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Outline
q Handshake protocol extensions.
q Key distribution centers.
q Improving resiliency to key exposure.
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Handshake Protocol Extensions
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Authenticated Request-Response Protocols

q Beside authenticating entities, these protocols 
authenticate the exchange of a request and a response 
between the entities.

q Required properties:
q Request authentication.

q The request was indeed sent by the sender.
q Response authentication

q The response was indeed sent by the receiver (to 
which the request was intended).

q No replay.
q Every request/response was received at most the 

number of times it was sent by the sender.
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Authenticated Request-Response Protocols

q Five variants:
q 2PP-RR

q 2PP stands for two party protocol, and RR stands for 
request-response.

q 2RT-2PP
q 2RT stands for 2 round trip.

q Counter-based-RR
q Time-based-RR
q Key-exchange
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2PP-RR
n A three-flow nonce-based protocol.
n Significant drawback:

n The request is sent by the responder and the initiator sends the 
response.

n So initiator must wait for a request rather than sending it!!
260 CHAPTER 5. SHARED-KEY PROTOCOLS

Nurse

Alice Bob

A, NA

req,NB ,MACk(2 ++ ‘A B’ ++NA ++NB ++ req)

resp,MACk(3 ++ ‘A! B’ ++NA ++NB ++ resp)

Figure 5.8: The 2PP-RR protocol: a three-flows nonce-based authenticated
Request-Response protocol, based on 2PP

since round trip times are so important, we next state it as a fact and briefly
explain it.

Fact 5.1 (Round trip times are significant). Typical round-trip times over the
Internet can be quite significant, often 0.1 second or more. This holds even
when using connections with fast transmission rate. For example, sending a
typical request-response, say, each containing 10,000 bytes, over a connection
with a (not very high) transmission rate of 10 million bytes/second, would take
the number of round-trips required (times, say, 0.1 seconds), plus 0.02 seconds
for the transmission time. Clearly, the transmission time is negligible compared
to the round-trip time. The delay is dominated by the number of round-trips
and their round-trip delay.

5.3.2 The 2PP-RR Authenticated Request-Response
Protocol.

We first discuss 2PP-RR, a three-flows nonce-based authenticated Request-
Response protocol, which is a minor extension to 2PP. The 2PP-RR protocol is
illustrated in Figure 5.8. In fact, the only change compared to the 2PP protocol
(Figure 5.6, is the addition of the request (req) from responder to initiator, and
of the response (resp) from initiator to responder, to the second and third flows,
respectively.

The 2PP-RR protocol is simple and not too di�cult to prove secure, by a
reduction to the security of the underlying MAC function. Namely, suppose
that we know an e�cient algorithm (adversary) M which shows that 2PP-RR
does not meet the definition of a secure authenticated request-response protocol
(Definition 5.3). We can show that M produces some MAC without knowing
the key, allowing an e�cient adversary against the MAC function. Hence, if we
use a secure MAC, then 2PP-RR is secure.

This protocol has, however, a significant drawback, which makes it ill-suited
for many applications. Specifically, in this protocol, the request is sent by the
responder, and the initiator sends the response. In most applications, it makes
sense for a party to initiate the protocol when it needs to make some request,
rather than to wait for the initiator to contact it and only then, as a responder,

Foundations of Cybersecurity: Applied Introduction to Cryptography
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2RT-2PP
n A four-flow nonce-based protocol.
n Mainly fixes the drawback of 2PP-RR discussed in the 

previous slide.
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Nurse

Alice Bob

A, NA

NB

req,MACk(3 ++ ‘A! B’ ++NA ++NB ++ req)

resp,MACk(4 ++ ‘A B’ ++NA ++NB ++ resp)

Figure 5.9: 2RT-2PP RR: a two-round-trips Authenticated Request-Response
protocol

send the response. The next protocol is a di↵erent adaptation of 2PP which
avoids this drawback - but requires four flows, i.e., two full round trips.

5.3.3 2RT-2PP Authenticated Request-Response protocol

In Figure 5.9 we present 2RT-2PP RR, another authenticated request-response
protocol based on 2PP. As the name implies, the 2RT-2PP RR protocol requires
four flows, i.e., two round-trips; this is a significant drawback. However, 2RT-
2PP improves upon 2PP-RR in that it authenticates a request from the initiator,
and the corresponding response to it from the responder.

