
CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

Lecture 6
Hash Functions – Part I

Ghada Almashaqbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline
q Introduction and motivation.
q Collision resistant hash functions (CRHF).
q CRHF applications.
q Weaker notions of security.

q TCR, SPR, OWF.
q Randomness extraction.
q The random oracle model.

2

Hash Functions
n Input 𝑚: binary strings
n Output ℎ 𝑚 :

q ‘Short’ (n-bit) binary strings
n Aka message digest

n Efficiently computable
n Applications: cryptography, security, efficiency
n Keyed ℎ!(𝑚), where the key is public, or unkeyed ℎ 𝑚

3

𝑚

ℎ
ℎ(𝑚)

𝑚

ℎ
ℎ(𝑚)

k

Hash functions: simple examples

n For simplicity: input 𝑚 is decimal integer
q View as string of (three) digits
q For example, 𝑚 = 127è 𝑚' = 1,𝑚(= 2, 𝑚) = 7

n Least Significant Digit hash:
ℎ!"# 𝑚 = 𝑚$

n Sum hash: ℎ"%& 𝑚 = (𝑚'+𝑚(+𝑚$) 𝑚𝑜𝑑 10
n Exercise: ℎ!"# 117 = __

ℎ"%& 117 = __

4

𝑚

ℎ
ℎ(𝑚)

7

9

Note: the above are insecure hash functions, these are just toy
examples to grasp the concept of hashing.

Motivation: Hashing for efficiency
n Input: large set (e.g., integers or strings)
n Goal: map `randomly’ to few bins

q E.g., to ensure efficiency – load balancing, etc.

5

341,
3342,
870,
571,
31,
452,
80,
….

1 2 0

341,
571,
31,
….

3342,
452,
….

870,
80,
….

. . .

. . .

ℎ!"#

Collisions?
n Input: large set (e.g., integers or strings)
n Goal: map `randomly’ to few bins

q E.g., to ensure efficiency – load balancing, etc.
q Adversary chooses inputs that hash to same bin

6

32,
42,
52,
62,
31,
452,
80,
….

1 2 0

31,
….

32, 42,
52, 62,
452,
….

80,
….

. . .

. . .

ℎ!"#

Inputs to
overload
the `2’ bin

Algorithmic
Complexity

Denial-of-Service
Attack

Security Goal: Collision Resistance
n A collision: two inputs (names) with same hash:
ℎ ′𝐵𝑜𝑏′ =ℎ ′𝑃ℎ𝑖𝑙′

n Every hash has collisions, since |input|>>|output| !
n Collision resistance: hard to find collisions

q Note: attacker can always try names randomly until a collision is found
q But this should be ineffective: must try about (on average) 𝑁 names

(number of bins)

7

Mal
Abe
Don
Phil
Ron
John
Sue
Bob
…. ℎ . = 1 ℎ . = 2

Phil, Bob, …

ℎ . = 𝑁
. . .

Must try many
names to find
name 𝑢 s.t.
ℎ 𝑢 = ℎ(′𝐵𝑜𝑏!)

Hash ℎ .

Collision Resistant Hash Function (CRHF)
n ℎ is CRHF if it is hard to find collisions ℎ 𝑥 =ℎ 𝑥′

q Note: attacker can always try inputs randomly till finding collisions
q But this should be ineffective: must try about |𝑅𝑎𝑛𝑔𝑒| values

n Hard means that the probability that the attacker succeeds in
finding a collision is negligible.

8

Domain 0,1 ∗

Range 0,1 %
𝑥 ∘

𝑥′ ∘ ∘ ℎ 𝑥 = ℎ(𝑥!)

Hash function ℎ .
Adversary

Collision 𝑥, 𝑥’
s.t. ℎ 𝑥 = ℎ(𝑥&)

1%

Collision Resistant Hash Function (CRHF)
n ℎ is CRHF if it is hard to find collisions ℎ 𝑥 =ℎ 𝑥′

q Note: attacker can always try inputs randomly till finding collisions
q But this should be ineffective: must try about |𝑅𝑎𝑛𝑔𝑒| values

n Hard means that the probability that the attacker succeeds in
finding a collision is negligible.

