CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

Lecture 15
Public Key Infrastructure — Part 11

Ghada Almashagbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline

Certificate revocation.
Dealing with CA failures.

Certificate Revocation

Certificate Revocation

Reasons for revoking certificates
o Security issues:
Key compromise, CA compromise

o Administrative issues:

Affiliation changed (changing DN or other attribute), public
key has been replaced, subject has ceased operation
(company dissolving).

How to inform relying parties” Few options
usually under three categories:
o Prefetch: have revocation info in advance.

o As-needed: ask for this info when a receiving a
certificate and want to validate.

o Neither: does not fall under any of the above, usually
called network-assisted techniques.

Certificate Revocation Techniques

Prefetch:
o Cons: higher storage and communication overhead,
o Pros: lower response delay

As needed:

o Cons: higher response delays, reliability issues, privacy
concerns.

o Pros: lower storage and communication overhead

We will start with studying two techniques:

o Distribute Certificate Revocation List (CRL) --
Prefetch
This is part of the X.509 standard.

a Ask - Online Certificate Status Protocol (OCSP) —
As needed

CRlLs

A certificate revocation list (CRL) is simply a list
of revoked certificates.

Distributed periodically by CAs.

o See next slide for its format.

If CRLs contain all revoked certificates (which did
not expire)... it may be huge!

o Yes, large storage and communication overhead.
CRLs are not immediate

o Who is responsible until CRL is distributed?
o Frequent CRLs = even more overhead!

X.509 CRL Format

/ Version of CRL format

Signature Algorithm Object Identifier (OID)

CRL Issuer Distinguished Name (DN)

This update (date/time)

Next update (date/time) - optional

Subject (user) Distinguished Name (DN)

Sil%d\ﬁelds

CRL | Certificate | Revocation | CRL entry
Entry Serial Number Date extensions

CRL Entry... | Serial... | Date... | extensions

\ | CRL Extensions

Signature on the above fields

CRLs Optimization Solutions

More efficient CRL schemes:

2 CR
CR

o Aut

_ distribution point: split certificates to several
S

norities Revocation List (ARL): list only revoked

CAs

o Delta CRL — only new revocations since last "base
CRL’

Need to keep CRLs for long period to check deltas -2
complicates implementation

Browsers mostly do not check CRLs. Instead they
usually use:

a Online Certificate Status Protocol (OCSP)

Online Certificate Status Protocol (OCSP)

= Improve efficiency and freshness compared to

CRLs

= Client asks CA about cert during handshake
= CA signs response (real-time)

OCSP Client

OCSP Responder

(e.g.. relying party) (CA or trusted OCSP server)
QOCSP request:
version, {Cert/ Dy, ...} [, signature] [, extensions]
OCSP response:
ResponseStatus, produced At, responses, signature

Example - TLS Handshake with OCSP

Classical OCSP — Browser sends requests

OCSP Responder
(often the CA)

TLS client
(browser)

<«——— OCSP request

TLS Client Hello

TLS (web)
server

OCSP response

TLS Server Hello

Revoked or invalid: abort (hard-fail)
Timeout: hard-fail (abort) or soft-fail (proceed)
Valid: proceed...

TLS key exchange, finish

TLS finish

10

OCSP Challenges

Cons of as-needed mechanisms mentioned
before:

o Privacy (expose domain and client to CA), load on CA,
response delay, reliability (what if CA fails).

We will elaborate more on:
o Ambiguity:

When an OCSP server (or CA) cannot resolve the request, it
replies with "certificate status is unknown”.

o Reliability or failed requests.
Client failed to establish a connection with the OCSP server.
Or client’s request is invalid (not signed, or not authorized).

11

Ambiguous/Failed OCSP Responses
What should the client do?

o Wait forever — unrealistic!

o Hard-fail: terminate the connection since certificate is
unknown.

Safe!

o Ask user: application display a message asking the
user how to proceed.

o soft-fail: pretend that a response has been received
and continue as the cert is not revoked.
Common choice for browsers!

But, a man in the middle attacker who may block the OCSP
response to make a revoked cert go through?

See next slide.

