CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

l.ecture 8

Shared Key Protocols — Part 1

Ghada Almashagbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline

1 Modeling cryptography protocols.
J Session or record protocols.
1 Entity authentication protocols.

Modeling Cryptographic Protocols

J

A protocol is a set of PPT (efficient) functions

O Each receiving (state, input), outputting (state, output)
O Two (or more) parties, each has its own state

Including /nit, In, [and if needed Wakeup] functions
O And task-specific functions, e.g., Send

Adversary can invoke any function, handle outputs

The execution process is a series of function
Invocations based on which the protocol proceeds.
Our discussion (from here) is mostly informal

O Definitions of protocols, execution, goals are hard
O Focus on shared-key, two-party protocols, MitM adversary

Record Protocols

Secure communication between two parties using shared
keys.

Two-party, shared-key Record protocol

1 Parties/peers: Alice (sender), Bob (receiver)
d Simplest — yet applied — protocol

A Simplify: only-authentication, Alice sends to Bob
O Goal: Bob outputs monly if Alice had Send(m)

 Init(k): shared key, unknown to adversary

Send(m) \ = /
Imit(k) ‘ T In(x)
n

Alice MitM Adversary

 Let's design the protocol !

Design of Two-party, shared-key Record protocol

1 Design: define the protocol functions
O Init(k) [Initialize Alice/Bob with secret key k]
d {s.k < k; }
1 Save received key k in state-variable s. k (part of s)

d Send(m): party asked to send m to peer
O Code even simpler if both can send, receive
4 E.g., Alice instructed to send message m to Bob

d {Output x « (m,MAC,,(m)); }
d In((m, o)) : Party receives (m, o) from adversary
A {Outputm if (6 = MAC,(m));}
 Output the message only if validated Ok
1 Define adversary capabilities; access and computational.

6

‘ Design of Two-party, shared-key Record protocol

Send(m) Send(m)
T .) T
" * Init(k)
In(x) In(z) D —
m R B m
Alice MitM Adversary Bob

Two-party, shared-key Record protocol

 Design has many simplifications, easily
avoided:

1 Only message authentication
O No confidentiality!

[Only ensure same message was sent
O Allow duplication, out-of-order, "stale’ messages, losses

d Also: no retransmissions, compression, ...

 To add confidentiality: use encryption

Two-party record protocol with Confidentiality

d Init(k) [Initialize Alice/Bob with secret key K]
QA {s € (kg = FxCE) ,ky = F,CAY))

d Send(m): Alice sends message m (to Bob)
A {Output x = (Ex,(m), MACy ,(Ex,(m))); }

4 In((c,0)) : Bob receives (c, o) from adversary
A {Output Dy(c) if (60 = MACy ,(c));}
d OK! (but still allows dups/re-ordering, etc.)

T T
Init(k) . * nit(k)
——— In(z) In(x) N
e m m ‘
a9 - - 4

Alice MitM Adversary Bob

Send(m) , Send(m)

‘Execution Process — Record Protocol

Alice (A)

o

o]

Protocol &
state: sy

A

wli] | | yli]

Y

MitM (M)

Bob (B)

* 6

Adversary 171

state: sps

Protocol &
state: sp

A

i z[i], p[i + 1], z[i + 1],
S st pli+ 1) € {4, B}

Y

A

xli] | | yli]

Ve

-

Exec(®, M, 1) :
P (sa,sB]) « P(‘Init’, ll);
t (sa, (1%, 2[1], p[1]) = M(‘Init’, 14);
for i =1 to t do
(spli] »YlED) < P(sp[i]> =[i]);

9 e

> Initialize Alice (A) and Bob (B)
> Initialize MitM (M)

> Party p event

(sprs (z[2], ple + 1], xz[e +1]) < M(spr,y[i]); > MitM event.
Return t and (x[i], y[¢], p[¢], 2[%]), for ¢ = 1 to ¢;

J

Figure 5.1: Execution process Exec(P, 11, 1) for two benign parties Alice (A)
and Bob (B) running shared-key protocol (algorithm) &, MitM adversary (M)
running algorithm 777, and security parameter 1°.

‘Labels and Interfaces

SYS
System

interface

APP

Application interface

received(m),
send(m) failure
sleep(9)
> Alice
wake-up(t)

A

send(p) received ()

NET

Network interface

Bob has similar interfaces.