9

178 CHAPTER 4. HASH AND DIGEST SCHEMES

Figure 4.5: Keyless collision resistance: for su�cient digest length n = |h(·)|, it
is infeasible to find e�ciently a collision, i.e., a pair of inputs x, x0 2Domain,
which are mapped by hash function h to the same output, h(x) = h(x0), except
with negligible probability.

4.2 Collision Resistant Hash Function (CRHF)

4.2.1 Keyless Collision Resistant Hash Function
(Keyless-CRHF)

A keyless hash function h(m) maps unbounded length binary stringsm 2 {0, 1}⇤,
to n-bit binary strings h(m) 2 {0, 1}n; we often refer to h(m) as the digest
of m. Hence, there are infinitely many collisions, i.e., messages m 6= m0 s.t.
h(m) = h(m0). However, finding such collisions may not be easy when the
domain of digests is large enough, i.e., for large n. Intuitively, we say that a
hash function is collision resistant, if it is computationally-hard to find any
collision, as illustrated in Figure 4.5.

The definition follows. Notice that use the explicit notation h(n)(m), to
emphasize that the hash function is defined for arbitrary digest (output) length
n, where n is the security parameter, i.e., the adversary is limited to run in time
polynomial in n, and the adversary’s advantage can be a function of n. The
common notation h(m), where n is not explicitly expressed, is only ‘shorthand’
to this ‘real’ notation.

Definition 4.1 (Keyless Collision Resistant Hash Function (CRHF)). A keyless
hash function h(n)(·) : {0, 1}⇤ ! {0, 1}n is collision-resistant if for every e�cient
(PPT) algorithm A, the advantage "CRHF

h,A (n) is negligible in n, i.e., smaller
than any positive polynomial for su�ciently large n (as n!1), where:

"CRHF
h,A (n) ⌘ Pr

h
(x, x0) A(1n) s.t. (x 6= x0) ^ (h(n)(x) = h(n)(x0)

i
(4.1)

Where the probability is taken over the random coin tosses of A.

So, how hard is it to find a CRHF? It seems pretty easy, no? We now define
hsum, a simple example of an insecure hash function, which is handy to give
examples of the di↵erent cryptographic hash function definitions - all of which,
hsum fails to satisfy.

Foundations of Cybersecurity: Applied Introduction to Cryptography

Keyless CRHF Do Not Exist!
n |Range|<<|Domain| so there is a collision where

h(x')=h(x), 𝑥 ≠ 𝑥’
n For a keyless CRHF is a PPT algorithm A that can always

output a collision: 𝐴 1; = {𝑟𝑒𝑡𝑢𝑟𝑛 𝑥, 𝑥<}
q Proof: in textbook.

n Intuitively, since the function is fixed (same input-output mapping), a
collision instance can be hardcoded in the attacker algorithm and just
out that collision and win the security game.

n Solutions:
q keyed CRHF,
q Use functions that support weak-collision-resistance,
q or ignore! (more like asking if the collision is useful for the

attacker?)

10

11

Keyed CRHF

Adversary knows k but not in advance –
cannot `know` a collision

Adversary

Collision 𝑥, 𝑥’
s.t. ℎ' 𝑥 = ℎ'(𝑥&)

𝑘 ←
$
0,1 %

Domain 0,1 ∗

Range 0,1 %
𝑥 ∘

𝑥′ ∘

Hash function ℎ' .

ℎ" 𝑥 = ℎ"(𝑥!)

Often referred to as ACR-hash (ANY-collision resistance)

12

Keyed CRHF - Definition

182 CHAPTER 4. HASH AND DIGEST SCHEMES

Figure 4.6: Keyed collision resistance hash function (CRHF): given random key
k, it is hard to find a collision for hk, i.e., a pair of inputs x, x0 2 {0, 1}⇤ s.t.
hk(x) = hk(x0).

probability is also taken over the key, and the key is provided as input to the
adversary. Recall that, for simplicity, we use n as the length of both the digest
and the key; hence, we do not need to provide n as an additional input (since it
is equal to the key length). We next define keyed collision resistance, which we
illustrate in Figure 4.6.

