exercise
q Let f(s) be a PRG, are the following PRGs?

q g(s) = 1||f(s)
q q(s) = (parity of s)||f(s)
q w(s) = ~f(s)

q ~ is the bitwise complement or negation

17

Many PRG proposals I
• Often based on Feedback Shift Register(s)

• Easy construction for efficient hardware implementations.
• Linear feedback (LFSR), or non-linear feedback function

(f(…) in the figure, e.g., XOR all previous bits to produce
the next one).
• LFSR is easily predictable (not secure PRG)

18

Many PRG proposals II

• More complex (multi-registers, etc.), e.g. in GSM
• GSM’s original stream-ciphers (A5/1, A5/2): broken
• RC4; efficient for software implementations, but known

attacks on 1st bytes L

• In practice, attacks on PRGs (or constructions that
use PRGs) are often caused by an incorrect use
of a PRG.
• Example: a PRG-based OTP encryption scheme with a

fixed PRG seed.
• What is wrong with this construction?

19

20

Example: Misusing Stream-Cipher
MS-Word 2002 uses RC4 to encrypt:
PAD = RC4(password)
Save PAD ⊕ Document (bitwise XOR)
The Problem: same pad used to encrypt when document is

modified
Attacker gets: c1=PAD xor d1, c2 = PAD xor d2
Enough redundancy in English to decrypt!
[Mason et al., CCS'06]

Cryptography is bypassed more often than broken!!

Provably-Secure PRG?
q 𝑓 is a secure PRG è no PPT distinguisher

q But given 𝑘, it is trivial to identify 𝑓(𝑘)
q This means that the PRG problem is in NP

q NP: in PPT, if given a ‘hint’ – e.g., 𝑘…
q So a provable secure PRG è 𝑃 ≠ 𝑁𝑃

q The ‘holy grail’ of the theory of complexity
q So don’t expect a ‘real’ provably-secure PRG
q Instead, we prove that a given PRG construction is

secure, if <assumption>
q The paradigm of proof by reduction

21

Provably-Secure PRG : by reduction
q Construct PRG 𝑓 from 𝑔, assumed to be X

q X is some hard problem (or a hardness assumption)
q Known (or believed) to be hard to be broken.

q Reduction: if 𝑔 is secure X è 𝑓 is a secure
PRG
q Basic method of theory of cryptograph
q Many such PRG constructions.

22

PRG by reduction – An Example

23

r and s are random strings

Proof by Reduction
q General paradigm (informal).

q Use the new construction attacker (in this case it is the
distinguisher D’) to build an attacker against the secure
(smaller) construction (in this case it is the distinguisher
D).

q Analyze the success probability of D’ based on that.
q Since the smaller construction is secure, the success

probability of D’ will be also negligible, thus proving the
security of the new construction.

q Usually, it is easier to use proof by contrapositive.
q Assume the new construction is insecure, then the smaller

attacker will succeed with non-negligible probability à
contradiction à the new construction is secure.

24

25

Stream-Cipher Like but Stateless Encrypt?
n PRG-based stream ciphers are stateful.

n Need to remember how many bits (or bytes) were
already encrypted, and and how many bits (or bytes) of
PRG output have been used so far.

n Can secure encryption be stateless?
n The answer is…

Yes it can!

In three steps (or versions):
1. Use less state
2. Use no state

with a random function
3. Use no state, but with

pseudo-random function

First, what’s a (‘truly’) random function f?
n Fix domain D, usually binary strings: {0,1}!

n Fix range R, usually binary strings: {0,1}"
n For each value x in D, randomly select a value y in R
n f(x) = y
n Example:

Domain D
{0,1}!

Range R {0,1}"f()
00
01
10
11

26

What’s a (‘truly’) random function?
n Fix domain D, usually binary strings: {0,1}!

n Fix range R, usually binary strings: {0,1}"
n For each value x in D, randomly select a value y in R
n f(x) = y
n Example:

Range R {0,1}"

Domain D
{0,1}!

f()
00 01101
01 11010
10 01101
11 11101

27

What’s a (‘truly’) random function?
n Another example:
n Domain D: integers
n Range R: bits {0,1}
n For each integer i, randomly select a bit f(i)
n Example:

Domain:
integers

Range: bits {0,1}i f(i)
1
2
3
4
5
6
… …

28

What’s a (‘truly’) random function?
n Another example:
n Domain D: integers
n Range R: bits {0,1}
n For each integer i, randomly select a bit f(i)
n Example:

Domain:
integers

Range: bits {0,1}i f(i)
1 0
2 1
3 1
4 0
5 0
6 1
… …

29

Random-Function-Based Encryption
Stateful (counter) Design

- Sync-state (counter)
- No extra random bits required
- |ciphertext|=|plaintext|

Randomized Design

- Stateless
- 𝑛 random bits per plaintext bit
- |ciphertext|=(𝑛 + 1) ⋅|plaintext|

30

Random-Function Bitwise-Encryption
Randomized DesignStateful (counter) Design

Drawbacks:
- Require random function (impractical)
- Invoke function once-per-bit (computational overhead)

31

32

Reduce Overhead: Block-Encryption
n Optimization: operate in blocks (say of n bits)

n f be random function from n-bits strings (`blocks’) to n-bits strings (`blocks’)
n p(i) be i-th block of n-bits of plaintext
n c(i) be i-th block of n-bits of ciphertext

n Challenge: sharing such random function f !!
n Size of table? 2^n entries of n bits each…

n Idea: use pseudo-random function (PRF) instead!

33

Encryption with PRF
n Operate in blocks (say of n bits)
n Use Pseudo-Random Function (PRF) 𝑓2(⋅), output n bits

n Efficient , compact

But what’s a PRF ?

34

The PRF Indistinguishabity Test
q F is a PRF from domain D to range R, if no distinguisher A:

q Outputs 1 (signaling PRF) given oracle access to Fk(.) (for random n-bits key k), and
q Outputs 0 (signaling random) given oracle access to f(.), a random function (from D to

R)

f(.)Fk(.)

n-bit Key k

x1,x2,…,xi

…, Fk(xi)

Box 0: random functionBox 1: PRF

k x1,x2,…,xi

…, f(xi)
?

1 if oracle is to Fk(.),
0 if oracle is to f(.)

A

PRF Definition
n A PRF is `as secure as random function’

n Against efficient adversaries (PPT), allowing negligible advantage
n Yet practical, even efficient

n Formally, a PRF 𝐹# is:

35

Constructing a PRF
q Heuristics: efficient, not proven secure
q [GGM84]: construct PRF from PRG

q Provably secure - if PRG is secure (reduction)
q But many PRG calls for each PRF computation
q è Not deployed in practice

q Provable secure PRF without assumptions?
q If exists, would imply that 𝑃 ≠ 𝑁𝑃 . Why?

q Given the key k , it is trivial to identify the PRF
q 𝑃 : problems solvable in polynomial time
q 𝑁𝑃 : same, but given also any ‘hint’ (e.g. key k)

37

PRF Applications
n PRFs have many more applications:

n Encryption, authentication, key management…
n Example: derive independent key for each day d

n Easy, with PRF and single shared key k
n Key for day d is kd = Fk(d)
n Exposure of keys of Monday and Wednesday does not

expose key for Tuesday
n Similarly: separate keys for different goals, e.g., encryption

and authentication

Key k PRF Fk

d

Fk(d)

Covered Material From the Textbook
q Chapter 2: section 2.4 and 2.5

