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Public Key Encryption IND-CPA Security
102 CHAPTER 2. ENCRYPTION AND PSEUDO-RANDOMNESS

T IND�CPA
A,hKG,E,Di(b, n) {
(e, d)

$ KG(1n)
(m0,m1) A(‘Choose’, e) s.t. |m0| = |m1|
c⇤  Ee(mb)
b⇤ = A(‘Guess’, (c⇤, e))
Return b⇤

}

Figure 2.26: The IND-CPA test for public-key encryption (KG,E,D). Notice
that this test does not use the decryption key d, generated in the first step.

Definition 2.10 (PKC IND-CPA). Let hKG,E,Di be a public-key cryp-
tosystem. We say that hKG,E,Di is IND-CPA, if every e�cient adversary
A 2 PPT has negligible advantage "IND�CPA

<KG,E,D>,A(n) 2 NEGL(n), where:

"IND�CPA
hKG,E,Di,A(n) ⌘ Pr

h
T IND�CPA
A,hKG,E,Di(1, n) = 1

i
� Pr

h
T IND�CPA
A,hKG,E,Di(0, n) = 1

i

(2.35)
Where the probability is over the random coin tosses in IND-CPA (including of
A and E).

In the PKCs definition of IND-CPA ( Definition 2.10), the adversary is
given the public key e. Hence, ADV can encrypt at will, without the need to
make encryption queries, as enabled by the oracle calls in Definition 2.9, and
we removed the oracle. Another change is purely syntactic: the cryptosystem
includes an explicit key generation algorithm KG, while for the shared-key
cryptosystem, we assumed the (typical) case where the keys are just random
n-bit strings.

We discuss three specific public key cryptosystems, all in chapter 6: DH
and El-Gamal in § 6.5, and RSA in § 6.6.

2.7.4 Design of Secure Encryption: the Cryptographic
Building Blocks Principle

We next discuss the design of secure symmetric encryption schemes. It would
be great if we could use encryption schemes which are provably secure, e.g.,
proven to be IND-CPA (Definition 2.9), without assumptions on computational-
hardness of some underlying functions. However, this is unlikely; let us explain
why.

A provably IND-CPA encryption implies P 6= NP . IND-CPA implies
that there is no e�cient (PPT) algorithm that can distinguish between encryp-
tion of two given messages, i.e., the IND-CPA test is not in the polynomial-
complexity class P, containing problems which have a polynomial-time algorithm.
On the other hand, surely it is easy to ‘win’ in the test, given the key; which
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Discrete Log-based Encryption
n We will explore two flavors:

q An adaptation of DH key exchange protocol to 
perform encryption.

q ElGamal encryption scheme.
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Turning [DH] to Public Key Cryptosystem
n Select random prime p and generator g
n Alice: secret key dA , public key eA=𝑔!! 𝑚𝑜𝑑 𝑝
n Bob: secret key b, public key PB= 𝑔" mod p
n To encrypt message m to Alice:

q Bob selects random b
q Sends: gb mod p , mÅ(eA)b=mÅ𝑔"#!! mod p 
q Secure assuming DDH: if the attacker can distinguish 𝑔"#!! from 

a random string, IND-CPA may not hold.
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Nurse

Alice
knows dA, g, p

Bob
knows eA, g, p

Input: message m

Select b
$ {2, . . . , p� 1}

eA (public key)

�
gb mod p, m�

⇥�
gb mod p

�eA mod p
⇤�

Figure 6.13: The DH public key cryptosystem (DH PKC). Bob encrypts message
m using Alice’s public key eA. Note that the ciphertext consists of a pair of
strings, and that the group modulus p as well as the generator g are public
values.

we accordingly refer to this PKC as the DH PKC, and a variant of it that also
uses a hash function h as the DH-h PKC.