Definition 4.3 (Keyed Collision Resistant Hash Function (CRHF)). A keyed
hash function hk(·) : {0, 1}⇤⇥ {0, 1}⇤ ! {0, 1}⇤ is collision-resistant if for every
e�cient (PPT) algorithm A, the advantage "CRHF

h,A (n) is negligible in n, i.e.,
smaller than any positive polynomial for su�ciently large n (as n!1), where:

"CRHF
h,A (n) ⌘ Pr

k {0,1}n

[(x, x0) A(k) s.t. (x 6= x0) ^ (hk(x) = hk(x
0)] (4.2)

Where the probability is taken over the random coin tosses of A and the random
choice of k.

Let us now define a simple, insecure keyed hash function - specifically, hsum
k

- essentially, a keyed-version of the hsum hash function (Definition 4.2).

Definition 4.4 (The keyed hsum
k (insecure) hash function.). Let k, x 2 {0, 1, . . . 9}⇤.

Then we define hsum
k (x) as follows:

hsum
k (x) = hsum(k||x)

Now we use hsum
k to demonstrate the CRHF definition. This time, we will

leave it to the reader as a (simple) exercise; see Example 4.1 for guidance.

Exercise 4.3. Show that hk
sum is not a keyed CRHF.

Let us also give also present another exercise, which is an example of a
counterexample exercise/argument: we show that a keyed CRHF may not be a
secure MAC.

Exercise 4.4. Let hk(m) be a keyed CRHF. Show a keyed hash function h0k(m)
which is also CRHF but is not a secure MAC.

Foundations of Cybersecurity: Applied Introduction to Cryptography

13

n An attacker that runs in exponential time can always find
a collision (i.e., non PPT attacker)
q Easy: find collisions in 2* time by trying 2* + 1 distinct inputs

(compute their hash and locate a collision).

n An attacker finds a collision with 2?; probability
(negligible probability).
q Choose x and x’ at random and check if they produce a collision.

Generic Collision Attacks
Domain 0,1 ∗

Range 0,1 %
𝑥 ∘

𝑥′ ∘ ∘ ℎ 𝑥 = ℎ(𝑥!)

Hash function ℎ (

14

n The birthday paradox states that expected
number 𝑞 of hashes until a collision is found is
𝑂(2)) not 𝑂(2)) .
q It is

n For 80 bit of effective security, use 𝑛=160 !
q So to defend against an attacker who can perform 2)*

hashes set the digest length to be at least 160 bits.
n So the range has a size of 2+,- digests.

n Why? Intuition?

The Birthday Paradox

4.2. COLLISION RESISTANT HASH 185

probability. We will focus here on keyless hash, but it holds almost unchanged
for keyed hash.

Let us first argue that an adversary which can run in time exponential in n
would be able to find a collision. Consider a hash function h : {0, 1}⇤ ! {0, 1}n,
and a set X containing 2n + 1 distinct input binary strings. The output of h
is the set of n-bits strings, which contains 2n elements; hence, there must be
at least two elements x 6= x0 in the set X, which collide, i.e., h(x) = h(x0). An
adversary that runs in time exponential in n can surely compute h(x) for every
element in X and find this collision. Hence, the definitions restrict the adversary
to run in time polynomial in n. This argument clearly hold for keyed-hash (and
TCR hash) as well.

Find collisions with exponentially-small probability. We next extend
the argument and show, for any hash function h : {0, 1}⇤ ! {0, 1}n, a PPT
algorithm (i.e., probabilistic algorithm that runs in time polynomial in n) with
non-zero probability to find a collision. Consider the same set X as before, and
an algorithm that selects two random elements in X; with small probability, this
algorithm would output the collision x 6= x0 s.t. h(x) = h(x0). Therefore, the
definitions allow the adversary to have negligible probability of finding a collision.
Again, we expressed the argument for a keyless hash h : {0, 1}⇤ ! {0, 1}n, but
it can easily be adapted for keyed hash.

