
CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

Lecture 4
Encryption – Part III

(and Pseudo-randomness)

Ghada Almashaqbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline
• Block ciphers.
• Pseudorandom permutations (PRPs).
• Defining security of encryption.
• Encryption modes.
• Concluding remarks.

2

Block Ciphers
n A pair of algorithms 𝐸𝑘 and 𝐷𝑘 (encrypt and decrypt with key k)

with domain and range of {0,1}!
n Encrypt and decrypt data in blocks each of which is of size n bits.

n Conventional correctness requirement: 𝑚 = 𝐷𝑘(𝐸𝑘 𝑚)
n Several schemes used in practice including DES and AES.

n No security proofs, just resistance to cryptanalysis.
n DES is insecure for short keys, replaced by AES.

n Security requirement of block ciphers is to be a pair of
Pseudorandom Permutations (PRP).

So what is a Random Permutation?
And what is a PRP?

3

𝜌()
00
01
10
11

What is a random permutation 𝜌 ?
n Random permutation 𝜌 over finite domain D, usually: {0,1}"

n How can we select a random permutation 𝜌 ?
n Let 𝐷 = 𝑥#, 𝑥$, … , 𝑥%
n For 𝑖 = 1, … , 𝑛:

n 𝜌 𝑥! ←
$
𝐷 − 𝜌 𝑥# , 𝜌 𝑥$, … , 𝜌 𝑥!%#

n Examples:

Domain D
{0,1}$

Domain D
{0,1}$

𝜌()
00 00
01 01
10 10
11 11

4

𝜌()
00
01
10
11

𝜌()
00 10
01 11
10 00
11 01

Pseudo-Random Permutation (PRP)
and their Indistinguishabity Test

q E is a PRP over domain D, if no distinguisher D:
q Outputs 1 (signaling PRP) given oracle to Ek() , for random (n-bits) key k, and
q Outputs 0 (signaling random) given oracle to 𝜌(), a random permutation (over D)

𝜌(𝑥𝑖)Ek(𝑥𝑖)

n-bit Key k

x1,x2,…,xi

…, Ek(xi)

Box 0: random permutationBox 1: Ek()

k x1,x2,…,xi

…, 𝜌(xi)
?

1 if oracle is to Ek(),
0 if oracle is to 𝜌()

5

Pseudo-Random Permutation (PRP)
n Pseudo-Random Permutation (PRP) 𝐸&()

n Cannot be distinguished from truly random permutation over same domain
n Against efficient adversaries (PPT), allowing negligible advantage
n Yet practical, even efficient

6

Block Cipher: Invertible PRP (E, D)
n Common definition for block cipher
n Invertible Pseudo-Random Permutation (PRP):

n A pair of PRPs (E,D), s.t.: m=Dk(Ek(m))
n And (E,D) is indistinguishable from (𝜋, 𝜋!")

n where 𝜋 is a random permutation
n Note: it is deterministic, stateless à not secure encryption!

n But used to construct encryption (soon)

fß Ek() or Dk() [for random k]
or

fß random n-bit permutation or its inverse
x

f(x)

Can’t tell if 𝑓, 𝑓%# is a random permutation+inverse,
or (E, D) with a random key!

7

Example of a Block Cipher Security
and Correctness
q Ek(m) = m + k mod 2n

q In class.
q Dk(c) ?
q Correctness.
q Is it secure?