The DH PKC. Let us first present the DH public key cryptosystem (DH
PKC), illustrated in Figure 6.13. As can be seen, this public key encryption
is essentially an adaptation of the DH key exchange protocol (Figure 6.9).
Essentially, instead of Alice selecting random secret a and sending ga mod p
to Bob in the first flow of the DH protocol, Alice selects a fixed private key dA,

exactly in the same way, i.e., dA
$ {2, . . . , p� 1}. Next, Alice computes her

public key eA, as: eA ⌘ gdA mod p. That’s it!
To encrypt a message m for Alice, using her public key eA = gdA mod p,

Bob essentially performs his role in the DH protocol, i.e., selects random random
value b 2 [2, p � 2], and computes the ciphertext according to Equation 6.9;
notice that the ciphertext is a pair of values:

EeA(m) =
⇣
gb mod p, m� (geA)b mod p

⌘
(6.9)

=
⇣
gb mod p, m�

�
gb mod p

�dA

mod p
⌘

(6.10)

Alice uses Equation 6.10 to decrypt the encryption, as follows. First, Alice

computes x ⌘
�
gb mod p

�dA mod p using the given gb mod p and Alice’s
private key dA. Then Alice computes the multiplicative inverse x�1 mod p
(Definition 1.3). Finally, Alice completes the decryption by computing

m = x�1 ·
⇣
m�

�
gb mod p

�dA

mod p
⌘

mod p

Foundations of Cybersecurity: Applied Introduction to Cryptography

324 CHAPTER 6. PUBLIC KEY CRYPTOLOGY

Nurse

Alice
knows dA, g, p

Bob
knows eA, g, p

Input: message m

Select b
$ {2, . . . , p� 1}

eA (public key)

�
gb mod p, m�

⇥�
gb mod p

�eA mod p
⇤�

Figure 6.13: The DH public key cryptosystem (DH PKC). Bob encrypts message
m using Alice’s public key eA. Note that the ciphertext consists of a pair of
strings, and that the group modulus p as well as the generator g are public
values.

we accordingly refer to this PKC as the DH PKC, and a variant of it that also
uses a hash function h as the DH-h PKC.

The DH PKC. Let us first present the DH public key cryptosystem (DH
PKC), illustrated in Figure 6.13. As can be seen, this public key encryption
is essentially an adaptation of the DH key exchange protocol (Figure 6.9).
Essentially, instead of Alice selecting random secret a and sending ga mod p
to Bob in the first flow of the DH protocol, Alice selects a fixed private key dA,

exactly in the same way, i.e., dA
$ {2, . . . , p� 1}. Next, Alice computes her

public key eA, as: eA ⌘ gdA mod p. That’s it!
To encrypt a message m for Alice, using her public key eA = gdA mod p,

Bob essentially performs his role in the DH protocol, i.e., selects random random
value b 2 [2, p � 2], and computes the ciphertext according to Equation 6.9;
notice that the ciphertext is a pair of values:

EeA(m) =
⇣
gb mod p, m� (geA)b mod p

⌘
(6.9)

=
⇣
gb mod p, m�

�
gb mod p

�dA

mod p
⌘

(6.10)

Alice uses Equation 6.10 to decrypt the encryption, as follows. First, Alice

computes x ⌘
�
gb mod p

�dA mod p using the given gb mod p and Alice’s
private key dA. Then Alice computes the multiplicative inverse x�1 mod p
(Definition 1.3). Finally, Alice completes the decryption by computing

m = x�1 ·
⇣
m�

�
gb mod p

�dA

mod p
⌘

mod p

Foundations of Cybersecurity: Applied Introduction to Cryptography



Turning [DH] to Public Key Cryptosystem
n Solves dependency on DDH assumption; secure under the 

(weaker) CDH assumption.
n To encrypt message m to Alice:

q Bob selects random b
q Sends: gb mod p , mÅh((eA)b)=mÅh(𝑔!"#! mod p) 
q Secure if h(𝑔"#!! mod p) is pseudo-random

8

BobAlice eA= 𝑔#! mod p

gb mod p , mÅ h(𝑔"#!! mod p)



