
CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

Lecture 8
Shared Key Protocols – Part I

Ghada Almashaqbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline
q Modeling cryptography protocols.
q Session or record protocols.
q Entity authentication protocols.

2

Modeling Cryptographic Protocols
q A protocol is a set of PPT (efficient) functions

q Each receiving (state, input), outputting (state, output)
q Two (or more) parties, each has its own state

q Including Init, In, [and if needed Wakeup] functions
q And task-specific functions, e.g., Send

q Adversary can invoke any function, handle outputs
q The execution process is a series of function

invocations based on which the protocol proceeds.
q Our discussion (from here) is mostly informal

q Definitions of protocols, execution, goals are hard
q Focus on shared-key, two-party protocols, MitM adversary

3

Record Protocols

Secure communication between two parties using shared
keys.

Two-party, shared-key Record protocol
q Parties/peers: Alice (sender), Bob (receiver)

q Simplest – yet applied – protocol
q Simplify: only-authentication, Alice sends to Bob

q Goal: Bob outputs m only if Alice had Send(m)

q 𝐼𝑛𝑖𝑡(𝑘): shared key, unknown to adversary

q Let’s design the protocol !

5

Design of Two-party, shared-key Record protocol

q Design: define the protocol functions
q 𝐼𝑛𝑖𝑡(𝑘) [Initialize Alice/Bob with secret key k]

q {𝑠. 𝑘ß 𝑘; }
q Save received key 𝑘 in state-variable 𝑠. 𝑘 (part of 𝑠)

q 𝑆𝑒𝑛𝑑(𝑚): party asked to send 𝑚 to peer
q Code even simpler if both can send, receive
q E.g., Alice instructed to send message m to Bob

q {𝑂𝑢𝑡𝑝𝑢𝑡 𝑥 ← (𝑚,𝑀𝐴𝐶𝑘(𝑚)) ; }
q 𝐼𝑛((𝑚, 𝜎)) : Party receives (𝑚, 𝜎) from adversary

q {𝑂𝑢𝑡𝑝𝑢𝑡 𝑚 if (𝜎 = 𝑀𝐴𝐶𝑘(𝑚)) ; }
q Output the message only if validated Ok

q Define adversary capabilities; access and computational.

6

Design of Two-party, shared-key Record protocol

7

Two-party, shared-key Record protocol
q Design has many simplifications, easily

avoided:
q Only message authentication

q No confidentiality!

q Only ensure same message was sent
q Allow duplication, out-of-order, `stale’ messages, losses

q Also: no retransmissions, compression, …
q To add confidentiality: use encryption

8

Two-party record protocol with Confidentiality

q 𝐼𝑛𝑖𝑡(𝑘) [Initialize Alice/Bob with secret key k]
q {𝑠ß (𝑘! = 𝐹" `𝐸` , 𝑘# = 𝐹" `𝐴`)

q 𝑆𝑒𝑛𝑑(𝑚): Alice sends message m (to Bob)
q {𝑂𝑢𝑡𝑝𝑢𝑡 𝑥 = (𝐸"!(𝑚),𝑀𝐴𝐶""(𝐸"!(𝑚))) ; }

q 𝐼𝑛((𝑐, 𝜎)) : Bob receives (𝑐, 𝜎) from adversary
q {𝑂𝑢𝑡𝑝𝑢𝑡 𝐷𝑘(𝑐) if (𝜎 = 𝑀𝐴𝐶""(𝑐)) ; }

q Ok! (but still allows dups/re-ordering, etc.)

9

Execution Process – Record Protocol238 CHAPTER 5. SHARED-KEY PROTOCOLS

Protocol P
state: sA

Nurse

Alice (A)

Adversary M
state: sM

MitM (M)

Protocol P
state: sB

Bob (B)

x[i] x[i]y[i] y[i]y[i]
z[i], p[i+ 1], x[i+ 1],
s.t. p[i+ 1] 2 {A,B}

Exec(P,M, 1l) :

1: (sA, sB]) P(‘Init’, 1l); . Initialize Alice (A) and Bob (B)

2: (sM , (1t, x[1], p[1]) M(‘Init’, 1l); . Initialize MitM (M)
3: for i = 1 to t do
4: (sp[i] , y[i]) P(sp[i], x[i]); . Party p event

5: (sM , (z[i], p[i + 1], x[i + 1]) M(sM , y[i]); . MitM event.
6: Return t and (x[i], y[i], p[i], z[i]), for i = 1 to t;

Figure 5.1: Execution process Exec(P,M, 1l) for two benign parties Alice (A)
and Bob (B) running shared-key protocol (algorithm) P, MitM adversary (M)
running algorithm M, and security parameter 1l.

with its input state sp[i]. The output consists of an output interaction y[i] and
a new state sp[i]. We discuss the interactions in the following subsection.