8

Constructing block-cipher, PRP
q Focus: constructions from a PRF 𝑓/()

q PRFs seem easier to design (less restrictions)

q First: ‘plain’ PRP 𝐸/() (not a block cipher)
q What is the simplest construction to try? 𝐸/(𝑥)=______𝑓/(𝑥)

9

Constructing block-cipher, PRP
q Focus: constructions from a PRF 𝑓/(')

q PRFs seem easier to design (less restrictions)

q Before: ‘plain’ PRP 𝐸/() (not a block cipher)
q Now: construct block cipher (invertible PRP) 𝐸# , 𝐷#
q Challenge: making it invertible…
q Solution: The Feistel Construction

10

The Feistel Block-cipher Construction
• Turn PRF Fk into a block cipher

• Three ‘rounds’ suffice [LR88]

• Used in DES (but not in AES)
• With 16 ‘rounds’

+

𝑚0,…,123

Fk() +

+

𝑔/ 𝑚

𝑚1,…,4123

𝐿/ 𝑚

Fk()

Fk()
𝑅/ 𝑚

11

Crypto Building Blocks Principle
n Design and focus cryptanalysis efforts on few basic functions:

simple, easy to test, replaceable
n Construct schemes from basic functions

n Provably secure constructions:
attack on scheme è attack on function

n Allows replacing broken/suspect functions
n Allows upgrading to more secure/efficient function

n E.g., encryption from block cipher (or PRG/PRF/PRP)
n Block-cipher, PRG,PRF,PRP: deterministic, stateless,

FIL (Fixed-Input-Length)
n Encryption: randomized/stateful,

VIL (Variable-Input-Length)

12

We defined security for PRG, PRF and
PRP. Block cipher too (informally).

But…

what about security of encryption??
A bit tricky, in fact.

13

Defining Secure Encryption
• Attacker capabilities:

• Computational limitations è PPT
• Ciphertext only (CTO), Known / chosen plaintext

attack (KPA/CPA), Chosen ciphertext (CCA)?
• What’s a successful attack?

• Key recovery ?
• May be impossible yet weak cipher…

• (Full) Message recovery?
• What of partial exposure, e.g., mÎ{“Advance”, “Retreat”}

• Prudent: attacker ‘wins’ for any info on plaintext

14

Conservative Design Principle
n When designing, evaluating a cryptosystem…

n Consider most powerful attacker (CTO< KPA< CPA <
CCA)

n Be as general as possible – cover many applications
n And `easiest’ attacker-success criteria

n Not full message/key recovery!
n Make it easy to use securely, hard to use insecurely!

n When designing, evaluating a system (that uses
some cryptographic primitives)
n Restrict attacker’s capabilities (e.g., avoid known/chosen

plaintext)

15

Cryptanalysis Success Criteria for
Encryption
• Learn anything at all about plaintext – how to

define? Can we achieve it ?
• Well-defined notion: ‘semantic security’ [crypto course]

• So an encryption scheme is secure if the attacker
cannot learn anything about the plaintext that he did
not know in advance.

• Indistinguishability: Eve ‘wins’ if she distinguishes
between encryptions of (any) two messages
• The attacker chooses these two messages.
• We focus on indistinguishability for CPA attacker. In crypto

course: equivalent to semantic security

16

IND-CPA-Encryption Test (1st try)
q Flip coins to select random bit b and key k
q A (adversary) gives message m, receives Ek(m)

q Repeat if desired (with different messages m)
q Chosen Plaintext Attack

q A gives two messages (m0,m1), receives c*=Ek(mb)
q A output b* , and ‘wins’ if b*=b

k

Ek(.)𝑚0 , 𝑚1

$

c∗ = 𝐸𝑘(𝑚𝑏)

b*

𝑚

𝐸𝑘(𝑚)A

A wins
if b*=b

0,1 1

𝑛, 𝑏

17

18

IND-CPA-Encryption Test (1st try): too easy
q This test is too easy!! The adversary can easily win!!
q How?
q Hint: messages can be arbitrary binary strings

q Namely, m, m0 , m1 Î {0,1}^*
q Solution: let m0=0 , m1=111111111111111111
q If c*=Ek(mb) is `short’, output b*=0; if ‘long’, output b*=1

k

Ek(.)𝑚0 , 𝑚1

$

b*

𝑚

𝐸𝑘(𝑚)A

A wins
if b*=b

0,1 1

𝑛, 𝑏

c∗ = 𝐸𝑘(𝑚𝑏)

