CSE 3400: Introduction to Computer

 \& Network Security(or CSE 5850: Introduction to Cybersecurity)

Lecture 1 Introduction

Ghada Almashaqbeh
UConn - Spring 2022

Outline

- Course logistics and syllabus overview.
- Brief history.
- Cryptography and cybersecurity.
- Background.

History I

- Cryptology - "science of secrets".
- Ancient field, even before computers were invented.
- Was merely about confidential communication.
- Mainly about encryption; convert plaintext to ciphertext such that only the intended recipient can correctly decrypt.
- Cryptography - "secret writing" - is a more popular term now.
- Kerckhoffs' Principle.
- Avoid security by obscurity.
- Instead, cryptographic/security algorithms, schemes, or mechanisms should be public.

History II

- Modern Cryptography.
- Moved from ad hoc ancient solutions and military secret tools to science/scholarly research/industrial products/etc.
- Public algorithms.
- Well defined security notions.
- Formal security proofs and/or extensive cryptanalysis.

Cryptography is only about secrecy?

- No!! It can achieve a large variety of goals, to name a few:
- Confidentiality (or secrecy) - encryption.
- Integrity and authenticity - message authentication codes and digital signatures.
- Nonrepudiation - digital signatures.
- Secret key establishment, sharing, and management.
- Secure function evaluation over private input (two or multi party setup).
- Computation over encrypted data.
- etc.

Cybersecurity

- Securing the cyberspace.
- The cyberspace is the collection of interconnected computers, devices, machines, etc., and the information flow between them.
- More technological advances \Rightarrow more critical data can be exchanged \Rightarrow attackers are more motivated to attack the cyberspace.
- Resulted in multiple fields, such as:
- Computer security.
- Software security.
- Network security.
- Information security.

Background - Computational Complexity I

- Mainly we deal efficient or computationally bounded adversaries.
- The class of PPT (probabilistic polynomial time) algorithms.
- An algorithm A is in PPT if it takes a polynomial number of steps (in the input size) to terminate.
- A scheme that is secure against PPT adversaries is computationally secure.
- A scheme is secure if a PPT attacker succeeds with negligible probability.
- This rules out exhaustive search attacks.
- Infeasible in practice.

Background - Computational Complexity II

- A scheme secure against unbounded attackers is information theoretically (or unconditionally) secure.
- Even if the attacker has unbounded resources (storage, time, etc.), it cannot break the security of the scheme.
- Security parameter.
- The main factor impacting the run time of cryptographic algorithms.
- Usually related to the key length.
- Passed as input to algorithms in unary representation.

■ E.g., a security parameter value is integer l we pass it as 1^{l}.

Security Goals and Definitions I

- Three principles of modern cryptography:
- Correctness and security definitions (or notions).
- Define how the scheme should act when used as defined (benign scenario)
- Define the security goals/requirements/properties that when met the scheme will be secure.
- This also prevents incorrect use of the scheme.
- Precise assumptions.
- Precise definition of attacker capability (but not strategies) we account for.
- Usually this involves hardness assumpitons on which we rely to establish the security of the developed scheme.

Security Goals and Definitions II

- Three principles of modern cryptography (contd.):
- Formal security proofs.
- Show how the scheme satisfies the security notion under the used assumptions.
- For involved systems/protocols, it could be hard to have completely rigorous models and proofs.

An Example - Digital Signatures

Key length l,

- Assumed limitations:
- Knowledge limitations: key s is secret (unknown to attacker)
- Resource limitations: can't find key s by trying all keys
- Correctness: any signature produced using S will verify correctly (V will always output OK)
- Security: An attacker cannot forge signatures
- I.e., find `signature' σ for a new message m s.t. $V_{v}(m, \sigma)=O K$

Concrete and Asymptotic Security

- Concrete security:
- Measure security in terms of the adversary advantage function value.
- So it computes a concrete probability value for specific (concrete) parameter values such as key length, number of queries an adversary can perform, etc.
- Asymptotic security:
- It requires the advantage function to be negligible in the security parameter.
■ I.e., it converges to zero for large enough input values.
■ E.g., a polynomial $p(n)$ is non-negligible while an inverse exponential 2^{-n} is negligible in n.
- We use NEGL to denote the set of all negligible functions.

Notes - Chapter 1

- Self study.
- Section 1.3.3 and Appendix A. 3 to refresh your knowledge of basic probability.
- For later.
- Sections 1.3.2 and A. 2 (Background on Modular Arithmetic) will be covered when we study public key cryptography.
- Sections 1.3.6 and 1.4 (defining security of digital signatures).
- Table 1.1 under section 1.3.5 includes most of the notations used in the textbook.
- We will revisit them over and over again while studying the course material.

Notes - Textbook

- You may find some of the concepts mentioned in Chapter 1 hard to comprehend (like section 1.2). These will become much clearer as we progress in the course material.
- So do not get discouraged!!
- As you may have noticed, the textbook is still a draft version.
- Prof. Herzberg is still reviewing/editing the textbook.
- Make sure to fetch the latest version of each chapter as we move forward in the semester.
- If you find any mistakes or typos, or you have any suggestions or comments, please share them with me to pass them along.

Covered Material From the Textbook

- Chapter 1: all except Sections 1.3.2, 1.3.6 and 1.4.
- Appendix A. 3