ElGamal Public Key Encyption
n Variant of [DH] PKC: Encrypt by multiplication, not XOR
n To encrypt message m to Alice, whose public key is 

eA=𝑔#! 𝑚𝑜𝑑 𝑝: 
q Bob selects random b
q Sends: gb mod p , m*(eA)b=m*𝑔!"#! mod p

9

BobAlice eA=𝑔#! 𝑚𝑜𝑑 𝑝

(gb mod p , (m* 𝑒$!) mod p)
Select
random b



ElGamal Public Key Encryption 
n Encryption: 

n Decryption:

n Correctness:  

10

326 CHAPTER 6. PUBLIC KEY CRYPTOLOGY

Figure 6.15: The El-Gamal Public-Key Encryption. The value b is randomly
chosen from the set {2, . . . , p} for each encryption, while dA is a randomly-chosen
(fixed) public key of Alice.

EEG
eA (m) 

n�
gb mod p , m · ebA mod p

�
|b $ [2, p� 1]

o
(6.11)

Note that this assumes m < p.
El-Gamal decryption is:

DdA
(x, y) = x�dA · y mod p (6.12)

The correctness property holds since:

DdA
(gb mod p , m· ebA mod p) =

=
h�
gb mod p

��dA ·
⇣
m ·

�
gdA

�b
mod p

⌘i
mod p

=
⇥
g�b·dA ·m · gb·dA

⇤
mod p

= m

Exercise 6.9. Let p = 5.

1. Find a generator for Z⇤
p. (There are only three candidates to try!)

2. Let’s select the private key dA = 2. Compute the public key eA = gdA

mod p.

3. Compute El-Gamal encryption of 4 and of 3: c4 ⌘ EeA(4), c3 ⌘ EeA(3).
Comment: this is a randomized encryption, so another encyrption may
result in a di↵erent output!

4. Compute the decryptions of c4 and of c3.

6.5.3 Homomorphic encryption, Voting and Re-encryption.

The El-Gamal encryption is homomorphic with respect to multiplication.
Namely, there is a ‘ciphertext multiplication’ operation, such that the multi-
plication of two ciphertexts is an encryption of the multiplication of the two

Foundations of Cybersecurity: Applied Introduction to Cryptography

326 CHAPTER 6. PUBLIC KEY CRYPTOLOGY

Figure 6.15: The El-Gamal Public-Key Encryption. The value b is randomly
chosen from the set {2, . . . , p} for each encryption, while dA is a randomly-chosen
(fixed) public key of Alice.

EEG
eA (m) 

n�
gb mod p , m · ebA mod p

�
|b $ [2, p� 1]

o
(6.11)

Note that this assumes m < p.
El-Gamal decryption is:

DdA
(x, y) = x�dA · y mod p (6.12)

The correctness property holds since:

DdA
(gb mod p , m· ebA mod p) =

=
h�
gb mod p

��dA ·
⇣
m ·

�
gdA

�b
mod p

⌘i
mod p

=
⇥
g�b·dA ·m · gb·dA

⇤
mod p

= m

Exercise 6.9. Let p = 5.

1. Find a generator for Z⇤
p. (There are only three candidates to try!)

2. Let’s select the private key dA = 2. Compute the public key eA = gdA

mod p.

3. Compute El-Gamal encryption of 4 and of 3: c4 ⌘ EeA(4), c3 ⌘ EeA(3).
Comment: this is a randomized encryption, so another encyrption may
result in a di↵erent output!

4. Compute the decryptions of c4 and of c3.

6.5.3 Homomorphic encryption, Voting and Re-encryption.

The El-Gamal encryption is homomorphic with respect to multiplication.
Namely, there is a ‘ciphertext multiplication’ operation, such that the multi-
plication of two ciphertexts is an encryption of the multiplication of the two

Foundations of Cybersecurity: Applied Introduction to Cryptography

326 CHAPTER 6. PUBLIC KEY CRYPTOLOGY

Figure 6.15: The El-Gamal Public-Key Encryption. The value b is randomly
chosen from the set {2, . . . , p} for each encryption, while dA is a randomly-chosen
(fixed) public key of Alice.

