CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

lLecture 3

Encryption — Part 11
(and Pseudo-randomness)

Ghada Almashagbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline

* One time pad (OTP) encryption.

* Pseudorandom number generators (PRGs).
* Pseudorandom number functions (PRFs).

* Encryption schemes from PRGs and PRFs.

We can apply generic, exhaustive attacks to

every cryptosystem. So, 1s breaking just a
question of resources?

Can encryption be secure unconditionally —
even against attacker with unbounded time
and storage?

qyy A con!

[Frank Miller, 1882] and
Oﬁe Tlme Pad (OTP> [V;ar:harr: earnd Mausgrgne’?) 1919]

To encrypt message m, compute the bitwise
XOR of the key k with the message m:

o E(m)=c where c[i] = Kk[i] ® m([i]

To decrypt ciphertext c, compute the bitwise
XOR of the key with the ciphertext:

0 Dy(c)=m where m[i] = K][i] @ c]i]

m —>Ev9

c=modk

Ciphertext c

5 3
=100 0] 100

3
Plaintext m /\é/j
8 7 6 4 8 7 6 ¥% 4 3 2 1

0

001

One-Time-Pad: Example, Properties

K = 11001 k= 11001
m = 10011 c= 01010
c = 01010 m=10011

* Correctness: k®@c=k®@k®@m)=(k®k)®m=0®&m=m

* Very simple, and efficient... but:
- Stateful encryption
* And size of key must be (at least) equal to the message size.
- Key cannot be reused for several encryptions (one time!).

* Shannon [1949; simplified]: OTP is Unconditionally secure,
and for every unconditionally-secure cipher, |k|=|m|
* Proofs of these claims? See crypto course / books ©

To go around the above limitations: we assume attackers are
computationally limited 0

Recall: Unconditional vs. Computational Security

* Unconditional security

 No matter how much computing power is available, the cipher
cannot be broken

« Computational security

« The cost of breaking the cipher exceeds the value of the
encrypted info

« The time required to break the cipher exceeds the useful
lifetime of the info

« So it deals with Probabilistic Polynomial Time (PPT) attackers.

LLooking ahead: Stream Ciphers vs. Block Ciphers

« Stream cipher
* Encrypts a message bit by bit (stream of bits).

* Inherently stateful; needs to keep track of the location of last
encrypted bit.

* Block cipher
* Encrypts a block (string) of bits all at once.
« Can be stateless or stateful

Can we do computationally-secure
variant of OTP, with ‘short key’
([k[<<[m])>~

Yes, using pseudorandom number
generators (PRGs)!

PRG Stream Cipher

|dea: similar’ to OTP, but with bounded-length key &

o How?
o Use a pseudorand

om generator fpp:(+)

0 fpre (k) outputs a long stream of bits (longer than |4|)

o This stream is “indistinguishable from random’ bit-stream
o What is this ‘indistinguishability’ requirement??

o This is related to the famous Turing Test!

!

l

‘ fpra(-) \

m —» '9
Y
C

pad = fpra(k); |pad| = |c¢| = |m| > |E]|.

——rr ’::' fF)[{(;'(A')

PRG Stream Cipher - Example

Seed s PRG
(as key) 8 7 615 4 3 2 1
111000 10
JBit | of PRG(s)
Plaintext m Bit i of m
8 7 6 5/4 3 21\M
1000 100 1|1 1

Ci Ciphertext c

4

3

2

1

0

0

0

1

10

The Turing Test [1950]

o Defined by Alan Turing

o Machine M is intelligent, if an evaluator cannot distinguish
between M and a human

o Only textual communication, to avoid "technicalities’

o If M is ‘intelligent’, judge will only be able to guess
o l.e., probability of distinguishing would be (at most) %

11

The PRG Indistinguishabity Test

o Consider function f from n-bits to m-bits (m>n)
o Let seed and rand be random strings s.t.: |seed|=n, |rand|=m

a fis a PRG if no efficient distinguisher D can tell which is which.
o i.e., cannot output 1 for f(seed) and 0 given rand with non-negligible

advantage.
~ | .seed, H
9 (n-bits) > 1() -
f(seed) rand ‘w

12

Recall: An Eftticient (PPT) Algorithm

1 An algorithm A is efficient if its running time is bounded
by some polynomial in the length of its inputs.

d ‘Robust’ : does not depend on ‘machine’

 PPT (Probabilistic Polynomial Time) is the set of all
randomized efficient algorithms

A Given n bit input x and y (i.e., n = |x| = |y|), is there an
efficient algorithm that:

A Finds xy (multiplication)?
A Finds the factors of x?

13

Recall: Negligible Functions

Definition: a function £(n) that maps natural numbers
to non-negative real numbers is negligible if for every
positive polynomial p and all sufficiently large n it

1
holds that 8(7’1) < ﬁ

d Informally, e(n) converges to zero as n approaches
infinity.
J Useful propositions:

d If e,(n) and &,(n) are negligible, then &;(n)
= g,(n) +&,(n) Is also negligible.