12

MitM soft-fail attack on ‘classic OCSP’

OCSP Responder
(CA)

TLS client MitM (fake server,
(browser) with revoked cert)
TLS Client Hello >

A

TLS Server Hello
with revoked certificate

time-out—

OCSP request

A\

(dl”Op) <+—— OCSP response

softfail TLS key exchange, finish |

A

TLS finish

Y

(data)

13

(lassic OCSP is Problematic 2 Use OCSP-Stapling

Subject of the certificate (aka web server) sends OCSP
requests instead of the relying party (aka browser).
o So subject acts as the OCSP client.

o It receives a signed response back (signed by the CA and
includes a timestamp) which it forwards to any relying party
Initiating a connection.

o Browser accepts if signature is valid and time is recent enough.

Solves:

o Privacy — the CA no longer knows about browsers access
pattern

2 Reduce load — one request per website rather than many
requests from browsers.

o CA limits OCSP service to subjects — easier to manage.

14

OCSP-Stapling

Browser, TLS client
and relying party

OCSP client

Web+TLS server bob.com,
subject of C'p and

CA and
OCSP Responder

OCSP request (for Cp)

Y

A

OCSP response:

o = Signca.s(Cp OK:time(+))

TLS Client Hello with
CSR TLS-extension

Y

TLS Server Hello with
CSR extension: o (OCSP Response)

A

TLS key exchange, finish

Y

A

TLS finish

15

OCSP-Stapling

Challenge: many servers don't staple!
o Or, worse: staple sometimes/usually’

0 So, try OCSP? Connect anyway? Disconnect?

Usually browsers attempt to do classical OCSP then if
no response, resort to soft-fail.

So we are back to the MitM attack described before.

Solution: Must-staple’ cert. extension

o RFC 7633

o Mark as not critical
As it may not be supported by some browsers

16

‘ OCSP with Must-Staple Extension

MitM (fake server,
with revoked cert)

TLS client (browser)

—— | TLS Client Hello with CSR extension |=—

TLS Server Hello
with certificate, no CSR

(alert and drop)

17

Optimizing OCSP Responses (1)

OCSP overhead is high — esp. if frequent

Several optimizations possible, e.g.:
Merkle digest-tree and Proof-of-Inclusion (Pol).

o Saves number of needed signatures (recall, public key cryptography
is expensive)!

o1—s = Signca.s(h1—s H# time)
/h.”\/\/\h8
o o oD
(;I< > N j) (. ? élﬁ\ (. ? .;T.)
__/ N — \I/ %/ \1/ %
(o) (an) () (wn) () () (o) (as)
_ NN RN/

18

‘Signed Revocations-Status Merkle-Tree

= A further optimization: send digest and Pol in
revocations-status Merkle tree:

19

Dealing with CA Failures

20

Why and How CAs Fail?

Many CAs 'trusted’ in browsers (as root)

Several well-known failures
o DigiNotar, Comodo, Stuxnet, ...

Every CA can certify any domain (name)
o Name constraints NOT applied (esp. to roots)
o Some CAs may be negligible or even rogue

Bad certificates:
o Equivocation: rogue certificates for same name as a legit cert
o Misleading certificates, e.g., similar name

Can we improve defenses against bad CA?

21

Detenses Against CA Failures

Use name constraints to limit risk

o who can issue global TLDs (.com, etc.)?

Static key pinning: burned-in’ public keys

o Detected MitM in Iran: rogue DigiNotar cert of Google

o Limited: changing keys? Which keys to preload ?

Dynamic Pinning: HTTP Public-Key Pinning (HPKP)
o Server: | always use this PK/ Cert / Chain

o Client: remember, implement, detect & report attacks

o Concerns: key loss/exposure, changing keys (recover security)

Still, Trust-On-First-Use (TOFU) can be helpful
o E.g. for security policies: OCSP-must-stapling or CAs-pinning

Certificate Transparency (CT): Accountability

o Public, auditable certificates log

22

Certificate Transparency (CT) [RFC6962]

= X.509: CAs sign cert Three types of entities:
o Accountability: identify issuer, = Loggers provide public logs
given (rogue) cert of certificates
= Challenge: find rogue cert o Monitors monitor certificates

o . logged for detection of
o Unrealistic to expect relying suspect certificates

' |
parties to detect) _ o Auditing (auditors?): check
o Google detected in Iran - since for misbehaving loggers