19

IND-CPA-Encryption Test (fixed)
q Flip coins to select random bit b and key k
q A (adversary) gives message m, receives Ek(m)

q Repeat if desired (with another message)
q Chosen Plaintext Attack

q A gives messages (m0,m1) s.t. |m0|=|m1| , receives Ek(mb)
q A output b* , and ‘wins’ if b*=b

k

Ek(.)𝑚0 , 𝑚1s.t. |𝑚0| = |𝑚1|

$

b*

𝑚

𝐸𝑘(𝑚)A

A wins
if b*=b

0,1 1

𝑛, 𝑏

c∗ = 𝐸𝑘(𝑚𝑏)

20

IND-CPA-Encryption Test (fixed)
q Or, as pseudo-code:

k

Ek(.)𝑚0 , 𝑚1s.t. |𝑚0| = |𝑚1|

$

b*

𝑚

𝐸𝑘(𝑚)A

A wins
if b*=b

0,1 1

𝑛, 𝑏

Oracle notation

c∗ = 𝐸𝑘(𝑚𝑏)

21

Definition: IND-CPA Encryption
q

Shared key cryptosystem (𝐸, 𝐷) is IND-CPA, if every
efficient adversary A has negligible advantage:

22

Can IND-CPA encryption be deterministic?
q No!! But why? Suppose Ek(m) is deterministic…
q Assume messages are words.
q A can ask Ek to encrypt m0 and m1 and then check which

one is equal to the challenge ciphertext à always wins!
q Conclusion: IND-CPA Encryption must be randomized

q Even if you encrypt the same m over and over again, a new
ciphertext will be produced.

k

Ek(.)𝑚0 , 𝑚1s.t. |𝑚0| = |𝑚1|

$

b*

𝑚

𝐸𝑘(𝑚)A

A wins
if b*=b

0,1 1

𝑛, 𝑏

c∗ = 𝐸𝑘(𝑚𝑏)

What’s next?
Present a secure cryptosystem?
… provably secure w/o assumptions ?

Unlikely: Proof of security è P ≠ NP
(similar argument to PRF)

Instead, let’s build secure encryption from PRF !
(I.e.: PRF is secure è encryption is IND-CPA)
Actually, we’ll use block cipher (and build it)

23

24

Encryption: Modes of Operation
q `Modes of operation’: use block cipher (PRP), to

encrypt long (Variable Input Length, VIL)
messages

q Randomize/add state for security
q Often: use random or stateful Initialization Vector (IV)

q Use long keys
q Better security (at least against exhaustive search)

q Assume plaintext is in blocks: m0||m1||…
q An integer number of blocks, each block is n bits.

Encryption Modes of Operation

25

26

Electronic Code Book mode (ECB) I
n Encryption ci=Ek(mi), decryption mi=Dk(ci)

n Each mi is n bit block and same for ci

100 CHAPTER 2. ENCRYPTION AND PSEUDO-RANDOMNESS

2.8.1 The Electronic Code Book mode (ECB) mode

ECB is a näıve mode, which isn’t really a proper ‘mode’: it simply applies the
block cipher separately to each block of the plaintext. Namely, to decrypt the
plaintext string m = m1 ++m2 ++ . . ., where each mi is a block (i.e., |mi| = n),
we simply compute ci = Ek(mi). Decryption is equally trivial: mi = Dk(ci),
and correctness of encryption, i.e., m = Dk(Ek(m)) for every k,m 2 {0, 1}⇤,
follows immediately from the correctness of the block cipher Ek(·).

Enc

m0

k

c0

Enc

m1

k

c1

Enc

m2

k

c2

· · · · · · Enc

mn

k

cn

Figure 2.27: Electronic Code Book (ECB) mode encryption. Adapted from [110].

Note: notations are not exactly consistent with text, should be fixed.