EEG
eA (m) 

n�
gb mod p , m · ebA mod p

�
|b $ [2, p� 1]

o
(6.11)

Note that this assumes m < p.
El-Gamal decryption is:

DdA
(x, y) = x�dA · y mod p (6.12)

The correctness property holds since:

DdA
(gb mod p , m· ebA mod p) =

=
h�
gb mod p

��dA ·
⇣
m ·

�
gdA

�b
mod p

⌘i
mod p

=
⇥
g�b·dA ·m · gb·dA

⇤
mod p

= m

Exercise 6.9. Let p = 5.

1. Find a generator for Z⇤
p. (There are only three candidates to try!)

2. Let’s select the private key dA = 2. Compute the public key eA = gdA

mod p.

3. Compute El-Gamal encryption of 4 and of 3: c4 ⌘ EeA(4), c3 ⌘ EeA(3).
Comment: this is a randomized encryption, so another encyrption may
result in a di↵erent output!

4. Compute the decryptions of c4 and of c3.

6.5.3 Homomorphic encryption, Voting and Re-encryption.

The El-Gamal encryption is homomorphic with respect to multiplication.
Namely, there is a ‘ciphertext multiplication’ operation, such that the multi-
plication of two ciphertexts is an encryption of the multiplication of the two

Foundations of Cybersecurity: Applied Introduction to Cryptography



ElGamal Public Key Cryptosystem 
n Problem: 𝑔!"#! mod p may leak bit(s)… 
n `Classical’ DH solution: securely derive a key: 
ℎ 𝑔$"!"𝑚𝑜𝑑 𝑝

n El-Gamal’s solution: use a group where DDH 
believed to hold

n Note: message must be encoded as member of 
the group!

n So why use it? Some special properties… 
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ElGamal PKC: homomorphism
n Multiplying two ciphertexts produces a ciphertext of 

the multiplication of the two plaintexts.
n Given two ciphertexts:

n 𝐸#! 𝑚$ = 𝑥$, 𝑦$ = (𝑔%" mod p, 𝑚$ ∗ 𝑔""#!! mod p)
n 𝐸#! 𝑚& = 𝑥&, 𝑦& = (𝑔%# mod p, 𝑚& ∗ 𝑔!!"#" mod p)

n 𝑀𝑢𝑙𝑡 𝑥%, 𝑦% , 𝑥&, 𝑦& ≡ 𝑥%𝑥&, 𝑦%𝑦&
n Homomorphism: 
n = (𝑔%"(%# mod p, 𝑚$ + 𝑚&∗ 𝑔 ""$"# #!! mod p) =

= 𝐸%! 𝑚& ' 𝑚'

n è compute 𝐸'! 𝑚% 0 𝑚& from 𝐸'! 𝑚% , 𝐸'! 𝑚%
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Fully-homomorphic Encryption? 
n We discussed multiplicative-homomorphism:

n Given: two ciphertexts 𝐸#! 𝑚$ , 𝐸#! 𝑚&

q Compute 𝐸%! 𝑚& ' 𝑚'

n Alternative forms of homomorphism….
q Additive-homomorphism: Compute 𝐸'! 𝑚% +𝑚&

q Fully-homomorphic: both!
n Fully-homomorphic encryption:

q Allows computing arbitrary function 𝐸'! 𝑓(𝑚%, 𝑚& )
n Given only encrypted values: 𝐸#! 𝑚$ , 𝐸#! 𝑚&

n Important… allows computing on encrypted data!!
n Several designs, high overhead; huge research effort to 

reduce this overhead. 
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2002
Turing
Award