A For any polynomial p(n) and negligible function e(n),
the function ¢,(n) = p(n).e(n) is also negligible.

14

The PRG Advantage

o A random guess is correct half of the time
o A good distinguisher will have an advantage:

f(seed) 4221, o mebits

ep, ()= Pr [D(f(s))] - Pr 1D (r)]
' . {0,1}m ré {0,1}17(0™)]
~] seed H
@ noits)” ()

15

Pseudo-Random Generator: Definition

A PRG is an efficiently-computable function f € PPT, which
is length-increasing ((Vk)|f (k)| > |k|), and whose output
is indistinguishable from random, i.e.:
(VD € PPT) €p¥" (n) € NEGL(n)

ePRG(m)= Pr [D(f(s)) Pr [D(r)]

s {0,1} r&-{0,1}15(0™)]

f(k)*x r

16

Exercise

 Let f(s) be a PRG, are the following PRGs?
3 g(s) = 1][f(s)

3 q(s) = (parity of s)||f(s)

QO w(s) = ~f(s)

d ~ is the bitwise complement or negation

17

‘Many PRG proposals 1

« Often based on Feedback Shift Register(s)

« Easy construction for efficient hardware implementations.

« Linear feedback (LFSR), or non-linear feedback function
(f(...) in the figure, e.g., XOR all previous bits to produce
the next one).

« LFSR is easily predictable (not secure PRG)

18

Many PRG proposals 11

 More complex (multi-registers, etc.), e.g. in GSM
« GSM'’s original stream-ciphers (A5/1, A5/2): broken
 RC4; efficient for software implementations, but known
attacks on 15t bytes ®

* In practice, attacks on PRGs (or constructions that
use PRGs) are often caused by an incorrect use
of a PRG.

« Example: a PRG-based OTP encryption scheme with a
fixed PRG seed.

 What is wrong with this construction?

19

‘Example: Misusing Stream-Cipher

MS-Word 2002 uses RC4 to encrypit:
PAD = RC4(password)
Save PAD @ Document (bitwise XOR)

The Problem: same pad used to encrypt when document is
modified

Attacker gets: c1=PAD xor d1, c2 = PAD xor d2
Enough redundancy in English to decrypt!
[Mason et al., CCS'06]

20

Provably-Secure PRG?

 f is a secure PRG =>» no PPT distinguisher
 But given k, it is trivial to identify f (k)

d This means that the PRG problem is in NP
d NP:inPPT, if given a ‘hint —e.qg., k...

d So a provable secure PRG = P += NP
 The ‘holy grail’ of the theory of complexity

1 So don’t expect a ‘real’ provably-secure PRG

 Instead, we prove that a given PRG construction is
secure, if <assumption>

1 The paradigm of proof by reduction

21

Provably-Secure PRG : by reduction

A Construct PRG f from g, assumed to be X

1 Xis some hard problem (or a hardness assumption)
1 Known (or believed) to be hard to be broken.

J Reduction: if g is secure X =» f is a secure
PRG

1 Basic method of theory of cryptograph

1 Many such PRG constructions.

22

PRG by reduction — An Example

Exercise 2.10. Let G : {0,1}" — {0,1}"*! be a secure PRG. Is G'(r 4 s) =
r 4+ G(s), where r,s € {0,1}", also a secure PRG?

r and s are random strings

D ’
A PPT distinguisher for G', i.e.:
z' =]z, (p'(6'@)))-Pr s ... (D'()) € NEGL
r € {0,1}" yr={0.1)®

A PPT distinguisher for G, i.e.:

Pr_ri{o,un (D(G(x))) - Pr}".s_{o'l]"‘1 (D(y)) € NEGL

23

Proot by Reduction

1 General paradigm (informal).

1 Use the new construction attacker (in this case it is the
distinguisher D’) to build an attacker against the secure
(smaller) construction (in this case it is the distinguisher
D).

1 Analyze the success probability of D’ based on that.

O Since the smaller construction is secure, the success
probability of D’ will be also negligible, thus proving the
security of the new construction.

O Usually, it is easier to use proof by contrapositive.

d Assume the new construction is insecure, then the smaller
attacker will succeed with non-negligible probability -
contradiction = the new construction is secure.

24

Stream-Cipher Like but Stateless Encrypt?

= PRG-based stream ciphers are stateful.

= Need to remember how many bits (or bytes) were
already encrypted, and and how many bits (or bytes) of
PRG output have been used so far.

= Can secure encryption be stateless?
= The answer is...

qw A con!

25

First, what’s a (‘truly’) random function f?

= Fix domain D, usually binary strings: {0,1}'"
= Fix range R, usually binary strings: {0,1}"
= Foreach value x in D, randomly select a value y in R

= f(x)=y
= Example:
I ETEN Range R {0,13°
Domain D m
{0,1¥°

26

‘What’s a (‘truly’) random function?