We next show that finding a collision actually requires only about
p
2n

attempts; this is due to the birthday paradox.

The birthday paradox and attack on collision resistance. The above
argument presented an algorithm that finds a collision by computing at most
2n + 1 hash values. However, the expected number of hash-computations
required to find a collision is only O(2n/2) = O

�p
2n

�
, not O(2n). This is due

to the birthday paradox: in a room containing 23 persons, the probability of
a collision, i.e., two people having birthday on the same date, is about half -
much more than intuitively expected. To understand why this is true, notice
that when a person is added to a room currently containing i persons (with no
collisions), the probability of a collision with some person in the room is i

356
,

not 1

356
!

More precisely, the expected number q of messages {m1,m2, . . . ,mq} which
should be hashed before finding a collision h(mi) = h(mj) is approximately:

q / 2n/2 ·
r

⇡

2
/ 1.254 · 2n/2 (4.4)

Hence, to ensure collision-resistance against adversary who can do 2q com-
putations, e.g., q = 80 hash calculations, we need the digest length n to be
roughly twice that size, e.g., 160 bits. Namely, the e↵ective key length of a
CRHF is only q = n/2. This motivates the fact that hash functions often have
digest length twice the key length of shared-key cryptosystems used in the same

Foundations of Cybersecurity: Applied Introduction to Cryptography

The Birthday Attack (‘Paradox’)
n Probability of NO birthday-collision:

q Two persons: (364/365)
q Three persons: (364/365)*(363/365)
q …

q 𝑛 persons: ∏./+
*0+ 1,20.

1,2

15

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Collision-Resistance: Applications
n Integrity (of object / file / message)

q Send hash(m) securely to validate 𝑚
q Later we will see how a hash function can be used

to construct a MAC (called HMAC).
n Hash-then-Sign

q Instead of signing m sign hash(m)
n More efficient!
n We will explore this in detail once we study digital

signatures.

n Blockchains
q Later

16

CRHF and Software Distribution
q Developer in LA develops large software 𝑚
q Repository in DC obtains copy of 𝑚
q User in NY wants to obtain 𝑚 – securely and efficiently

n Don’t send 𝑚 from LA to both NY and DC

q How?

17

LA

NY

DC
𝑚

Developer

User

Repository

CRHF: secure, efficient SW distribution
1. Repository in DC downloads software 𝑚 from developer in LA
2. User download from (nearby) repository; receives 𝑚’

q Is 𝑚’ = 𝑚 ? User should validate! How?
3. User securely downloads ℎ(𝑚) directly from developer

q Digest ℎ(𝑚) is short – much less overhead than downloading m
4. User validates: ℎ 𝑚 = ℎ 𝑚’ è𝑚 = 𝑚’

18

LA

NY

DC
𝑚

Developer

User

Repository

𝑚′

ℎ
ℎ(𝑚)

LA

NY

DC
1

2

𝑚
𝑚

ℎ(𝑚)3

Weaker Notions of Security
n Collision resistance provide the strongest guarantee.

q Gives more freedom to the adversary; the adversary wins if it finds
any two inputs with the same digest.
n No conditions on these two inputs other than being in the domain of the hash

function.

n Weaker security notions (but sufficient for many
applications):
q Target collision resistance (TCR).
q Second preimage resistance.
q First preimage resistance.

n Birthday paradox (or attack) does not work against these
weaker notions.
q It is for collision resistance; find any two inputs that collide!

19

Target CRHF (TCR Hash Function)

20

Adversary has to select target before knowing key

Adversary

Collision: 𝑥& s.t.
ℎ' 𝑥 = ℎ'(𝑥&)

𝑘 ←
$
0,1 %

Domain
0,1 ∗

Range 0,1 %
𝑥 ∘

𝑥′ ∘

Hash function ℎ' (

ℎ" 𝑥 = ℎ"(𝑥!)

