
CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

Lecture 13
Public Key Infrastructure – Part II

Ghada Almashaqbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline
q Certificate revocation.
q Dealing with CA failures.

2

Certificate Revocation

3

Certificate Revocation
n Reasons for revoking certificates

q Security issues:
n Key compromise, CA compromise

q Administrative issues:
n Affiliation changed (changing DN or other attribute), public

key has been replaced, subject has ceased operation
(company dissolving).

n How to inform relying parties? Few options
usually under three categories:
q Prefetch: have revocation info in advance.
q As-needed: ask for this info when a receiving a

certificate and want to validate.
q Neither: does not fall under any of the above, usually

called network-assisted techniques.

4

Certificate Revocation Techniques
n Prefetch:

q Cons: higher storage and communication overhead,
q Pros: lower response delay

n As needed:
q Cons: higher response delays, reliability issues, privacy

concerns.
q Pros: lower storage and communication overhead

n We will start with studying two techniques:
q Distribute Certificate Revocation List (CRL) --

Prefetch
n This is part of the X.509 standard.

q Ask - Online Certificate Status Protocol (OCSP) –
As needed

5

CRLs
n A certificate revocation list (CRL) is simply a list

of revoked certificates.
n Distributed periodically by CAs.

q See next slide for its format.
n If CRLs contain all revoked certificates (which did

not expire)… it may be huge!
q Yes, large storage and communication overhead.

n CRLs are not immediate
q Who is responsible until CRL is distributed?
q Frequent CRLs è even more overhead!

6

4/22/21 (c) Amir Herzberg

X.509 CRL Format

This update (date/time)

Version of CRL format

Signature on the above fields
CRL Extensions
….
CRL Entry…

CRL
Entry

Subject (user) Distinguished Name (DN)
Next update (date/time) - optional

CRL Issuer Distinguished Name (DN)
Signature Algorithm Object Identifier (OID)

Si
gn

ed
 fi

el
ds

Certificate
Serial Number

Revocation
Date

CRL entry
extensions

Serial… Date… extensions

7

CRLs Optimization Solutions
n More efficient CRL schemes:

q CRL distribution point: split certificates to several
CRLs

q Authorities Revocation List (ARL): list only revoked
CAs

q Delta CRL – only new revocations since last `base
CRL`
n Need to keep CRLs for long period to check deltas à

complicates implementation

n Browsers mostly do not check CRLs. Instead they
usually use:
q Online Certificate Status Protocol (OCSP)

8

Online Certificate Status Protocol (OCSP)

n Improve efficiency and freshness compared to
CRLs

n Client asks CA about cert during handshake
n CA signs response (real-time)

9

8.4. CERTIFICATE REVOCATION 421

TLS client
(browser)

TLS (web)
server

OCSP Responder
(often the CA)

Revoked or invalid: abort (hard-fail)
Timeout: hard-fail (abort) or soft-fail (proceed)
Valid: proceed...

TLS Client Hello

TLS Server Hello

OCSP request

OCSP response

TLS key exchange, finish

TLS finish

Figure 8.12: OCSP used by relying party (as OCSP client). There are several
concerns with this form of using OCSP, including privacy exposure, overhead
on CA, and handling of delayed/missing OCSP response by the client/browser.
This last concern, illustrated in Figure 8.13, motivated updated browsers to
support and prefer OCSP-stapling (see Figure 8.14), where the TLS/web server
makes the OCSP request, instead of the client/browser, and ‘staples’ the OCSP
response to the TLS server hello message.

Improving e�ciency with multi-cert OCSP requests. To improve ef-
ficiency, a single OCSP request may specify (request status for) multiple cer-
tificates (CertIDs)5. Correspondingly, a single OCSP response, using a single
signature, may include (signed) responses for multiple certificates. The support
for OCSP requests and responses for multiple certificates, is especially important
to support certificates signed by intermediate CAs, using a Certificate-Path;
see Note 8.3.

OCSP vs. CRLs. The length of an OCSP response is linear in the number
of CertIDs in the corresponding OCSP request, rather than a function of
the total number of revoked certificates of this CA, as is the case for CRLs.
Furthermore, the computation required for sending an OCSP response is just
one signature operation, plus some hash function applications, regardless of
the number of revoked certificates or the number of certificates whose status is
requested in this OCSP request. In the common case where the total number
of revoked certificates may be large, this significantly reduces the overhead of
generating and distributing often large CRL responses. Namely, OCSP provides

5Certificate identifiers (CertIDs) may be specified using the hash of the issuer name and
key, and a certificate serial number.