Dec

c0

k

m0

Dec

c1

k

m1

Dec

c2

k

m2

· · · · · · Dec

cn

k

mn

Figure 2.28: Electronic Code Book (ECB) mode decryption. Adapted from [110].
Note: notations are not exactly consistent with text, should be fixed.

The reader may have already noticed that ECB is simply a monoalphabetic
substitution cipher, as discussed in subsection 2.1.3. The ‘alphabet’ here is
indeed large: each ‘letter’ is a whole n-bit block. For typical block ciphers, the
block size is significant, e.g., nDES = 64 bits for DES and nAES = 128 bits; this
definitely improves security, and may make it challenging to decrypt ECB-mode
messages in many scenarios.

However, obviously, this means that ECB may expose some information
about plaintext, in particular, all encryptions of the same plaintext block will
result in the same ciphertext block. Even with relatively long blocks of 64 or 128
bits, such repeating blocks are quite likely in practical applications and scenarios,

Foundations of Cybersecurity: Applied Introduction to Cryptography

100 CHAPTER 2. ENCRYPTION AND PSEUDO-RANDOMNESS

2.8.1 The Electronic Code Book mode (ECB) mode

ECB is a näıve mode, which isn’t really a proper ‘mode’: it simply applies the
block cipher separately to each block of the plaintext. Namely, to decrypt the
plaintext string m = m1 ++m2 ++ . . ., where each mi is a block (i.e., |mi| = n),
we simply compute ci = Ek(mi). Decryption is equally trivial: mi = Dk(ci),
and correctness of encryption, i.e., m = Dk(Ek(m)) for every k,m 2 {0, 1}⇤,
follows immediately from the correctness of the block cipher Ek(·).

Enc

m0

k

c0

Enc

m1

k

c1

Enc

m2

k

c2

· · · · · · Enc

mn

k

cn

Figure 2.27: Electronic Code Book (ECB) mode encryption. Adapted from [110].

Note: notations are not exactly consistent with text, should be fixed.

Dec

c0

k

m0

Dec

c1

k

m1

Dec

c2

k

m2

· · · · · · Dec

cn

k

mn

Figure 2.28: Electronic Code Book (ECB) mode decryption. Adapted from [110].
Note: notations are not exactly consistent with text, should be fixed.

The reader may have already noticed that ECB is simply a monoalphabetic
substitution cipher, as discussed in subsection 2.1.3. The ‘alphabet’ here is
indeed large: each ‘letter’ is a whole n-bit block. For typical block ciphers, the
block size is significant, e.g., nDES = 64 bits for DES and nAES = 128 bits; this
definitely improves security, and may make it challenging to decrypt ECB-mode
messages in many scenarios.

However, obviously, this means that ECB may expose some information
about plaintext, in particular, all encryptions of the same plaintext block will
result in the same ciphertext block. Even with relatively long blocks of 64 or 128
bits, such repeating blocks are quite likely in practical applications and scenarios,

Foundations of Cybersecurity: Applied Introduction to Cryptography

27

Electronic Code Book mode (ECB) II
n Encryption ci=Ek(mi), decryption mi=Dk(ci)

Insecure!! (do not use it!) Which of these is ECB
encryption? Why?

Output-Feedback (OFB) Mode
n Goal: encrypt long (multi-block) messages, with less random bits
n How? Use random bits only for first block (`initialization vector’)

n To encrypt next blocks of message, use output of previous block
n Namely, a block-by-block stream cipher

n Encryption: pad0ßIV,
padi ß Ek(padi-1),
c0 ß pad0, ci ß padiÅ mi

n Decryption:
pad0 ß c0,
padi ß Ek(pi-1),
mi ß padiÅ ci

28

Output-Feedback (OFB) Mode
n Offline pad computation: compute pad in advance

n Online computation: only (parallelizable) XOR !
n Bit errors are bitwise localized

n Corrupting a one bit in the ciphertext corrupts only one bit in the
plaintext.