1%

x

Adversary

4.2. COLLISION RESISTANT HASH 183

Solution: Let h0k(m) = k||hk(m). Clearly h0 exposes its key, so it cannot be
a secure MAC. However, h0 is still a CRHF, since any collision of h0 is also a
collision for h.

Incorrect solution to Exercise 4.4: note that the fact that the key of a keyed
CRHF is not secret, does not imply that a keyed CRHF is not a MAC. A
function may be both a secure keyed CRHF and a secure MAC; these are two
di↵erent tests, one where the key is kept secret, the other when the key is
exposed too the adversary.

Target Collision Resistant (TCR) vs. ACR / Keyed CRHF. Defini-
tion 4.3 uses the term keyed CRHF, following Damg̊ard [55]. Another term for
this definition is any collision resistance (ACR hash), proposed by Bellare and
Rogaway in [22]. They preferred this term, to emphasize that this definition
allows the attacker to choose the specific collision as function of the key, since
the key is given to the attacker before the attacker outputs the entire collision
(both x and x0 s.t. hk(x) = hk(x0)).

Bellare and Rogaway preferred to use the term ACR to the term ‘keyed
CRHF’, to emphasize the di↵erence from a weaker notion of collision-resistance
that they (and we) call3 Target Collision Resistant (TCR) hash. The term
TCR emphasizes that, to ‘win against’ the TCR definition, the attacker has to
first select the target x, i.e., one of the two colliding strings, before it receives
the (random) key k. Only then the attacker is given the random key k, and has
to output the colliding string x0 s.t. h(x) = h(x0). Intuitively, this makes sense:
it seems that on most applications, a collision between two ‘random’ strings
x, x0 may not help the attacker; the attacker often needs to match some specific
‘target’ string x. The TCR definition still allows the attacker to choose the
target - but at least not as a function of the key!

We next define target collision resistance, which we illustrate in Figure 4.7.

Definition 4.5 (Target collision resistant (TCR) hash). A keyed hash function
hk(·) : {0, 1}⇤ ⇥ {0, 1}⇤ ! {0, 1}⇤ is called a target collision-resistant (TCR)
hash, if for every e�cient (PPT) algorithm A, the advantage "TCR

h,A (n) is
negligible in n, i.e., smaller than any positive polynomial for su�ciently large
n (as n!1), where:

"TCR
h,A (n) ⌘ Pr

k {0,1}n

⇢
x A(1n);
x0 A(x, k)

�
s.t. (x 6= x0) ^ (hk(x) = hk(x

0)

�

(4.3)
Where the probability is taken over the random coin tosses of A and the random
choice of k.

Clearly, every keyed CRHF, i.e., Any-Collision-Resistant (ACR) hash, is
also a Target-Collision-Resistant (TCR) hash function: if there is some value
x with whom the adversary can find a collision for a random key (with high

3TCR is a di↵erent name for the notion, which was earlier defined by Naor and Yung
in [153], but with a di↵erent name: universal one-way hash functions.

Foundations of Cybersecurity: Applied Introduction to Cryptography

TCR and Birthday Paradox?
n First: adversary selects x
n Probability for NO birthday-collision

with x:
q Two persons: (364/365)
q Three persons: (364/365)*(364/365)
q …

q 𝑛 persons: ∏./+
*0+ 1,4

1,2
= 1,4

1,2

*0+

21

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Adversary

Collision: 𝑥& s.t.
ℎ' 𝑥 = ℎ'(𝑥&)

𝑘 ←
$
0,1 %

1%

x

Adversary

We (mostly) focus on keyless hash…
n Although there are no CRHFs
n And theory papers focus on keyed hash
n But…

q It’s a bit less complicated and easier to work with.
q No need to consider both ACR and TCR

n Why?
q Modifying to ACR is quite trivial

n Just make it keyed!
q Usually used in practice: libraries, standards, …

22

23

2nd-Preimage-Resistant Hash (SPR)
n Hard to find collision with a specific random x.