RSA Public Key Encryption

n First proposed – and still widely used
n Not really covered in this course – take crypto!
n Select two large primes p,q ; let n=pq

n Select prime e (public key: <n,e>)
q Or co-prime with Φ(n) =(p-1)(q-1)

n Let private key be d=e-1 mod Φ(n) (i.e., ed=1 mod Φ(n))
n Encryption: RSA.Ee,n(m)=me mod n
n Decryption: RSA.Dd,n(c)=cd mod n
n Correctness:  Dd,n(Ee,n(m))= (me)d = med = m mod n

q Intuitively: ed=1 mod Φ(n) è med = m mod n
n But why? Remember Euler’s theorem.
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RSA Public Key Cryptosystem
n Correctness:  Dd,n(Ee,n(m))= med mod n
n med=med= m1+l Φ(n) =m ml Φ(n) =m (mΦ(n) )l 

n med mod n =m (mΦ(n) mod n )l mod n 
n !"#$%&'()$*%$+,-mΦ(n) mod n=1 mod n 
n è Dd,n(Ee,n(m))= med mod n=m 1l mod n =m
n Comments:

q m<n è m= m mod n
q !"#$%&'-()$*%$+-)*#.&-/*0#12-34-m, n 5%$-6*78%3+$&
q !"#$%&#'%()*+,-./#0.-#12+$-.-#3-,+$4-*#52-%*-,

n !"#$%&'"#()"*&+,"%(-./&0"1+23-&#)
n 43)5"6&,(#7"(3+"8%(.&"9 )1:&";+,.)(<



The RSA Problem and Assumption
n RSA problem: Find m , given (n,e) and ‘ciphertext’ value 

c=me mod n
n RSA assumption: if (n,e) are chosen `correctly’, then the 

RSA problem is `hard’
q I.e., no efficient algorithm can find m with non-

negligible probability

q For `large’ n and 𝑚←
$
{1,… , 𝑛}

n RSA and factoring
q Factoring alg è alg to ‘break’ RSA
q Algorithm to find RSA private key è factoring alg
q But: RSA-breaking may not allow factoring 
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RSA PKC Security
n It is a deterministic encryption scheme à

cannot IND-CPA secure.
n RSA assumption does not rule out exposure 

of partial information about the plaintext.
n It is not CCA secure.

A solution: apply a random padding to the 
plaintext then encryption using RSA.
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Padding RSA
n Pad and Unpad functions:

q Encryption with padding:
q Decryption with unpad:

n Required to…
q Add randomization

n Prevent detection of repeating plaintext

q Prevent  ‘related message’ attack (to allow use of tiny e)
q Detect, prevent (some) chosen-ciphertext attacks

n Early paddings schemes subject to CCA attacks
q Even ‘Feedback-only CCA’ (aware of unpad failure)

)mod(
,mod)],([

ncUnpadm
nrmPadc

d

e

=

=

));(( rmPadUnpadm =
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Optimal Asymmetric Encryption Padding (OAEP)
n No chosen-ciphertext attacks: ciphertext ‘proves’ knowledge of plaintext
n Feistel-like; use two crypto-hash functions g, h (assume ‘random’)

q Let 𝐿 be length of input to RSA, 𝜁, 𝜌 ≪ L be ‘security parameters’ (say 80 bits)
q g: ‘random function’ from 𝜌 bits to L-𝜌 bits, h: ‘random function’ from L-𝜌 bits to 

𝜌 bits
q Secure in the random oracle model (ROM) 

Random r
(𝜌 bits)0𝜁

h( )

g( )
Plaintext

Message m
(𝐿 − 𝜁 − 𝜌 bits)

Padded Plaintext  p1 p2

Textbook RSA: 𝑐 = (𝑝$||𝑝%)&mod 𝑛

𝐿 − 𝜌 bits 𝜌 bits
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How does Bob know Alice’s public key?

n Depends on threat model…
q Passive (`eavesdropping`) adversary: just send it
q Man-in-the-Middle (MITM): authenticate 

n Authenticate – how? 
q MAC: requires shared secret key
q Public key signature scheme: 

authenticate using public key
q Certificate: public key of entity – signed by 

certificate authority (CA)