Foundations of Cybersecurity: Applied Introduction to Cryptography

Example - TLS Handshake with OCSP

10

Classical OCSP – Browser sends requests

OCSP Challenges

n Cons of as-needed mechanisms mentioned
before:
q Privacy (expose domain and client to CA), load on CA,

response delay, reliability (what if CA fails).
n We will elaborate more on:

q Ambiguity:
n When an OCSP server (or CA) cannot resolve the request, it

replies with ”certificate status is unknown”.

q Reliability or failed requests.
n Client failed to establish a connection with the OCSP server.
n Or client’s request is invalid (not signed, or not authorized).

11

Ambiguous/Failed OCSP Responses
n What should the client do?

q Wait forever – unrealistic!
q Hard-fail: terminate the connection since certificate is

unknown.
n Safe!

q Ask user: application display a message asking the
user how to proceed.

q soft-fail: pretend that a response has been received
and continue as the cert is not revoked.
n Common choice for browsers!
n But, a man in the middle attacker who may block the OCSP

response to make a revoked cert go through?
n See next slide.

12

MitM soft-fail attack on ‘classic OCSP’

13

424 CHAPTER 8. PUBLIC KEY INFRASTRUCTURE (PKI)

TLS client
(browser)

MitM (fake server,
with revoked cert)

OCSP Responder
(CA)

TLS Client Hello

TLS Server Hello
with revoked certificate

OCSP request

OCSP response(drop)

time-out!
softfail TLS key exchange, finish

TLS finish

(data)

Figure 8.13: The MitM soft-fail Attack on TLS connection, using ‘classical’
OCSP deployment, where the TLS-client (browser) sends the OCSP request
(acts as OCSP client), and assuming the (vulnerable) ‘soft-fail’ handling of
timeouts and ambiguous OCSP responses. The attacker is impersonating as a
web site, to which the attacker has the private key; the corresponding certificate
is already revoked, but the attack allows the attacker to trick the browser into
accepting it anyway, allowing the impersonation attack to succeed. The browser
queries the CA (or other OCSP server) to receive a fresh certificate-status.
However, the attacker ‘kills’ the OCSP request, or the OCSP response (figure
illustrates dropping of the response). After waiting for some time, the browser
times-out, and accepts the revoked certificate sent by the impersonating web
site, although no OCSP response was received. This ‘soft-fail’ behavior is used
by most browsers, since the alternatives (very long timeout, asking the user, or
‘hard-fail’) are not well received by users.

Foundations of Cybersecurity: Applied Introduction to Cryptography

Classic OCSP is Problematic à Use OCSP-Stapling

n Subject of the certificate (aka web server) sends OCSP
requests instead of the relying party (aka browser).
q So subject acts as the OCSP client.
q It receives a signed response back (signed by the CA and

includes a timestamp) which it forwards to any relying party
initiating a connection.

q Browser accepts if signature is valid and time is recent enough.
n Solves:

q Privacy – the CA no longer knows about browsers access
pattern

q Reduce load – one request per website rather than many
requests from browsers.

q CA limits OCSP service to subjects – easier to manage.

14

OCSP-Stapling428 CHAPTER 8. PUBLIC KEY INFRASTRUCTURE (PKI)

Browser, TLS client
and relying party

Web+TLS server bob.com,
subject of CB and

OCSP client

CA and
OCSP Responder

OCSP request (for CB)

OCSP response:
� = SignCA.S(CB Ok:time(·))

TLS Client Hello with
CSR TLS-extension

TLS Server Hello with
CSR extension: � (OCSP Response)

TLS key exchange, finish

TLS finish

Figure 8.14: (Optional) OCSP stapling in the TLS protocol, using the Certificate
Status Request (CSR) TLS extension, for a typical TLS connection between
browser and web-server bob.com, the subject of certificate CB . bob.com received
CB from the CA (not shown); the CA is also the OCSP responder. The web
(and TLS) server bob.com periodically sends OCSP requests to the CA (also
OCSP responder), requesting the status of its own certificate CB . The CA sends
back the OCSP response, � = SignCA.S(CB Ok:time(·)), signalling that CB

was not revoked up to time time(·). The browser sends the TLS CSR extension
to bob.com with TLS Client Hello, to request OCSP-stapling. The server sends
back �, the OCSP response, also in the CSR extension. The TLS handshake
now completes as usual.

the OCSP responder. This is the reason that we added the word Optional to
the term OCSP stapling; we later discuss OCSP Must-Staple, a variant of OCSP
deployment where the subject commits to sending a valid OCSP response.