Domain 0,1 ∗
Range 0,1 %

𝑥 ∘

𝑥′ ∘ ∘ ℎ 𝑥 = ℎ(𝑥!)

Hash function ℎ (

Adversary

𝑥’ s.t. 𝑥′ ≠ 𝑥

𝑥 ←
$
0,1 6

Second
preimage

First preimage

Use with care!
(think carefully about the security you want to achieve and see if SPR suffices)

190 CHAPTER 4. HASH AND DIGEST SCHEMES

We define Second-Preimage Resistance (SPR) hash function as follows. An
adversary is given a specific, randomly-chosen first preimage x 2 {0, 1}l, for
some l (see later), and ‘wins’ if it outputs a colliding second preimage, i.e.,
x0 2 {0, 1}⇤ s.t. x0 6= x yet h(x0) = h(x).

Why and how we fix the length of the first preimage (l)? We can
only select a value with uniform probability from a finite set; for example, given
the set {0, 1}l, i.e., binary strings of length l, we can select a random string by
flipping l fair coins - giving probability 1

2l
to each of the 2l strings in {0, 1}l.

But we cannot select a value with uniform probability from an infinite set - e.g.,
from {0, 1}⇤.

Therefore, in order to be able to select the a random first preimage x, with
uniform distribution, we take it from the finite set {0, 1}⇤. But what is this l?
Intuitively, we want the property to hold for ‘any’ l; but since the string is given
as input to the adversary A, we can’t allow it to be of exponential length. We
solve this by allowing the adversary to pick l. The definition follows; note that
we found it more convenient to let the adversary directly specify the length of
x, without explicitly setting this length into a variable l.

Definition 4.8 (Second-preimage resistance (SPR) Hash Function). A (keyless)
hash function h : {0, 1}⇤ ! {0, 1}n is second-preimage resistant (SPR) if for
every e�cient algorithm A 2 PPT , the advantage "SPR

h,A (n) is negligible in n,
i.e., smaller than any positive polynomial for su�ciently large n (as n!1),
where:

"SPR
h,A (n) ⌘ Pr

x
$ {0,1}A(1n)

[x0 A(x) s.t. x 6= x0 ^ h(x) = h(x0)] (4.14)

Where the probability is taken over the choice of x and the random coin tosses
of A.

SPR is sometimes referred to as weak collision resistance, and indeed, almost
trivially, every CRHF is also an SPR hash function. However, the reverse is not
true, and in particular, it is widely believed that (keyless) SPR hash functions
exist, while, as argued above, keyless CRHF cannot exist. In practice, collision
attacks are known against some standard hash functions such as SHA1 and
MD5, but not second-preimage attacks. See the next exercise.

Exercise 4.6. Let h be an SPR hash function. Use h to construct another
hash function, h0, which you will show to be (1) an SPR (like h), but (2) not a
CRHF.

We can use an SPR hash function for the ‘random mapping’ application,
discussed in subsection 4.1.1. In this application, the goal is to prevent the
attacker from selecting many inputs to collide with an incoming message or
name (e.g., with ‘Bob’). Of course, the attacker can try di↵erent values, and
for each guess, has probabilty 2�n of being a collision; but this attack fails if

Foundations of Cybersecurity: Applied Introduction to Cryptography

CRHF/SPR vs. Applications
n CRHF secure for signing, SW-distribution
n How about SPR hash (weak-CRHF)?

q SW-distribution? YES
q Hash-then-sign? NO

n Why?
q Attacker can’t impact SW to be distributed
q But… attacker may be able to impact signed msg!