Digital Signature
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Public Key Digital Signatures

n Sign using a private, secret signature key (A.s for Alice)
n Validate using a public key (A.v for Alice)
n Everybody can validate signatures at any time

q Provides authentication, integrity and evidence / non-repudiation
q MAC: ‘just’ authentication+integrity, no evidence, can repudiate

Sign 𝜎← SA.s(m) Verify VA.v(m, σ)
Message

m

Alice’s private
signing key A.s

Key Generation

(A.s,A.v) ←
$

KG 1(

A.s A.v

Alice’s public
verification key A.v

Key length n

𝜎 (m, 𝜎)
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Digital Signatures Security: Unforgeability

n Unforgeability: given 𝑣, attacker should be 
unable to find any ‘valid’ (𝑚, σ), i.e., Vv(m, σ)=OK
n Even when attacker can select messages 𝑚’, receive 

σ’=Ss(m’)
n For any message except chosen m

Sign 𝜎← SA.s(m) Verify VA.v(m, σ)
Message

m

Alice’s private
signing key A.s

Key Generation

(A.s,A.v) ←
$

KG 1(

A.s A.v

Alice’s public
verification key A.v

Key length n

𝜎 (m, 𝜎)



Digital Signature Scheme Definition
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32 CHAPTER 1. INTRODUCTION

1.3.4 Defining correctness requirements

Correctness requirements verify that the scheme operates as expected under
benign operating conditions. For a signature scheme, this simply means that
verification and signing interact as expected. Namely, if (s, v) is a pair of signing
key and corresponding validation key, then validation, using v, of a signature
produced using s would always return ‘Ok’. Let us define more formally a
signature scheme and its correctness requirement. Note that the definition uses
the dot notation introduced above.

Definition 1.4 (Signature scheme and its correctness). A signature scheme is
defined by a tuple of three e�cient (PPT) algorithms, S = (KG,Sign,Verify),
and a set M of messages, such that:

KG is a randomized algorithm that maps a unary string (security parameter
1l) to a pair of binary strings (KG.s(1l),KG.v(1l)).

Sign is an algorithm8 that receives two binary strings as input, a signing key
s 2 {0, 1}⇤ and a message m 2 M , and outputs another binary string
� 2 {0, 1}⇤. We call � the signature of m using signing key s.

Verify is a predicate that receives three binary strings as input: a verification
key v, a message m, and �, a purported signature over m. Verify should
output True if � is the signature of m using s, where s is the signature
key corresponding to v (generated with v).

Usually, M is a set of binary strings of some length. If M is not defined, then
this means that any binary string may be input, i.e., the same as M = {0, 1}⇤.

We say that a signature scheme (KG,Sign,Verify) is correct, if for every
security parameter 1l holds:

⇣
8(s, v) $ KG(1l), m 2M

⌘
Verifyv(m,Signs(m)) = ‘Ok’ (1.31)

Why signing and verifying are deterministic? Note that, for simplicity,
Definition 1.4 requires the signing and verifying algorithms (Sign,Verify, resp.)
to be deterministic, i.e., they cannot use randomness. Extending the definitions
to allow randomized signing and verifying algorithms is not very di�cult - but
a bit hairy - and we will not do that in this textbook.

Now that we have defined signature schemes and their correctness require-
ments, it is time to define also their security requirements, and indeed we do
this in Definition 1.8. However, before we do that, we must introduce some
further notions, used in most definitions of security of cryptographic schemes;
we do this in the following three subsections.

In subsection 1.3.5, we discuss general challenges to defining security of
cryptographic schemes, and how to deal with them. Then, in subsection 1.3.6 we

8In this textbook we only discuss deterministic signing algorithms. However, there are
also randomized signing algorithms, most notably, using the PSS encoding ( [21,152]).
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schemes we define.

Algorithm 1 The existential unforgeability game EUFSign
A,S (1l)(1l) between

signature scheme S = (KG,Sign,Verify) and adversary A.