= Fix domain D, usually binary strings: {0,1}'"
= Fix range R, usually binary strings: {0,1}"
= Foreach value x in D, randomly select a value y in R

= f(x)=y
= Example:
] Range R {0,13°
Domain D
(0,1} 11010

01101
11101

27

‘What’s a (‘truly’) random function?

= Another example:

= Domain D: integers

= Range R: bits {0,1}

= For each integer i, randomly select a bit f(i)

= Example:
_ Range: bits {0,1}

Domain:

integers

28

‘What’s a (‘truly’) random function?

= Another example:

= Domain D: integers

= Range R: bits {0,1}

= For each integer i, randomly select a bit f(i)

= Example:
— Range: bits {0,1)

Domain:

integers

- O O A A

29

Random-Function-Based Encryption

Stateful (counter) Design Randomized Design

r & 0,1}

l

|
f()

y

A
m; q? mi —H
\

N

c; =m; @ f(7) c; = (;n.,- = f(-rJ. ;)
- Sync-state (counter) - Stateless
- No extra random bits required - n random bits per plaintext bit

- |ciphertext|=|plaintext|

|ciphertext|=(n + 1) -|plaintext|

30

Random-Function Bitwise-Encryption

Stateful (counter) Design Randomized Design
i r; & {0,1}"
f() f()
m; _’é; mi _.éé
c; =m; & f(1) C; = (;n.l- @J\f(l,y ri)
Drawbacks:

- Require random function (impractical)
- Invoke function once-per-bit (computational overhead)

31

Reduce Overhead: Block-Encryption

Optimization: operate in blocks (say of n bits)
f be random function from n-bits strings ("blocks’) to n-bits strings ("blocks’)
p(i) be i-th block of n-bits of plaintext
c(i) be i-th block of n-bits of ciphertext

lz’ r; & {0,1}7
fC) 0]
mi —f—eh mi D
Y Y

¢ = (m; @ f(i)) ci = (m; @ f(ri),rs)

Challenge: sharing such random function f !!
Size of table? 2*n entries of n bits each...
Idea: use pseudo-random function (PRF) instead!

32

‘ Encryption with PRF

= Operate in blocks (say of n bits)
= Use Pseudo-Random Function (PRF) f. (-), output n bits

= Efficient , compact
$

z r; < {0,1}"
k— Ji(*) k— fir(")
S o
Ci = (7u.,-v< 1?/,‘.(',7) ¢ = (m; @ ;}A,(«,-,). 1)
But what’s a PRF ?

33

The PRF Indistinguishabity Test

o Fis a PRF from domain D to range R, if no distinguisher A:

o Outputs 1 (signaling PRF) given oracle access to F,(.) (for random n-bits key k), and
o Outputs 0 (signaling random) given oracle access to f(.), a random function (from D to

n-bit Key k
lk —t XX X1, X2 -5 X
Fk(.) > ? <
oory Fi(X) I ..., f(x)
Box 1: PRF

f() —

34

‘PRF Definition

= A PRF is "as secure as random function’
= Against efficient adversaries (PPT), allowing negligible advantage
= Yet practical, even efficient

= Formally, a PRF F; is:

Definition 2.8. A pseudo-random function (PRF) is a polynomial-time com-

putable function Fi(x) : {0,1}* x D — R s.t. for all PPT algorithms A,
ng;f'(lz) € NEGL, 1ie., is negligible, where the advantage Eﬁ_’}"(n) of the

PRF F against adversary A is defined as:

effn)= Pr [A™(1™)]- Pr [A/(1")] (2.13)
k& (0,1} fE{D-R)

The probabilities are taken over random coin tosses of A, and random choices

of the key k & {0,1}™ and of the function f = {D — R}.

Constructing a PRF

d Heuristics: efficient, not proven secure
d [GGM84]: construct PRF from PRG
O Provably secure - if PRG is secure (reduction)
d But many PRG calls for each PRF computation
1 =>» Not deployed in practice
d Provable secure PRF without assumptions?
 If exists, would imply that P # NP . Why?
d Given the key &, it is trivial to identify the PRF

P : problems solvable in polynomial time
d NP :same, but given also any ‘hint’ (e.g. key %)

PREF Applications

PRFs have many more applications:
Encryption, authentication, key management...
Example: derive independent key for each day d
Easy, with PRF and single shared key k
Key for day d is k; = F,(d)
Exposure of keys of Monday and Wednesday does not
expose key for Tuesday

Similarly: separate keys for different goals, e.g., encryption
and authentication

i
Key k PRF F,

l

Fi(d)

37

‘Covered Material From the Textbook

O Chapter 2: section 2.4 and 2.5

Thang Youl
)73 ’) T ——
?a 7?7 ??’)"