24

Will/Contract/…

Sign(h(Will/Contract/…))

SPR: Collisions to ChosenMessages
n Or: Alice and Mal, the corrupt lawyer
n Mal finds two `colliding wills’, GoodW and BadW:

q GoodW: contents agreeable to Alice
q h(GoodW)=h(BadW)
q Alice Signs good will: Sign(h(GoodW))

n Later… Mal presents to the court:

25

GoodW: ‘I leave all to Bob’

SignA(h(GoodW))

h(GoodP)
=h(BadP)

BadW: ‘I leave all to Mal’, SignA(h(BadW))

$$$$

SPR: collisions to chosen message
n Or: Alice and Mal, the corrupt lawyer
n Mal finds two `colliding wills’, GoodW and BadW:

q GoodW: contents agreeable to Alice
q h(GoodW)=h(BadW)
q Alice Signs good will: SignA(h(GoodW))

n Later… Mal presents to the court:

26

GoodW: ‘I leave all to Bob’

SignA(h(GoodW))

h(GoodP)
=h(BadP)

BadW: ‘I leave all to Mal’, SignA(h(BadW))

$$$$

Is such attack realistic?
Or SPR is enough ‘in practice’?

27

SPR & Chosen-prefix vulnerability
n Chosen-prefix vulnerability :

q Mal selects `prefix string’ 𝑝
q Efficient alg finds :
𝑥 ≠ 𝑥* s.t. ℎ(𝑝| 𝑥 = ℎ(𝑝||𝑥′)

q Or, also for any suffix: ∀𝑠 ℎ(𝑝| 𝑥||𝑠 = ℎ(𝑝| 𝑥1 |𝑠)
n Hash may be SPR yet allow chosen-prefix attacks
n Such attacks found for several proposed, standard

cryptographic hash function, e.g., MD5 and SHA1
n We show chosen prefix attack on HtS

q Example of possible attack on HtS with SPR

28

Chosen-prefix Attack
n Let 𝑥 < 𝑥! be collision for prefix: p=`Pay Mal $’
n Mal tricks Alice into signing him an IOU for $𝑥
n Alice signs, sends s=𝑆"#(m) where m= `Pay Mal $’||𝑥

n 𝑆78(m)=𝑆7(h(p||x))=𝑆7(h(p||x’))=𝑆78(m’)
q m’= `Pay Mal $’||𝑥′

n Mal sends s, m’ to Alice’s bank
q Bank validates “Ok”=VerifyAlice.v(m’,s)

n Bank gives $𝑥′ of Alice to Mal!!
n This attack is simplified:

q Mal has to find `good’ collision (high profit, convince Alice to sign)
q People sign (PDF) files, not plain text…

n In reality, attacker also chooses suffix è stronger attack

Examples
n On the whiteboard.

29

Domain 0,1 ∗

Range 0,1 %

30

q One-way function or first preimage resistance: given h(x)
for random x, it is hard to find x, or any x' s.t. h(x')=h(x)

Compare to:
q Collision-Resistance (CR): hard to find collision, i.e., any

𝑥, 𝑥’ s.t. h(x')=h(x), 𝑥 ≠ 𝑥’
q Second-preimage resistance (SPR): hard to find collision

with random 𝑥, i.e., 𝑥’ s.t. h(x')=h(x), 𝑥 ≠ 𝑥’

One-Way Function (OWF)

𝑥 ∘

𝑥′ ∘ ∘ ℎ 𝑥 = ℎ(𝑥!)

Hash function ℎ (

Hard

Adversary

𝑥’ (or 𝑥)

ℎ 𝑥 (random 𝑥)

Domain 0,1 ∗

Range 0,1 %

31

q One-time password authentication:
n Select random x : ‘one-time password’ (keep secret!)

n Validate using non-secret ‘one-time validation token’: h(x)
q Extend to one-time public-key signatures.

n Will be covered later when we study digital signatures.

How about a one-time password chain?

Application: One-time Password Authentication

𝑥 ∘

𝑥′ ∘ ∘ ℎ 𝑥 = ℎ(𝑥!)

Hash function ℎ (

Hard

Adversary

𝑥’ (or 𝑥)

ℎ 𝑥 (random 𝑥)

32

n Alice computes a hash chain instead of one hash:
q Select random 𝑥* then compute a chain of length 𝑙 of

hashes: 𝑥234 = ℎ(𝑥2)
q This allows Alice to authenticate 𝑙 times instead of

one.
n Alice gives the server 𝑥6 then each time she wants to

authenticate she sends 𝑥.0+
n The server can check by verifying that 𝑥. = ℎ(𝑥.0+)

n A one-way function property alone may not
sufficient, ℎ has also to be a permutation.
q 𝑥2 need to be uniformly distributed.