29

30

Cipher Block Chaining (CBC) Mode
n Random first block c0 (`initialization vector’, IV)
n i>0: ci = Ek(ci-1 Å mi), mi = ci-1 Å Dk(ci)

n Parallel decryption
qBut no offline precomputing
qHow about encryption? Sequential (it is a chain!)

n Error propagation:
n flip bit in c[i] è flip bit in m[i+1] and corrupt m[i]

2.8. SECURE ENCRYPTION MODES OF OPERATION 109

which addresses these concerns.

2.8.5 The Cipher-Block Chaining (CBC) mode

We now present one last encryption mode, the Cipher-Block Chaining (CBC)
mode. CBC is a very popular mode for encryption of multiple-block messages;
like CFB, it allows parallel decryption but not o✏ine pad precomputation.

The CBC mode, like the OFB and CFB modes, uses a random Initialization

Vector (IV) as the first block of the ciphertext, c0
$ {0, 1}n. However, in

contrast to OFB and CFB, to encrypt the ith plaintext block mi, CBC XORes
mi with the previous ciphertext block ci�1, and then applies the block cipher.
Namely, ci = Ek(ci�1 �mi). See Fig. 2.34.

Ek

m1

c1

Ek

m2

c2

Ek

m3

c3

IV

c0

· · · · · · Ek

mn

cn

· · · · · · Ek

mn

cn

Figure 2.34: Cipher Block Chaining (CBC) mode encryption. Adapted from
[110].

Dk

m1

c1

Dk

m2

c2

Dk

m3

c3

c0

(IV)

· · · · · · Dk

mn

cn

· · · · · · Dk

mn

cn

Figure 2.35: Cipher Block Chaining (CBC) mode decryption. Adapted from
[110].

More precisely, let (E,D) be a block cipher, and let m = m1 ++ . . .++mn

be a message (broken into blocks). Then the CBC encryption of m using key k
and initialization vector IV 2 {0, 1}l is defined as:

Foundations of Cybersecurity: Applied Introduction to Cryptography

2.8. SECURE ENCRYPTION MODES OF OPERATION 109

which addresses these concerns.

2.8.5 The Cipher-Block Chaining (CBC) mode

We now present one last encryption mode, the Cipher-Block Chaining (CBC)
mode. CBC is a very popular mode for encryption of multiple-block messages;
like CFB, it allows parallel decryption but not o✏ine pad precomputation.

The CBC mode, like the OFB and CFB modes, uses a random Initialization

Vector (IV) as the first block of the ciphertext, c0
$ {0, 1}n. However, in

contrast to OFB and CFB, to encrypt the ith plaintext block mi, CBC XORes
mi with the previous ciphertext block ci�1, and then applies the block cipher.
Namely, ci = Ek(ci�1 �mi). See Fig. 2.34.

Ek

m1

c1

Ek

m2

c2

Ek

m3

c3

IV

c0

· · · · · · Ek

mn

cn

· · · · · · Ek

mn

cn

Figure 2.34: Cipher Block Chaining (CBC) mode encryption. Adapted from
[110].

Dk

m1

c1

Dk

m2

c2

Dk

m3

c3

c0

(IV)

· · · · · · Dk

mn

cn

· · · · · · Dk

mn

cn

Figure 2.35: Cipher Block Chaining (CBC) mode decryption. Adapted from
[110].

More precisely, let (E,D) be a block cipher, and let m = m1 ++ . . .++mn

be a message (broken into blocks). Then the CBC encryption of m using key k
and initialization vector IV 2 {0, 1}l is defined as:

Foundations of Cybersecurity: Applied Introduction to Cryptography

31

Security of CBC mode
n Theorem: If block-cipher E is a (strong) pseudo-

random permutation èCBC is IND-CPA-secure
encryption

n Proof: omitted (crypto course J)
n Observation: CBC is Not IND-CCA-Secure

n CCA (Chosen ciphertext attack), intuitively: attacker can
choose ciphertext and get its decryption, except for the
`challenge ciphertext’

n Definition, details: crypto course
n Exercise: show CBC is Not IND-CCA-Secure
n Other variants of CBC exists that are CCA secure.

