CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

l.ecture 7/
Hash Functions — Part 11

Ghada Almashaqgbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline

Hash based MACs.

Domain extension.

Merkle digest and Merkle trees.
Blockchains.

Hash based MAC

Hash-based MAC is often faster than
block-cipher MAC

How? Heuristic constructions:

Prepend Key: MACF® (m) = h(k 4+ m)

Append Key: MAC{E (m) = h(m 4 k)
Message-in-the-Middle: M ACM*M (m) = h(k # m + k)

Are these secure assuming CRHF ? OWF ? Both ?
2 No.

o But: all ‘secure in random oracle model’

Hash-based MAC: HMAC

HMAC uses only the unkeyed hash function h:
HMAC, (x)=h(k@opad || h(k @Pipad || x))
0 Opad, ipad: fixed sequences (of 36x, 5Cx resp.), for max
hamming distance btw & @opad and k @ ipad.

[BCK]: secure MAC under ‘reasonable assumptions’ [beyond
our scope]

Widely deployed — for MAC, PRF and KDF
o KDF — Key Derivation Function

More results, more exposure = confidence!
Hash are useful for MACs in another way:

o Hash then MAC.

Digest Schemes

Generalization of collision-resistant hash
o Input is a sequence of messages
o Output is n-bit digest, denoted A

Three types of schemes:

o Digest-chain

o Merkle Digest (and Merkle trees)
o Blockchains (and Bitcoin)

In other textbooks, this is referred to as
Domain Extension.

Digest-Chain Schemes

Generalization of collision-resistant hash
o Input is a sequence of messages
o Output is n-bit digest, denoted A

Definition 4.13. A digest function A is an efficiently computable function
(in PPT) that maps blocks (finite sequences of binary strings) to n-bit binary
strings, i.e., A : ({0,1}*)" — {0,1}*, where n is the security parameter.
Digest function A 1is collision resistant if the digest collision-resistance
advantage sgiR(n) is negligible (in n), for every efficient adversary A € PPT,

where:

eV (n) =Pr((B,B') + A(1") s.t. B# B'ANA(B) = A(B')) (4.21)

The Merkle-Damgard Digest Function

The Merkle-Damgard construction of:
o Collision-Resistant Digest function from CRHF
o VIL CRHF from compression function (FIL CRHF): |m;| = n

|dea: hash iteratively, message by message:

A(my, ..., m) = h(A(my, ..., m_y)|1llmy) ; A(my) = (0" ||m,)
Lemma 4.2: if h is a CRHF, then A is a collision-resistant digest
Proof... (see details in textbook)

mq m,

X ::) 1—>aAA(m11 L ml)

on PAmy Amu..mi)

VIL CRHF from FIIL. CRHF

Recall: design and cryptanalyze simple (FIL)
function, use it to construct strong (VIL) function

Build VIL CRHF {0,1}"2{0,1}" from FIL CRHF
(aka compression function) comp:{0,1}"2{0,1}"

0 E.g. m=2n,1.e. comp:{0,1)?">{0,1}"

X, € {0’]}n _’\ comp (x]’x j e {0’]}n
comp g
XZ E{O,]}n _’/

o The Merkle-Damgard constructs a CRHF from a
compression function

o Requires "MD-strengthening’ extension [see text]

Merkle - Damgard Length-Padding

Aka Merkle - Damgard Strengthening
Let pad(x)=1||0||bin (|x|) ; x '=x||pad(x)

o Where bin (|x|) is the L-bit binary representation of |x]|

o And: |x|+|pad(x)|=0 mod L
o Simplify: assume |x|=0 mod L, |pad(x)|=L

Let y,=IV be some fixed L bits (IV=Initialization Value)
Fori=1,.|x’|/Llety=c(x’[i],y; ;)
Output MD/c]y(x)=y,-,

x[1] | x[2]

| X/ 10%

bin(|x|)

1V

h(x) =y =c(lx

This is just a high level
idea, care needed to
avoid collisions

V)

The Digest-Chain Extend Function

Beyond digest and collision resistance:
sequence-related integrity mechanisms

For digest-chain, the extend function:
o Input: digest and ‘next’ sequence

o Output: digest (of entire sequence)

a Correctness requirement:

E:Utend(Al, Ml—l—l,l’) — A(Ml I Ml—l—l,l’)

Use to (1) extend chain, (2) validate new digest (with
new seq.), or (3) use digest to validate a message

10

The Merkle-Damgard Extend Function

We can define Extend for Merkle-Damgard:
o ldea: Just continue last digest!

mo" Exztend (A, {m,, . .

.,ml}) = <

’

\

Let Ay < h(A + 14 mq)
For [= 1: Al
For [> 1:
Mmo" Exztend (Aq, {ma, ..., m})

Not secure to be used to construct a MAC!

O:’

A

h(All1]lmy)

1—>

—h— Ext(A, (my, ..., myp))

11

Merkle Digest Schemes
Digest function A: {m;e{0,1}*} — {0,1}"

Collision-resistance requirement
Validation of Inclusion: Pol and VerPol
Pol function: compute Proof of Inclusion
VerPol function: verify Pol
Both: mandatory and optimized
Optional, also Proof-of-Non-Inclusion (PoNI)

Extending the Sequence: PoC and VerPoC
o PoC: Proof of Consistency (from old digest to new)

o VerPoC function: verify PoC
o Optional

a
a
a
a

12

Merkle digest scheme: definition

Definition 4.15 (Merkle digest scheme). A Merkle digest scheme 171 is a tuple
of three PPT functions (NL.A,1.Pol,1M.VerPol), where:

M.A s the Merkle tree digest function, whose input is a sequence of mes-
sages B = {m; € {0,1}*}; and whose output is an n-bit digest: 1M.A :
({0,1}*)" — {0, 1}".