Once the browser receives the OCSP response (in the CSR TLS-extension),
it validates it, i.e., validates the signature of the CA (using the CA’s public
validation key CA.v), and then validating that the response indicates non-
revocation (which we marked by Ok) and that the time indicated is ‘recent
enough’. When all is Ok, the browser completes the TLS handshake with
bob.com and then continues with the TLS connection.

We described the OCSP-stapling process for a TLS connection between a
browser and a web-server, for the case where the certificate was issued by a root
CA (directly trusted by the browser). However, the process is exactly the same
for other TLS clients and servers, and the modifications for the (typical) case

Foundations of Cybersecurity: Applied Introduction to Cryptography

15

OCSP-Stapling

n Challenge: many servers don’t staple!
q Or, worse: staple `sometimes/usually’
q So, try OCSP? Connect anyway? Disconnect?

n Usually browsers attempt to do classical OCSP then if
no response, resort to soft-fail.

n So we are back to the MitM attack described before.

n Solution: `Must-staple’ cert. extension
q RFC 7633
q Mark as not critical

n As it may not be supported by some browsers

16

OCSP with Must-Staple Extension

Principle:
Defenses should not be bypassed due to failures.

If defenses are bypassed upon failure, attacker will cause
failures to bypass defenses.

17

Optimizing OCSP Responses (1)
n OCSP overhead is high – esp. if frequent
n Several optimizations possible, e.g.:

Merkle digest-tree and Proof-of-Inclusion (PoI).
q Saves number of needed signatures (recall, public key cryptography

is expensive)!

18

Signed Revocations-Status Merkle-Tree
n A further optimization: send digest and PoI in

revocations-status Merkle tree:

19

Dealing with CA Failures

20

Why and How CAs Fail?
n Many CAs `trusted’ in browsers (as root)
n Several well-known failures

q DigiNotar, Comodo, Stuxnet, …

n Every CA can certify any domain (name)
q Name constraints NOT applied (esp. to roots)
q Some CAs may be negligible or even rogue

n Bad certificates:
q Equivocation: rogue certificates for same name as a legit cert
q Misleading certificates, e.g., similar name

n Can we improve defenses against bad CA?

21

Defenses Against CA Failures
n Use name constraints to limit risk

q who can issue global TLDs (.com, etc.)?

n Static key pinning: `burned-in’ public keys
q Detected MitM in Iran: rogue DigiNotar cert of Google
q Limited: changing keys? Which keys to preload ?

n Dynamic Pinning: HTTP Public-Key Pinning (HPKP)
q Server: I always use this PK / Cert / Chain
q Client: remember, implement, detect & report attacks
q Concerns: key loss/exposure, changing keys (recover security)

n Still, Trust-On-First-Use (TOFU) can be helpful
q E.g. for security policies: OCSP-must-stapling or CAs-pinning

n Certificate Transparency (CT): Accountability
q Public, auditable certificates log

22

Certificate Transparency (CT) [RFC6962]
n X.509: CAs sign cert

q Accountability: identify issuer,
given (rogue) cert

n Challenge: find rogue cert
q Unrealistic to expect relying

parties to detect !
q Google detected in Iran - since

Chrome had pinned Google’s
PK

n Proposed solution:
Certificate Transparency

n Functions: Logging,
Monitoring and Auditing

Three types of entities:
q Loggers provide public logs

of certificates
q Monitors monitor certificates

logged for detection of
suspect certificates

q Auditing (auditors?): check
for misbehaving loggers

Relying party
(browser)

Google, CAs,…

CAs, Facebook, others

23

Certificate Transparency (CT): Goals
n è Easier to detect, revoke rogue certificates
n è Easier to detect, dis-trust rogue CAs:

No (real) accountability without transparency!
n What about rogue loggers ?
n Option 1: Honest-Logger CT (HL-CT) [RFC6962]

q Assume honest logger [out of two loggers – redundancy]

n Option 2: NTTP-Secure CT (NS-CT):
q Monitors, relying-parties detect misbehaving loggers
q Relying party decides which monitor(s) it relies on (trusts) !
q Original CT goal: ‘no trusted third party’

24

Honest-Logger CT: Issuing Certificate
n Subject, e.g. website, sends request

q Request contains ‘To Be Signed’ fields: name, public-key
n CA validates request, signs cert, sends to logger
n Logger adds cert to log, signs and returns (signed) SCT
n CA sends cert + SCT to subject (e.g., website)446 CHAPTER 8. PUBLIC KEY INFRASTRUCTURE (PKI)

Logger CA

Subject
(e.g, www.bob.com)

Nurse

Relying party
(e.g, Alice’s browser)

(0.1)

Bob’s public key

Bob.e

(0.2) Certificate

CB ⌘ SignCA.s(bob.com,Bob.e, . . .)

(0.3) SCTB ⌘ SignL.s(CB ++ date)

(0.4)

CB ,
SCTB

(1.1) TLS Client Hello

(1.2) CB , SCTB

Figure 8.20: The issue process for Honest-Logger Certificate Transparency (HL-
CT) and Audit-and-Gossip Certificate Transparency (AnG-CT), and typical
usage in TLS server authentication. The CA sends every newly issued certificate
to one or multiple loggers. A logger receiving a certificate, validate it conforms
with required standards, and sends back an SCT (Signed Certificate Timestamp),
SCTB , which is a signature over the certificate CB and the current time. The
CA provides both certificate and SCT to the subject (e.g., website), who sends
them to the relying party, e.g., as part of the TLS handshake. The relying party
validates the signature on the SCT, in addition to the regular validation of the
X.509 certificate. In AnG-CT, the relying party may also perform auditing; see
subsection 8.6.3.

ranges of log entries, request for entries from a particular data/time, or
for report of the current range of log entries.

This monitoring process of HL-CT is illustrated in Figure 8.21. The figure
shows certification of the ‘real’ certificate of domain bob.com, and of a rogue
equivocating certificate for the same domain, which includes the public key
Mal.e of the attacker (Mal). We simplify the interaction between the monitor
and the website, and assume that the (legitimate) website ‘subscribes’ with the
monitor for updates on certificates issues for the domain bob.com. As a result,
the monitor informs the websites of the two certificates as soon as the monitor
is informed about them by the logger.

The Honest-Logger Certificate Transparency (HL-CT) scheme may fail to
ensure transparency, if using a rogue, dishonest logger. Specifically, a rogue
logger may simply fail to report a rogue certificate to the monitor(s). We refer
to this as an Omitted-Certificate attack, and illustrate it in Figure 8.22.

Foundations of Cybersecurity: Applied Introduction to Cryptography

25

Detecting rogue certs in log: Monitors
Goal: early detection of rogue certs in log

Logs should be publicly available

• Download, check log for relevant names
• L high overhead to everyone!

Name-owners can monitor the log

• Several such monitors, loggers already operate
• Download only new certificates

• And: ask log for seq# and/or date of last logged cert
• Ask log to send range of certs: <from-to>
• Optionally: maintain all certs (to check new names)

Instead: monitors do this (for many names)

26

Monitor Detects Rogue Certificates
n Owner asks to monitor relevant domain names

n Monitor asks for certs [Range, e.g., all new]
q Usually periodically; assume daily (typical)

n Monitor sends to owner new certs for same domain name
q Or suspect as misleading: combo, homographic, similar,…

LoggerMonitor

Send certs
[from.. to..]