Chrome had pinned Google’s
PK

ProEosed solution:

= Functions: Logging,
Monitoring and Auditing

Google, CAs,...J

23

‘ Certificate Transparency (CT): Goals

=>» Easier to detect, revoke rogue certificates
=>» Easier to detect, dis-trust rogue CAs:

What about rogue loggers ?
Option 1: Honest-Logger CT (HL-CT) [RFC6962]

a Assume honest logger [out of two loggers — redundancy]

Option 2: NTTP-Secure CT (NS-CT):

a2 Monitors, relying-parties detect misbehaving loggers
o Relying party decides which monitor(s) it relies on (trusts) !

o Original CT goal: fo trusted third party’

24

Honest-Logger CT: Issuing Certificate

Subject, e.g. website, sends request

0 Request contains ‘To Be Signed’ fields: name, public-key

CA validates request, signs cert, sends to logger
Logger adds cert to log, signs and returns (signed) SCT
CA sends cert + SCT to subject (e.g., website)

(0.2) Certificate

Cp = Signc a.s(bob.com, Bob.e, . . .)
Logger [®
(03) SCTg = SignL_s(C’B -+ date)

(0.1)

CA

(0.4)

Bob’s public key Cp,

Relying party Bob.e

(e.g, Alice’s browser)

SCTg

Y

P p
(1.1) TLS Client Hello

Y

Subject J

(e.g, www.bob.com)

W ‘C/E (1.2) Cp,SCTg S

25

‘Detecting rogue certs 1in log: Monitors

Goal: early detection of rogue certs in log

Logs should be publicly available

Name-owners can monitor the log

* Download, check log for relevant names
* ® high overhead to everyone!

Instead: monitors do this (for many names)

» Several such monitors, loggers already operate

» Download only new certificates
» And: ask log for seg# and/or date of last logged cert
» Ask log to send range of certs: <from-to>
» Optionally: maintain all certs (to check new names)

26

Monitor Detects Rogue Certificates

Owner asks to monitor relevant domain names

-

Domain
owner

o

~

Domain(s), $

»
>

)

d
<

New certs
for domain

or misleading

-

o

~

Monitor

)

Send certs
[from.. to..] ~
> 0
New certs Logger J

Monitor asks for certs [Range, e.g., all new]
0 Usually periodically; assume daily (typical)

Monitor sends to owner new certs for same domain name
o Or suspect as misleading: combo, homographic, similar,...

27

Monitoring in Honest-l.ogger CT

Mal Website Logger 5
(attacker) | | BoB.cOM C:A I Morzutor
Monitor {BOB.COM}
tbSB = g
(BOB.COM, B.e)
Cp = (tbsp, Signca.s(tbsp))
SCTg = Signy, +(Cp 4 time(-)) -
; Cp,SCTg {...,Cg...}

28

HIL-CT: Detecting Rogue Certificate

Mal

(attacker) B\ZEP?(&?/I CEA Loiger MOT_litOI“
thsyr = (]é%OB.COM,Mal.e) R
Crr = (thsar, Signca.s(tbsyr)) ‘
é‘SCTM = Signr.s(Cum + time(-))
| LoCu)
G

29

HL-CT: Omitted-Cert Attack by Rogue Logger

= Collusion of rogue CA and rogue Logger

Website
BOB.COM

- Monitor {BOB.coM}

Monitor

Nothing new

>

Mal
(attacker)

CA

tbsyr = (BOB.COM, Mal.e)

Crr = (tbspr, Signea.s(thsyr))

Logger L

»

>

SCTwy = Signr.s(Cuv 4 time(+))

Curr, SCTyy

New certs?