32

Counter (CTR) Mode
n Random ctr (or `initialization

vector’, IV)
n i>0: ci = Fk(ctr + i) Å mi
n mi = Fk(ctr + i) Å ci

n Parallel encryption and
decryption
qWith offline precomputing

n CPA secure if Fk is a PRF
(provably secure).

n Error propagation:
n flip bit in ci è flip bit in mi

���(���&-��ʫ)����
����ʫ ���ʫ����������������ʫ

�� �Ũ �� � 0 ĸ Ũ ��� 0 Ą Ũ �� � 0 ĈŨ
�(

�� �Ũ
'*)>7&� ��� � � ?������௣ �ל?.+௣��ĕ��௣

FFš

_5/H[*Bh ����h Ũ� ,ʫ ��ʫ �ʫ
���������Ȩ�ʫ ��������@ʫ �	��ʫ ����������ʫ
�������ʫ ����ʫ ³��ʫ ���������ʫ ���(�mʫ 	��ʫ ������������	��
�ʫ �����
�����ʫ ʁ����ʫ
�ʫ �	���ȕ:

�����!�ʫ ����� Bʫ

3711'� E�௣ ��௣ �	�௣ō����௣��௣5	�����௣ > U§y�௣��௣"����௣ �	�௣ "������௣ �Ŭ�����௣
ٞ�௣ ͵���௣ �	�����௣�	��௣ Ő�� ���a� ௣
ă�����௣�� �௣ ��௣ ?NE[��
���௣�	��௣�௣ �����௣
��� ��௣���
����௣ ��௣ ��� U௣ D�௣ �	��௣ż����௣�	��௣ ��"��
���௣�	�௣ ��� ��௣���
����௣
��௣�óƸ��ી �ʪ�Ÿ ��௣���
�ņ��௣
ɑ����௣��!�௣�Ė�௣�
	�ư�௣����
����௣
ǚ��௣ �$ �. �ĩ���௣�	�௣ �������௣ �����௣ �$.��� ௣�	��௣�	�௣
	�������௣
�"	۷���$�௣ ��௣

��
��"�/ ௣ ��௣ �	�௣ � �'����.�$"�������ö௣ L����������b௣ �	��௣ �௣ ��� ��௣ݖ��
����௣
�ʫ ��௣ ��� ௣ ��௣ ��� ऽ��aۊ�௣
������௣ �� �W௣ ��
�����௣ ��௣ �
	���� ௣ ��௣ ����௣ ��௣ ��
	௣
��ŋ
௣࡟ �Ìó ��௣ �	�௣
	�������௣
�Ϛ޹����$�௣ ��௣ �ĩ
��"�� ௣ ��ǽ��௣ �௣ �����௣ �$ �.�õ �ʫ �	��௣
���௣ã���ʭ௣�ਜ�Ŧ௣��௣�ŭ�௣��
��å����௣���
�� ǌ ��௣���������௣�³�௣��௣���௣ G������˶௣ ��௣޺@
ħ�௣�ा௣Ǟ�
�ȡਝ۸௣¿1ñÞĨ�% �.SõWŨ���௣Ŋ���ƻ௣ȡ�� ௣��௣ɐ�����௣�ó"�����Ǆ�௣7ò
�଺আࠉ��μ௣Gુ��଻ՠ௣ �:
�	��௣ �ŭ�௣�¸���௣
��& �.�õ W£Ũ ��௣�௣
��"Ư�����௣��ãŦ��௣ؤ�ୱ���௣ �ãஶ௣؍��௣ஷࣲࠎޙ׍ͽ௣�ïࠊ�௣