New certs

Domain
owner

Domain(s), $

New certs
for domain
or misleading

LoggerLogger

27

Monitoring in Honest-Logger CT

8.6. CERTIFICATE TRANSPARENCY (CT) 447

Website
bob.com

Mal
(attacker) CA

Logger
L

Monitor

Monitor {bob.com}
tbsB =

(bob.com, B.e)

CB = (tbsB , SignCA.s(tbsB))

SCTB = SignL.s(CB ++ time(·))

CB , SCTB {. . . , CB . . .}

CB

tbsM = (bob.com,Mal.e)

CM = (tbsM , SignCA.s(tbsM))

SCTM = SignL.s(CM ++ time(·))

CM , SCT

{. . . , CM , . . .}

CM

Figure 8.21: Monitoring in Honest-Logger Certificate Transparency (HL-CT).
Website bob.com requests monitoring of its domain (bob.com) from a monitor,
and requests from a CA, a certificate CB binding its domain bob.com with
its public key B.e. The CA first logs the certificate with the logger L, who
sends back a signed SCT (SCTB). The logger periodically updates the monitor
with all newly issued certificates - including CB ; and the monitor accordingly
updates its client, the website bob.com. The figure then shows attacker Mal
receiving rogue certificate CM , binding bob.com to Mal’s public key, Mal.e.
Once the logger updates the monitor about the issuing of CM , the monitor
alerts the legitimate domain owner bob.com, i.e., the rogue certificate - and
the failure of the CA - are made public.

Foundations of Cybersecurity: Applied Introduction to Cryptography

28

HL-CT: Detecting Rogue Certificate

8.6. CERTIFICATE TRANSPARENCY (CT) 447

Website
bob.com

Mal
(attacker) CA

Logger
L

Monitor

Monitor {bob.com}
tbsB =

(bob.com, B.e)

CB = (tbsB , SignCA.s(tbsB))

SCTB = SignL.s(CB ++ time(·))

CB , SCTB {. . . , CB . . .}

CB

tbsM = (bob.com,Mal.e)

CM = (tbsM , SignCA.s(tbsM))

SCTM = SignL.s(CM ++ time(·))

CM , SCT

{. . . , CM , . . .}

CM

Figure 8.21: Monitoring in Honest-Logger Certificate Transparency (HL-CT).
Website bob.com requests monitoring of its domain (bob.com) from a monitor,
and requests from a CA, a certificate CB binding its domain bob.com with
its public key B.e. The CA first logs the certificate with the logger L, who
sends back a signed SCT (SCTB). The logger periodically updates the monitor
with all newly issued certificates - including CB ; and the monitor accordingly
updates its client, the website bob.com. The figure then shows attacker Mal
receiving rogue certificate CM , binding bob.com to Mal’s public key, Mal.e.
Once the logger updates the monitor about the issuing of CM , the monitor
alerts the legitimate domain owner bob.com, i.e., the rogue certificate - and
the failure of the CA - are made public.

Foundations of Cybersecurity: Applied Introduction to Cryptography

8.6. CERTIFICATE TRANSPARENCY (CT) 447

Website
bob.com

Mal
(attacker) CA

Logger
L

Monitor

Monitor {bob.com}
tbsB =

(bob.com, B.e)

CB = (tbsB , SignCA.s(tbsB))

SCTB = SignL.s(CB ++ time(·))

CB , SCTB {. . . , CB . . .}

CB

tbsM = (bob.com,Mal.e)

CM = (tbsM , SignCA.s(tbsM))

SCTM = SignL.s(CM ++ time(·))

CM , SCT

{. . . , CM , . . .}

CM

Figure 8.21: Monitoring in Honest-Logger Certificate Transparency (HL-CT).
Website bob.com requests monitoring of its domain (bob.com) from a monitor,
and requests from a CA, a certificate CB binding its domain bob.com with
its public key B.e. The CA first logs the certificate with the logger L, who
sends back a signed SCT (SCTB). The logger periodically updates the monitor
with all newly issued certificates - including CB ; and the monitor accordingly
updates its client, the website bob.com. The figure then shows attacker Mal
receiving rogue certificate CM , binding bob.com to Mal’s public key, Mal.e.
Once the logger updates the monitor about the issuing of CM , the monitor
alerts the legitimate domain owner bob.com, i.e., the rogue certificate - and
the failure of the CA - are made public.

Foundations of Cybersecurity: Applied Introduction to Cryptography

29

HL-CT: Omitted-Cert Attack by Rogue Logger
n Collusion of rogue CA and rogue Logger448 CHAPTER 8. PUBLIC KEY INFRASTRUCTURE (PKI)

Website
bob.com

Mal
(attacker) CA Logger LMonitor

tbsM = (bob.com,Mal.e)

CM = (tbsM , SignCA.s(tbsM))

SCTM = SignL.s(CM ++ time(·))

CM , SCTM

Monitor {bob.com}

New certs?