M.Pol 1s the Proof-of-Inclusion function, whose input is a sequence of messages
B ={m; € {0,1}*};, an integer i € [1,|B]|| (the index of one message in
B), and whose output is a Proof-of-Inclusion (Pol): M.Pol : ({0,1}*)" x
N — {0,1}*.

M.VerPol is the Verify-Proof-of-Inclusion predicate, whose inputs are digest
d € {0,1}"™, message m € {0,1}*, index i € N, proof p € {0,1}*, and
whose output is a bit (1 for ‘true’ or 0 for ‘false’): NM.VerPol : {0,1}" X
{0,1}* x N x {0,1}* — {0,1}.

13

Merkle digest: correctness and security

A Merkle digest scheme 111 is correct if for every sequence of messages
B ={m; € {0,1}*}; and every index i € [1,|B||, the Proof-of-Inclusion verifies
correctly, i.e.:

M.VerPol(MM.A(B), m;,i,1M.Pol(B,i)) = TRUE (4.29)

A Merkle digest scheme 111 is secure if for every efficient (PPT) algorithm
A, both the collision advantage €% (n) and the Pol advantage ey,°% (n) are
negligible in n, i.e., smaller than any positive polynomial for sufficiently large

n (as n — o), where:

(x,2") + A(1") s.t. (z #2)

Coll —
ema(n) = Prf T on Alz) = mLA®G)
{ma,...,my},d,m,i,p) < A(1") s.t. m; #mA
ema(n) = Pr d=MA{mq,...,m})A

M.VerPol(d,m,i,p) = TRUE

Where the probability is taken over the random coin tosses of A.

14

Proot ot Consistency (PoC)

A Merkle digest scheme supports PoC if it
has two more functions:

M.PoC (B¢, By) is the Extend and Proof-of-Consistency function PoC', whose
input are two sequences, Bo and By, and whose output yon = 1.PoC(B¢c, By)
1s a binary string which we call the Proof-of-Consistency from Ac =

mA(Bc) to AC’N = mA(BCN)

M.VerPoC(Ac,Acn,lo,In,p) € {True, False} is the Verify-Proof-of-Consistency
predicate, whose inputs are the two digests Ac, Acn, the numbers of en-
tries (lc and ly), and a string (PoC') p.

Correct PoC:

Mm.VerPoC <mA(Bc),mA<BC —+H BN), lc,lN,m.POC(Bc,BN)) = TRUE

15

Secure Proof of Consistency

We say that 111 has secure PoC, if for every efficient (PPT) algorithm A,

the PoC-advantage 5%‘?%(71) is negligible in n, where:

(Bc,BA,lc,lA,p) — ﬂ(1n> s.t.
sﬁf,%(n) = Pr| M.VerPoC(MM.A(B¢),NM.A(Ba),lc,la,p) = TRUE A
A Bec is not a prefix of By

Where the probability is taken over the random coin tosses of A.

To be consistent with previous
slides, replace B, with By

16

Two-layered Merkle tree

Short digest validates integrity of large object
a Often, object consists of multiple ‘files’

Merkle tree : integrity for many ‘'messages’
o Hash each ‘message’ in block, then hash-of-hashes
6 = h(h(my)||h(m2)||h(m3)||h(my))
2o Validate each ‘message’ independently
Advantages: efficiency (computation, communication) and privacy

my m, ms my

h h h U h

h(my) h(m) h(ms) h(m,)
\\> /

N kS
o

17

‘Two—layered Merkle tree

2IMT . A(mq, my) = hlh(my)#...4# h(my)
2IMT .Pol((mq,.. ., my),j) = {h(‘m,-)}i-_1
AMT .VerPol(d,m,i,{z:}_,) = [T(‘;‘f h’{ I;"i: f ("J’rz'r‘l")"d]

mq m, ms my

h h h U h

h(mq) h(m,) h(m3) h(m,)
N 4/4%

[Allows each user to receive, validate only required items. How?]

18

To verity inclusion ot m; ...

2IMT .A(mq, ..., my) = h|h(my)# ... H# h(my))

2IMT .Pol((mq,.. ., mi),7) = {h(m;)}._,

2QAMT .VerPol(d,m,i,{z;}._,)

X1

mp
N\ h

h(m;) X3
\;\xz, /

N

d

TRUE if z; = h(m), and
d=h(z, # ... # xp)

<Receive and validate only m,. Other hashes still required, though.)

|

‘ The Merkle Tree Construction

= Reduce length of ‘proofs’ — send less hashes of ‘other msgs’

g

MT.A(M)

ms3

iy

\ hi 4 =h(hi 2 # hs 1) /

|

IfL=0:
Else

h(ml)

h(MTA (ml, - ,mzL-l) 4

-‘H"MT.A (m2L—l+1, .

-3 TNL))

20

Merkle Tree: Proot of Inclusion (Pol)

= To prove inclusion of ms , send also ‘proofs’: h{_5, hy

ma ms ms3 my /

>

\ hi 4 =h(hyi 24 h3 4) /

21

‘ Blockchains

o Next slides set.

22

‘Covered Material From the Textbook

o Chapter 4
0 Sections 4.6, 4.7, and 4.8

23

Tnanx Youl

?

?%?? '2’?%@