In line 5, the execution process invokes the MitM adversary algorithm M.
As illustrated in Figure 5.1, the execution process provides to M the output
y[i] of the event of the benign party, and the input state sM . The adversary
outputs a new state sM and three other values: a value z[i] to be part of the
output of the execution, an identification of the benign party to be next invoked
p[i+ 1] 2 {A,B}, and the input x[i+ 1] to be given to party p[i+ 1].

Termination and transcript. Recall that in line 2, the adversary M out-
puts the number of rounds in the executions, by outputting 1t. Hence, the
execution Exec(P,M, 1l) terminates after t rounds, in line 6, and returns the
transcript T = (t, x[i], y[i], p[i], z[i]) where (x[i], y[i], p[i], z[i]) are the values
of the corresponding variables collected from each round i = 1, . . . , t of the
execution.

As we explain in subsection 5.1.3, we use the transcript to limit the capabil-
ities used by the adversary, and to check if security requirements were satisfied,
in a particular execution or (with certain probability) at a random execution.

In the following subsection, we discuss the interactions of the protocol and
their classification into interfaces.

Foundations of Cybersecurity: Applied Introduction to Cryptography

10

Labels and Interfaces240 CHAPTER 5. SHARED-KEY PROTOCOLS

Nurse

Alice

APP
Application interface

NET
Network interface

SYS
System

interface

received(µ)send(µ)

received(m),
failure

send(m)

wake-up(t)

sleep(�)

Figure 5.2: Interactions for the record/session protocols, illustrated for Alice;
Bob has the same interfaces. Note that the while we use the labels send and
received for both the APP and NET layers, the semantics are very di↵erent; see
text for details. Other protocols we study use the same SYS and NET events,
but di↵erent APP events.

of a message m from the peer in a received(m) event, and an indication
that the protocol cannot send information due to a communication failure,
in a failure interaction. Here, send, received and failure are labels and
m is a value.

Network (NET): an interface for the communication between benign parties,
allowing a benign party to exchange messages with another benign party,
subject to manipulations by the adversary. To send a message µ to the
peer, the protocol uses the send(µ) output event on the NET interface;
send is the label and µ is the value. The protocol receives a message
(purportedly) from the peer in a received(µ) input event on the NET
interface. We use the symbol µ for the messages in the NET interface, to
separate them from the symbol m which we use for messages in the APP
interface. Typically, µ contains an APP-interface message m, together
with some header information; the protocol uses the header to process the
message.

System (SYS): an interface to other interactions of the protocol, typically
to ‘local’ services such as clock, sensors and relays/actuators. In this
textbook, we only use clock service, with two interactions. Specifically, the
protocol may invoke sleep(�) to request a ‘wake-up call’ after � time units
(e.g., seconds); upon that time, the protocol should receive an incoming
wake-up(t) event, with t indicating the current time. To reduce notation,

Foundations of Cybersecurity: Applied Introduction to Cryptography

Bob has similar interfaces.

11

Defining Security of Record Protocols

242 CHAPTER 5. SHARED-KEY PROTOCOLS

Synchronization. Session/record protocols use the SYS-interface only for the
clock services, if at all; in fact, the simplified session/record protocol
(Algorithm 4) does not use the clock at all. In any case, the execution
process allows the adversary to completely control the clock. In reality,
we expect bounded delays, and (usually) also some level of clock syn-
chronization; realistic security requirements may restrict accordingly the
adversary capabilities, to fixed or bounded delays, and to provide clock
values and wake-up service with some level of synchronization.

Network restrictions. While most work on cryptographic protocols assume
a MitM adversary, with complete control and observation capabilities
for network tra�c, some security requirements restrict the adversary’s
capabilities. In particular, an eavesdropping adversary can observes mes-
sages but cannot modify, inject or drop messages; note, however, that
eavesdropping adversaries may be able to control the delay of messages.

Defining security. When the execution process terminates (line 6 of Fig-
ure 5.1), it returns the transcript T = (t, x[i], y[i], p[i], z[i]) of the execution.
We use the transcript to define security requirements. As an example, let us
present the authentication requirement of session/record protocols.

Intuitively, the execution resulting in T satisfies the existential unforgeability
requirement, if the sequence of message received by Bob, denoted Mrcv(T) =
(mB

1
, . . . ,mB

nB
), is a prefix of the sequence of message sent by Alice, denoted

Msent(T) = (mA
1
, . . . ,mA

nA
). A session/record protocol P ensures existential

unforgeability, if executions with every PPT adversary M satisfy existential
unforgeability, except with negligible probability. We next define this precisely.