None (or: omits CM)

Nothing new

Figure 8.22: Omitted-certificate attack by a rogue logger and rogue CA. The
attack is e↵ective against Honest-Logger Certificate Transparency (HL-CT),
since HL-CT does not include mechanism to detected that a certificate was
omitted from the log.

Security against Colluding Rogue Logger and Rogue CA.

The omitted-certificate attack shows, that HL-CT is not secure against a rogue
logger; in particular, it shows a simple and very practical attack scenario.
Admittedly, this scenario requires collusion of an attacking website with a rogue
CA and a rogue logger; but it is not clear that such ‘collusion’ is extremely
unlikely. Indeed, loggers may often be operated by a CA - currently, this seems
to be a common scenario, and from the operational and economical point of
view, it seems likely to remain a common scenario. Indeed, it is not clear
that the browser vendors will have justifications to be overly selective in their
approval of loggers to be trusted by the browsers; it is quite possible that as
CT becomes popular, most CAs will become loggers.

Once that happens, there does not seem to be much additional security
provided by HL-CT, compared to the ‘regular’ X.509 system. Maybe issuing
of rogue certificates due to negligence may become less common; and maybe
this, in turn, would result in more severe response to any detected failure.
But HL-CT seems to o↵er very little in terms of defense against intentionally
malicious collusion of CA and logger.

To ensure security against rogue loggers - and their collusion with rogue CA
- one may use the other variants of CT, AnG-CT or NS-CT, which we discuss
in the following subsections. There is, however, also the option of using HL-CT,
but requiring each certificate to come with multiple SCTs, signed by di↵erent
loggers; namely, to provide additional security by redundancy: transparency is

Foundations of Cybersecurity: Applied Introduction to Cryptography

30

Security against Logger-CA Collusion: two options

n Option 1: redundancy: SCTs signed by multiple loggers
n Current approach in Google’s Chrome; req’s two SCTS (one Google)
n If you require more redundancy… good luck finding certificates!

q How many loggers? Which loggers? Overhead ?
q Google’s logger + a logger selected by (untrusted??) CA

n Option 2: avoid ‘honest-logger’ assumption
q Two variants: AnG-CT and NS-CT

n AnG-CT: Audit and Gossip to detect rogue logger
q Roughly follows RFC6962 and original CT publications
q Complex, expose user privacy, … : see textbook if interested

n NTTP-Secure CT (NS-CT):
q Ensures `no trusted third party’ by Proofs-of-Misbehavior (PoM)

31

Audit-and-Gossip (AnG) Certificate Transparency

n Logger keeps certs in Merkle tree
q Protocol uses digest, PoI and PoC mechanisms
q Signed, timestamped digest: Signed Tree Head (STH)

n Logger must respond to several audit requests:
q Request for STH+PoI, for given certificate
q Request for PoC, for given pair of STHs
q Request for current STH
q Request for certificates, logged between given start/end times

n Gossip: sharing of STHs among entities
q To detect ‘split world attack’: different STHs to different entities

n Textbook interpretation of `original’ CT
q Using Audit and Gossip to detect rogue loggers
q No complete spec published until now.

32

What is missing in AnG-CT ?

n AnG-CT may fail to provide Proof-of-Misbehavior
q Logger never sends the STH for a rogue SCT !
q Relying party receives no response… what can it do ??
q Or, never responds to request for PoC for ‘rogue STH’…

n Also: AnG-CT does not address revocation transparency
è vulnerable to ‘zombie certificate attack’: send ‘valid’
response to OCSP query for a revoked certificate

n And: AnG-CT relying parties expose visited website
n Next: NTTP-Secure (NS) Certificate Transparency

q Also based on Audit and Gossip, but addressing above issues
q NTTP = No Trusted Third Party (e.g., logger not trusted)
q Simplified: no SCT, logger responds only daily with STH

(can be changed to give SCT for immediate responses, certs)

33

NTTP-Secure CT: Goals and Assumptions

n Secure against collusions of any set of parties
q Up to threshold 𝑡 (maximal number of colluding parties)

n The rapid rogue certificate mitigation property: when
a relying party receives a ‘valid’ certificate, then:
q Every monitor received this certificate, or
q Every monitor has Proof-of-Misbehavior of the logger.

n The no false convictions property: an honest entity
is never considered corrupt.

n Simplifications/assumptions:
q Reliable communication between entities, synchronized clocks

n We ignore delays and clock-skews, easy to handle these details

q There are at least 2𝑡 + 1 monitors, and at most 𝑡 faulty.
q All monitors observe all loggers.