(s, v)
$ S.KG(1l) ;

(m,�)
$ AS.Sign

s
(·)(v, 1l);

return (S.Verifyv(m,�) ^ (A didn’t request Ss(m)));

Algorithm 1 presents the algorithm for the existential unforgeability game
EUFSign

A,S (1l)(1l), which is the most commonly used security requirement for
signature schemes. The game returns True if the adversary ‘wins’, i.e., if the
attack succeeds, and False if the attack fails. Intuitively, a secure signature
scheme S should ensure that every ‘feasible’ adversary A would ‘almost always’
lose, i.e., Pr(EUFSign

A,S (1l)(1l) = True) would be tiny or negligible, provided

that the security parameter 1l is ‘su�ciently large’. We will properly define
this requirement in Definition 1.6 and Definition 1.8.

Oracle notation. To explain Algorithm 1, let us first explain the expression
AS.Sign

s
(·)(1l) in the second line. This expression uses the oracle notation,

an important notation widely used in complexity theory and cryptography,
sometimes referred to as ‘black box access’ or ‘subroutine access’. We say that
S.Signs(·) is an oracle to the adversary A. This means that A can provide
input binary string x 2 {0, 1}⇤ and receive S.Signs(x), i.e., a signature of x
using the secret key s. Notice that A does not receive details on the ‘internals’
of S.Signs(·), and in particular is not given the secret signing key s. Let us
define oracle access more clearly.

Definition 1.5 (Oracle notation). Let f be a function (or an algorithm im-
plementing a function) and A be an algorithm. We use the notation Af(·) to
denote that algorithm A can provide input strings to f , e.g., x, and receive the
corresponding outputs, e.g., f(x). We refer to f(·) as an oracle.

Explanation of the existential unforgeability game EUFSign
A,S (1l) (Al-

gorithm 1). The game receives only one input, the security parameters 1l, and
has only three steps:

1. Use the key-generation algorithm of the signature scheme, to generate the

signing and verification keys: (s, v)
$ S.KG(1l). We use the

$ symbol
to emphasize that S.KG is a randomized algorithm, i.e., return a random
key pair.

2. Then, we let (m,�)
$ AS.Sign

s
(·)(1l), i.e., the adversary outputs a message

m and a purported forged signature for it, �. The adversary receives oracle
access to the signing algorithm, i.e., can receive the values S.Signs(x) for
any input x chosen by the adversary.
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A, are bounded by a polynomial in the size of their inputs. The inputs to
S.Sign and S.verify include keys generated by S.KG(1l), which allows the
scheme to run time polynomial in 1l. It is therefore ‘only fair’ to give 1l as
input also to the adversary A.

1.3.7 The unforgeability advantage function,
concrete/asymptotic security and negligible functions

The "EUF�Sign
S,A advantage function. The existential unforgeability game

(Algorithm 1) is a random process, which returns the outcome of a random run
of the game, with the given adversary A and signature scheme S. The outcome
is True in runs where the adversary ‘wins’, i.e., outputs a forgery, and False

in runs where the adversary ‘loses’, i.e., does not output a forgery.
The outcome of the game may depend on the (random) keys output by

the (probabilistic) KG algorithm, as well as the outputs of the (randomized)
adversary A. The probability that the adversary wins usually depends on the
security parameter 1l. This probability is called the existential unforgeability
advantage of A against S.

Definition 1.6. The existential unforgeability advantage function of adversary
A against signature scheme S is defined as:

"EUF�Sign
S,A (1l) ⌘ Pr

⇣
EUFSign

A,S (1l)(1l) = True

⌘
(1.32)

Where the probability is taken over the random coin tosses of A and of S during
the run of EUFSign

A,S (1l) with input (security parameter) 1l, and EUFSign
A,S (1l)

is the game defined in Algorithm 1.