�࢈�௣ଃ��ū௣�௣ٟૂࢇ��!௣��௣ϼĦɮ௣"������$�௣	��௣�ŀ�௣P���௣�Ͱ�
�௣��௣*ࠋ�"��ڐ���௣���	௣�	۹௣
���Mਖ਼ǽ��௣ "� ˶௣ N������௣ �	��௣ ��� ���ୣ� ௣
���ਗ਼��௣ư� �௣ ��௣ ?NկČ�Ǫ
Ȣ��௣޻��I௣
�����௣ �௣ ��� ��௣ ���
����௣ �	2�௣ �����௣ ���௣ ��௣ ���� ���௣ �	�௣ ਜ਼�௣ࠌࢉ������" �	��௣
�$ �.�õ �ʫ���௣"���������௣��� U௣
ǚ*�௣�õ �ó .௣(��š~� ���>šæ�Ď
š �����௣ �	�௣ ��� �ā�a� ௣
������௣�� �௣ ��
��"����௣

�
௣��ࢸ�	 �Ì ௣��Ͻ
ȹ
ઽ௣�ó nĕĖÎŨŦbŨť¤Ũ ��௣Ɏ�௣�Ì
ʫ�"����௣�
	�Ȉ�௣�	��௣ ��௣ � �����

��௣ ��௣à௣ �ନ
�"Ƈ Ȭ௣ੜإ޾�௣ ������ ௣ ��௣�����௣ �௣ Ż��� ���ãۋ��௣ই���Ȣ�ù����௣,ʫ��Ąŀ௣
ஸù�Ľƶ��ŔČ
	իʵ��௣ ��b௣ࡠ 1ó �৅�Υ�௣ ;�� ��௣ ͨ��
�ħƵȋ௣ ��௣ Ƞ´½Α��ȝ��ţ�௣ Ŭ��௣ם ΐ�b௣
(�� �İ š�
š
�����௣޼ �௣ ��� ��௣ �Ƞ�ɛ����௣ �ʫ � í���� %š ɑࣳ ௣ ���š��
�ୡ௣࡝ˇ�੝௣µ½
��ďš�$ڑ�"�௣ �	��௣ 5ñ ��௣ ��� ௣ Ĩĩ���� ௣ ��௣,1 Yʫ .Ë�௣
��ƹ��b௣ ����	��௣ (��š Ì��௣ ���š
���௣ ��
����௣ �������	���௣ ���௣ ��௣֐� ���௣���௣������௣ ���௣ �	�௣"��"����௣��௣ ދ���
���௣ ��௣ �$"�������௣ ��૪������௣àU+ ௣ D�௣ ���௣ �	��௣ �	�¦௣ ���௣ �����௣ ঈ�����������
௣
"Ƶ�Xࣴ�����˧����௣� �������௣�JĨȝĦ���௣�$��ਫ਼O௣�௣ࣵ��٠ࠍ�����௣���
�Ň��௣����š��
	௣޽���௣

N�௣ �� �(�*)# ���.�ó �� �(õ �
�õ ���� �ļ
 + š .>��+௣

հ
�ć����b௣��௣ �௣���௣ĩ�� ௣��௣Ʊ�!�௣���௣�����"��ŋ��௣ی��������௣�	�௣�����Ŋ�௣��ʗ*௣

Encryption: Final Words
• Supports one of the basic goals of

cryptography; confidentiality.
• Focus: computationally-limited adversaries
• Principles:

• Kerckhoff’s: Known Design
• Sufficient Key Space
• Crypto Building Block: build schemes from simple,

standard functions
• Constructions & reductions: PRGàPRFàPRPàEnc

• Secure system design: easy to use securely, hard to use
incorrectly!

33

Encryption: Final Words...
n Many variants…
n One important example is Homomorphic

encryption:
E(m1+m2)= E(m1) + E(m2)

q Fully-homomorphic: also
E(m1*m2)= E(m1)*E(m2)

q Inefficient, huge keys and ciphertexts… but
lots of advances and ongoing research!

34

Covered Material From the Textbook
q Sections 2.6, 2.7, 2.8 (excluding 2.8.2 and 2.8.4), and 2.10.

35