Definition 5.1. Let T = (t, x[i], y[i], p[i], z[i]) be the transcript of an execution
Exec(P,M, 1l) of a session/record protocol P with adversary M. Use M sent(T)
to denote the sequence of messages received in send input interactions (on the
APP interface), by P running in Alice. Similarly, use M rcv to denote the
sequence of messages outputted in received interactions (on the APP interface),
by P running in Bob.

The existential-unforgeability advantage "EUF�Session(P,M, 1l) of adver-
sary M against session/record protocol P is defined as:

"EUF�Session(P,M, 1l) ⌘

⌘Pr

T

$ Exec(P,M, 1l);
M rcv(T) is not a prefix of M sent(T)

!
(5.1)

Where the probability is taken over the random coin tosses of M and P during the
execution resulting in transcript T , and where M sent(T), M rcv(T) are defined
as above.

A session/record protocol P is existentially unforgeable if for all PPT algo-
rithms M, the advantage of M against P is negligible, i.e.: "EUF�Session(P,M, 1l) 2
NEGL(l).

Foundations of Cybersecurity: Applied Introduction to Cryptography

12

Entity Authentication Protocols

Ensure the identity of an entity (or a peer) involved in
communication.

Mutual Authentication Protocols
q Our focus.
q In mutual authentication, each party

authenticates herself to the other.
q Alice knows that she is communicating with Bob,

and vice versa
q This requires, at least, one exchange of

messages.
q A message from Alice and a response from Bob (or

vice versa).
q Such a flow is called a handshake.

14

Handshake Entity-Authentication protocol
q A protocol to open sessions between parties

q Each party assigns its own unique ID to each session
q And map peer’s-IDs to its own IDs

q Alice maps Bob’s 𝑖! to its identifier 𝐼𝐷" 𝑖!
q Bob maps Alice’s 𝑖" to its identifier 𝐼𝐷! 𝑖"

q ‘Matching’ goal: 𝑖" = 𝐼𝐷" 𝐼𝐷! 𝑖" , 𝑖! = 𝐼𝐷! 𝐼𝐷" 𝑖!

q Allow concurrent sessions and both to open
q Simplify: no timeout / failures / close, ignore session protocol, …

15

Handshake Entity-Authentication protocol
q Protocol functions

q 𝐼𝑛𝑖𝑡 𝑘 : Initialize Alice/Bob with secret key k
q 𝑂𝑝𝑒𝑛: instruct Alice/Bob to open session
q 𝐼𝑛(𝑥) : party receives 𝑥 from channel (via MitM)

q Protocol outputs
q 𝑂𝑝𝑒𝑛(𝑖): party opened session 𝑖
q 𝑂𝑢𝑡(𝑥) : party asks to send 𝑥 to peer

16

17

Example : IBM’s SNA Handshake
qFirst dominant networking technology
qHandshake uses encryption with shared key k

A, NA

Ek(NA), NA ,NB

NB,Ek(NB)

BobAlice

SNA (Systems Network Architecture): IBM’s proprietary network architecture,
dominated market @ [1975-1990s], mainly in banking, government.

NA and NB - randomly
chosen nonces

Insecure !! Why ?

18

Attack on SNA’s Handshake
qMitM opens two sessions with Bob… sending NB to Bob
in 2nd connection to get Ek(NB)

qSNA is secure for sequential mutual authentication handshakes
but not concurrent.

BobMitM (spoofing as Alice)
Session 1 Session 2 Session 1 Session 2

A, NA=1234
Ek(1234),NB=5678

5678 A, NA=5678

Ek(5678),NB=9012Ek(5678)

Ek(5678) Alice `identified`
(spoofed)

Fixing Mutual Authentication
n Encryption does not ensure authenticity

q Use MAC to authenticate messages
q Although, a block cipher is a PRP, and a PRP is a PRF, and

a PRF is a MAC, but domain is limited!
n Prevent redirection

q Identify party in challenge
q Better: use separate keys for each direction

n Prevent replay and reorder
q Identify flow and connection
q Prevent use of old challenge: randomness, time or state

n Do not provide the adversary with an oracle access!
n Do not compute values from Adversary
q Include self-chosen nonce in the protected reply

19

Two-Party Handshake Protocol (2PP)

Use MAC rather than encryption to authenticate
Prevent redirection: include identities (A,B)
Prevent replay and reorder:
q Nonces (NA,NB)
q Separate 2nd and 3rd flows: 3 vs. 2 input blocks

q Secure against arbitrary attacks [proved formally in the literature]

A, NA

NB , Mack(2 || AßB ||NA || NB)

Mack(3 || AàB || NA || NB) BobAlice

20

Covered Material From the Textbook
q Chapter 5

q Sections 5.1 and 5.2

21