The advantage function gives us a measure of the security of the signature
scheme; in particular, clearly, a scheme is secure only if for any e�cient adversary
A, the advantage is small, or better yet, negligible10. Note, however, that for
any fixed value of the security parameter 1l, there is an adversary A that
always wins - i.e., such that "EUF�Sign

S,A (1l) = 1 (Exercise 1.13). Therefore, our
definition of security cannot be bounded to a specific security parameter, and
must consider the advantage as a function.

But which advantage functions are su�ciently-small (or negligible)? There
are two main ways in which we can deal with this question: asymptotic security
and concrete security. In this textbook we will adopt the asymptotic security
approach, which we explain below; but first let us briefly explain the alternative
approach of concrete security.

Concrete security. The concrete security approach uses the advantage func-
tion directly as the measure of security. Namely, in this approach, there is no
explicit definition of a ‘secure’ scheme; each scheme is only associated with

10Unfortunately, no e�cient signature scheme can ensure zero advantage; see Exercise 1.14.
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RSA Signatures
n Secret signing key s, public verification key v
n Short (<n) messages: RSA signing with message recovery
n First attempt:

q RSA.Ss(m)= msmod n, 
RSA.Vv(m,x)={ OK if m=xv mod n; else, FAIL }

q Hmm… for any x, let m=xv mod n ; then RSA.Vv(m,x)= OK 
q Unforgeability requirement fails: attacker has a forgery !

n Preventing `random signatures’ ? 
q RSA.Ss(m)= pad(m)s mod n, 

RSA.Vv(m,x)={OK if m=unpad(xv mod n); else, FAIL}
q Pad, unpad: redundancy added (pad) and verified (unpad)

n Long messages: ??
q Hint: use collision resistant hash function (CRHF) 



The Hash-then-Sign Paradigm
n Challenge: messages are long, PKC is slow
n How to sign long messages – efficiently? 

q Using Collision-Resistant Hash ℎ : 
è infeasible to find pair (x, x’) s.t. x’¹x yet 
h(x)=h(x’)

q And signature scheme (𝑆, 𝑉)
n Solution: 𝑆,- 𝑚 = 𝑆, ℎ 𝑚

q Cf.: hybrid encryption
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Message 𝑚

Hash ℎ

ℎ(𝑚)

Sign 𝑆
𝑆=> 𝑚



Discrete-Log Digital Signature? 
n RSA allowed encryption and signing… 

based on assuming factoring is hard
n Can we sign based on assuming

discrete log is hard? 
n Most well-known, popular scheme: DSA

q Digital Signature Algorithm, by NSA/NIST
q Details: crypto course

n We’ll discuss simpler, less efficient 
ElGamal Signatures
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ElGamal signatures
n Parameters: 𝑝 ← 𝑝𝑟𝑖𝑚𝑒 𝑛 𝑏𝑖𝑡 , 𝑔 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑝)

n Key generation: 𝑠←
$
2, . . , 𝑝 − 2 , 𝑣 ← 𝑔=𝑚𝑜𝑑 𝑝

n Sign: 𝑘←
$
2, . . , 𝑝 − 2| gcd 𝑘, 𝑝 − 1 = 1

q 𝑟 ← 𝑔(𝑚𝑜𝑑 𝑝, 𝑡 ← (ℎ 𝑚 − 𝑠𝑟) ' 𝑘)&𝑚𝑜𝑑 (𝑝 − 1)
q If 𝑡 = 0 then select new 𝑘
q Signature is (𝑟, 𝑡)

n Verify: 𝑔>(?) = 𝑣@𝑟A 𝑚𝑜𝑑 𝑝; 0 < 𝑟 < 𝑝; 0 < 𝑡 < 𝑝 − 1
n Correctness:

𝑔!(#) = 𝑔%&'() = 𝑔% & 𝑔( ) = 𝑣&𝑟) 𝑚𝑜𝑑 𝑝
n 9&30:-;$%+5<'&-()$*%$+,-gb = gb mod (p-1) mod p 
n Efficient off-line sign: precompute 𝑟 ← 𝑔B𝑚𝑜𝑑 𝑝
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