34

NS-CT : Simplification and Issue Process
n Loggers issue Signed Tree Head (STH) every 24 hours

q And `immediately’ provide it to all monitors
q Response to CA includes STH and Proof-of-Inclusion (PoI)
q CA, subject, relying party validate STH and PoI
q Issue process almost unchanged – but takes 24 hours…8.6. CERTIFICATE TRANSPARENCY (CT) 457

Logger
Sign key: L.s;

iCB
 i;

Log[i + +] CB ;

CA

Subject
bob.com

Nurse

Relying party
(e.g, Alice’s browser)

(0.1)

bob.com

Bob.e

(0.2) Certificate

CB ⌘ SignCA.s(bob.com,Bob.e, . . .)

(0.3) PoI ⌘ M.PoI(Log, iCB
)

STH ⌘ SignL.s(M.�(Log) ++ date))

(0.4)

CB ,
PoI,
STH

(1.1) TLS Client Hello

(1.2) CB , PoI, STH

Figure 8.25: NTTP-Security Certificate Transparency (NS-CT) issue process,
with a (possibly corrupt) logger, and typical usage in TLS server authentication.
The logger responds after it issues the new STH (within at most 24 hours).
The response contains both the STH (Signed Tree Head), as well as a PoI
(Proof-of-Inclusion) of the certificate within the log (whose digest is signed in
the STH). The PoI and STH, together, allow validation that the certificate
CB appears in the Log (based on its contents at end-of-day). The logger uses
variable i as the counter of entries in the log; certificate CB counter value is
saved in iCB

. Alice validates signatures (on CB , STH), date, and the PoI. The
M.PoI and M.� functions are of the Merkle Tree scheme, see § 4.8. This figure
does not include additional details, which are (only) relevant for revocation
status transparency.

Audit in NS-CT: preventing the omitted-certificate attack. Recall the
omitted-certificate attack of Figure 8.22, where a rogue logger colludes with
a rogue CA and rogue website, to mislead relying users by the use of a rogue
certificate, while not reporting this certificate to the monitors. To foil this
attack, NS-CT uses an audit protocol, where a relying party reports on the
received STH to a monitor. Note that since STHs are issued on a daily basis,
every monitor should receive every STH; in NS-CT, monitors maintain all the
received STHs. Therefore, if the STH received from the relying party is not
identical to a previously received STH, the monitor immediately detects that
the logger is corrupt.

Furthermore, since all STHs are signed by the logger, this combination of
two conflicting STHs serves as a Proof-of-Misbehavior (PoM) of the logger. The
Monitor shares this PoM with the relying party and with all other monitors

Foundations of Cybersecurity: Applied Introduction to Cryptography

35

NS-CT: Audit detects an omitted cert

Logger

CA

Site

Browser

PoI’, STH’

C’i ,PoI’, STH’
STH’

MonitorNewCerts, STH
(Signed daily Log Digest)

Ok: Signed(STH)
or

Proof-of-Misbehavior (PoM):
STH ≠STH’

C’i

Req, pk, $

C’i ,PoI’, STH’

36

Summary: benefits of CT
n Benefits for websites:

q Detect rogue certs for domain (same or misleading)
q Once detected, owners can mitigate risk

n Demand revocation, removal of CA from root program, …

n Benefit to users: less likely to fall victim…
n Benefit to trustworthy CAs: reduced competition from

shady CAs
n Overall: more secure PKI !
n Not covered here:

q Auditing and proving misbehavior of rogue monitors
q The Zombie-certificate attack
q Transparent revocation in NS-CT (prevents Zombie-cert attack)

37

Covered Material From the Textbook
q Chapter 8:

q Sections 8.4, 8.5, and 8.6

38