11

Detining Security ot Record Protocols

The existential-unforgeability advantage ePUVEF—5¢ession(p M1 1Y) of adver-
sary M against session/record protocol P is defined as:

gEUF—Session(g)’ m, 1l) =

_p. [T & Ezec(,m,1%); (5.1)
M"™(T) is not a prefix of M*¢™(T)

Where the probability is taken over the random coin tosses of 11l and P during the
execution resulting in transcript T, and where M*¢™(T), M"™(T) are defined
as above.

A session/record protocol P is existentially unforgeable if for all PPT algo-
rithms 111, the advantage of 111 against P is negligible, i.e.: ¢FUE=5ession(p My 11 ¢
NEGL(I).

12

Entity Authentication Protocols

Ensure the identity of an entity (or a peer) involved in
communication.

Mutual Authentication Protocols

1 Our focus.

d In mutual authentication, each party
authenticates herself to the other.

1 Alice knows that she is communicating with Bob,
and vice versa

 This requires, at least, one exchange of
messages.

1 A message from Alice and a response from Bob (o

vice versa).

J Such a flow is called a handshake.

r

14

Handshake Entitv-Authentication protocol
y p

J A protocol to open sessions between parties
1 Each party assigns its own unique ID to each session

1 And map peer's-IDs to its own IDs
O Alice maps Bob’s iy to its identifier ID, (i)
1 Bob maps Alice’s i, to its identifier IDg (iy)

d ‘Matching’ goal: iy, = 1D,(IDg(is)),is = IDg(ID4(ig))
d Allow concurrent sessions and both to open
O Simplify: no timeout / failures / close, ignore session protocol, ...

Init(k) Open(ia) Openl(ipg) y Init(A

ntix)
In(x) ’," Outl(x) » In(x) ',.‘ Outl(x) ‘
..'_‘ - - - -

Alice MitM Adversary Bob

15

Handshake Entity-Authentication protocol

1 Protocol functions
QA Init(k): Initialize Alice/Bob with secret key k
[Open: instruct Alice/Bob to open session
d In(x) : party receives x from channel (via MitM)
d Protocol outputs
1 Open(i): party opened session i
d Out(x) : party asks to send x to peer

Open \ﬁ q}
Init(k) ‘ Open(ia) Openlig) ‘ Init(k)
In(z) / Out(x) In(x) / Out(x)
‘KE:‘ - - - - -
A

Alice MitM Adversary Bob

Open

16

Example : IBM’s SNA Handsha
dFirst dominant networking techno

Alice

KC

ogy

JdHandshake uses encryption with shared key &

Bob

A N,

N E(Ny, N,.N,

N, Ek(N% /

N, and Ny - randomly

chosen nonces

Insecure !l Why ?

SNA (Systems Network Architecture): IBM’s proprietary network architecture,
dominated market @ [1975-1990s], mainly in banking, government.

17

Attack on SNA’s Handshake

dMitM opens two sessions with Bob... sending N, to Bob
in 2"d connection to get E,(N;)

LISNA is secure for sequential mutual authentication handshakes
but not concurrent.

MitM (spoofing as Alice) Bob
Session 1 Session 2 Session 1 Session 2
A, N,=1234
E(1234),Nz=5678
5678 A, N,=5678
E(5678) E(5678),Nz=9012
E(9678) Alice ‘identified’

(spoofed)

18

‘ Fixing Mutual Authentication

= Encryption does not ensure authenticity
o Use MAC to authenticate messages

o Although, a block cipher is a PRP, and a PRP is a PRF, and
a PRF is a MAC, but domain is limited!

= Prevent redirection

o ldentify party in challenge

o Better: use separate keys for each direction
= Prevent replay and reorder

o ldentify flow and connection

o Prevent use of old challenge: randomness, time or state
= Do not provide the adversary with an oracle access!

= Do not compute values from Adversary

o Include self-chosen nonce in the protected reply

19

TWO—Pal‘ty Handshake PTOtOCOI <2PP>

W A N,
J Ng, Macy(2 || A€B ||Ny|| Np)
Alice |[Mac(3|[A2B || Ny|| Np)

Use MAC rather than encryption to authenticate
Prevent redirection: include identities (4,B)

Prevent replay and reorder:
Nonces (N, Np)
Separate 2" and 3 flows: 3 vs. 2 input blocks
Secure against arbitrary attacks [proved formally in the literature]

20

‘Covered Material From the Textbook

d Chapter 5
J Sections 5.1 and 5.2

21

Tnanx Youl

)77 ? PN
r;n 7?? 9?')"