None (or: omits Cy)

<
v

30

Security against Logger-CA Collusion: two options

Option 1: redundancy: SCTs signed by multiple loggers
Current approach in Google’s Chrome; req’s two SCTS (one Google)
If you require more redundancy... good luck finding certificates!

o How many loggers? Which loggers? Overhead ?
o Google’s logger + a logger selected by (untrusted??) CA

Option 2: avoid ‘honest-logger’ assumption
o Two variants: AnG-CT and NS-CT

AnG-CT: Audit and Gossip to detect rogue logger
o Roughly follows RFC6962 and original CT publications
o Complex, expose user privacy, ... : see textbook if interested

NTTP-Secure CT (NS-CT):
2 Ensures "no trusted third party’ by Proofs-of-Misbehavior (PoM)

31

Audit-and-Gossip (AnG) Certiticate Transparency

Logger keeps certs in Merkle tree
o Protocol uses digest, Pol and PoC mechanisms
o Signed, timestamped digest: Signed Tree Head (STH)

Logger must respond to several audit requests:

o Request for STH+Pol, for given certificate

o Request for PoC, for given pair of STHs

o Request for current STH

o Request for certificates, logged between given start/end times

Gossip: sharing of STHs among entities
o To detect ‘split world attack’: different STHs to different entities

Textbook interpretation of "original’ CT
o Using Audit and Gossip to detect rogue loggers
o No complete spec published until now.

32

What 1s missing in AnG-CT ?

AnG-CT may fail to provide Proof-of-Misbehavior
o Logger never sends the STH for a rogue SCT !

o Relying party receives no response... what can it do ??
o Or, never responds to request for PoC for ‘rogue STH'...

Also: AnG-CT does not address revocation transparency
=» vulnerable to ‘zombie certificate attack’: send ‘valid’
response to OCSP query for a revoked certificate

And: AnG-CT relying parties expose visited website
Next: NTTP-Secure (NS) Certificate Transparency

o Also based on Audit and Gossip, but addressing above issues
o NTTP = No Trusted Third Party (e.g., logger not trusted)

o Simplified: no SCT, logger responds only daily with STH
(can be changed to give SCT for immediate responses, certs)

33

NTTP-Secure CT: Goals and Assumptions

Secure against collusions of any set of parties
o Up to threshold t (maximal number of colluding parties)

The rapid rogue certificate mitigation property: when
a relying party receives a ‘valid’ certificate, then:

o Every monitor received this certificate, or

o Every monitor has Proof-of-Misbehavior of the logger.

The no false convictions property: an honest entity
IS never considered corrupt.

Simplifications/assumptions:

o Reliable communication between entities, synchronized clocks
We ignore delays and clock-skews, easy to handle these details

o There are at least 2t + 1 monitors, and at most t faulty.
o All monitors observe all loggers.

34

NS-CT : Simplification and Issue Process
Loggers issue Signed Tree Head (STH) every 24 hours

o And ‘immediately’ provide it to all monitors

o Response to CA includes STH and Proof-of-Inclusion (Pol)
o CA, subject, relying party validate STH and Pol

o Issue process almost unchanged — but takes 24 hours...

- ~ (0.2) Certificate
Logger :
o Cp = Signgca.s(bob.com, Bob.e, . . .)
ign key: L.s;
R CA
iCp 8 (0.3) Pol = M.Pol(Log,icy)
| Logli++] < Cp 5 STH = Signg.s(M.A(Log) 4 date)) |
(0.4)
(0.1) %,
B
bob.com Pol
Relying party Bob.e ST I1,T
(e.g, Alice’s browser)
Y

P 1.1) TLS Client Hello
- Subject
~—
(1.2) Cg, Pol, STH bob.com

¥

35

‘NS—CT: Audit detects an omitted cert

NewCerts, STH (:
> Monitor
(Signed daily Log Digest) L

Pol’, STH’

A 4

Req, pk, $ C’i,Pol’, STH’ Ok: Signed(STH)
or
Proof-of-Misbehavior (PoM):

STH #STH’
C',,Pol’, STH’

[Browser

36

Summary: benetits of CT

Benefits for websites:
o Detect rogue certs for domain (same or misleading)

o Once detected, owners can mitigate risk
Demand revocation, removal of CA from root program, ...

Benefit to users: less likely to fall victim...

Benefit to trustworthy CAs: reduced competition from
shady CAs

Overall: more secure PKI !

Not covered here:

o Auditing and proving misbehavior of rogue monitors

o The Zombie-certificate attack

o Transparent revocation in NS-CT (prevents Zombie-cert attack)

37

‘Covered Material From the Textbook

o Chapter 8:
o Sections 8.4, 8.5, and 8.6

38

Tnanx Youl

7P ? Pl 7
?ﬂ 7?? 9?’)"
: ' ““ | R$}}

Vi