Not an Application: One-time Password Chain

33

n Let h(x) be a OWF, construct g(x) as:
q g(x) = 02n if x is a multiple of 2n

q g(x) = h(x) || 0n otherwise

n g(x) is a OWF.
q Why?

n But f(x) = g(g(x)) is not a OWF.
q Why?

n And recall that a one time password chain is a nested
calls of the hash function.
q So g(x) cannot be used to construct such a chain.
q Why?

Example

34

q ‘If input is sufficiently random, then output is random’
q Multiple `sufficiently random’ models
q Randomness extraction: if any 𝑚 input bits are random è

all 𝑛 output bits are pseudorandom
n For sufficiently large 𝑚
n Pseudorandom: it is not computationally-feasible to distinguish

between these bits and truly random bits

q How to model random extraction? Two models are
discussed next!

Randomness Extraction

Adv
Select random bit 𝑏←

$
{0,1}

𝑦) = ℎ(𝑥)

𝑦)*+←
$
{0,1}% (random)

Guess 𝑏’ ;
Adv wins
if 𝑏& = 𝑏

Let 𝑥 be string chosen
by adversary, except for
𝑚 random bits

𝑦,, 𝑦+

35

q Assume each bit is result of flip of coin with fixed bias
n The bit 1 is produced with probability p and the bit 0 is produced

with a probability 1 – p
n Coin tosses are independent.

q Von Neuman’s solution:
n Arrange input in pairs of bits: 𝑥. , 𝑦.
n Remove pairs where bits are the same, so now 𝑥. ≠ 𝑦.
n Output 𝑥.

q If assumption holds (independent biased coin flips) –
output is uniform !
n Bit 0 or 1 is produced with probability exactly ½

Von Neuman’s Randomness Extractor

36

q ‘If input is sufficiently random, then output is random’
q Simple model: if any 𝑛 input bits are random,

è all 𝑛 output bits are pseudorandom
n For sufficiently large 𝑛

q Simplified process:

Bitwise Randomness Extraction

Adv

Select the missing 𝑛 random

bits of 𝑖𝑛𝑝𝑢𝑡

Select a random bit 𝑏

𝑦) ← ℎ(𝑖𝑛𝑝𝑢𝑡), 𝑦+*)←
$
{0,1}%

Adv wins
if 𝑏& = 𝑏

Adv(1#): select
𝑖𝑛𝑝𝑢𝑡, except for 𝑛
(random) bits

𝑦,, 𝑦+

37

Random Oracle Model (ROM)
n Use a fixed, keyless hash function h
n Analyse as if hash h() is a random function

q An invalid assumption: h() is fixed!
q Whenever h() is used, use oracle (black box) for random

function
n Good for screening insecure solutions

q Random oracle security è many attacks fail
n In practice: assume random oracle and use a standard hash

function
q It was shown that in some cases the construction will

become insecure.
n Better to have security with standard assumption than the

non-standard ROM.

Exercise
n Let h1, h2 be both CRHF and OWF
n Use them to construct:

q hCRHF - CRHF but not OWF
q hOWF - OWF but not CRHF

n One possible solution:
q hCRHF (m)= {1||m if |m|=n, 0||h1(m) otherwise }

q ℎ+,- 𝑚 = 8
ℎ' 𝑚 𝑖𝑓 𝑚 = 𝑛

ℎ' 𝑚'..)⨁ℎ(𝑚′ 𝑖𝑓 𝑚 = 𝑚'..)||𝑚′

38

Covered Material From the Textbook
q Chapter 4

q Sections 4.1, 4.2 (except 4.2.6), 4.3, 4.4 (except
4.4.2), 4.5 (except 4.5.3).

39