The 2RT-2PP Request-Response protocol involves two simple extensions of
the basic 2PP protocol. The first extension is the transmission and authentica-
tion of the request and response, similarly to their addition in 2PP-RR. The
second extension is an additional (fourth) flow, from the responder back to
the initiator, which carries the response of the responder to the request from
the initiator. In a sense, 2RT-2PP ‘splits’ the contents of the second flow of
the 2PP-RR. In 2RT-2PP, these contents are split between the second flow
(providing the nonce NB) and the fourth flow (providing the authenticated
response).

5.3.4 Counter-based Authenticated Request-Response
protocol

In Figure 5.10 we present the Counter-based Authenticated Request-Response
protocol. In contrast to the 2PP protocols, this protocol requires only one round
trip - sending the (authenticated) request and receiving the (authenticated)
response. However, to prevent replay of previously-sent requests, in only
one round-trip, this protocol requires both parties to maintain a synchronized
counter.

The challenge for this protocol, as well as for the time-based protocol
of the next subsection, is for the responder to verify the freshness of the
request, i.e., that the request is not a replay of a request already received
in the past. Freshness also implies no reordering; for example, a responder,
say Bob, should reject request x from Alice, if Bob already received request

Foundations of Cybersecurity: Applied Introduction to Cryptography



Counter-Based Authenticated RR
n Simple stateful (counter) solution, requiring only one round:

n Unidirectional (if bidirectional is needed, a separate instance of the 
protocol for each direction needs to be executed).

n Parties maintain synchronized counter 𝑖 of requests (and responses) to 
avoid replay attacks. 

n Recipient (e.g., Bob) validates counter received is 𝑖 + 1 
n Both parties must remember counter
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Nurse

Alice (requester)
Init: iA,sent, iA,rec → 0

Bob (responder)
Init: iB → 0

iA,sent → iA,sent + 1
req,A,sent ,MACk(1 ++ ‘A ↑ B’ ++ iA ++ req)

If iA,sent →= iB + 1: ignore
Else; iB ↑ iB + 1

resp, iB ,MACk(2 ++ ‘A → B’ ++ iB ++ resp)

If iA,rec →= iB ↓ 1: ignore
Else: accept resp and set iA,rec ↑ iA,rec + 1

Figure 5.10: The counter-based RR authenticated request-response protocol

of the 2PP-RR. In 2RT-2PP, these contents are split between the second flow
(providing the nonce NB) and the fourth flow (providing the authenticated
response).

5.3.4 The counter-based RR authenticated request-response
protocol

In Figure 5.10 we present the counter-based authenticated request-response (RR)
protocol. This protocol requires only one round trip - sending the (authenticated)
request and receiving the (authenticated) response. However, to prevent replay
of previously-sent requests, in only one round-trip, this protocol requires both
parties to maintain a synchronized counters, i.e, synchronized state.

The Counter-based RR protocol includes a counter in the authenticated
request and response. The requester, e.g., Alice (A), maintains two counters,
both initialized to zero: iA,sent, counting the requests it sent, and iA,rec, counting
the valid responses it received. The responder, e.g., Bob (B), maintains just
one counter, iB , which counts the valid requests it has received so far. All three
counters are initialized to zero.

The protocol maintains these counters synchronized. Namely, if requests and
responses are delivered in the order sent and without duplications or omissions,
then the received counter values will match the values expected by the recipient.

The counter allows both parties to prevent replay or reordering of the
request/response. In particular, the responder validates that the request is
not a replay of a request already received in the past. The protocol allows
multiple concurrent requests, each with a separate counter; the incrementing
counter values would prevent reordering, i.e., if requests 2, 3 and 4 are sent
concurrently, an attacker cannot provide request 4 before requests 2 or 3. The
protocol similarly prevents replay and reordering of responses. The design could
be slightly simplified if there is no need to support concurrent transmission of
requests.

The protocol does not provide retransmissions or any other mechanisms to
handle message-losses or corruptions; with the current design, any such loss or
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Time-Based Authenticated RR
n Simple stateful (time) solution, requiring only one round:

n Use local clocks TA, TB  instead of counters with two assumptions: 
bounded delays and bounded clock skews.

n Responder (Bob): 
n Rejects request if: 𝑇! > 𝑇" + Δ OR if he received larger 𝑇" already

n Where 
n Maintains last 𝑇" received, until 𝑇" + Δ

n Initiator (Alice) does not need any state, when can Bob discard his?
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Nurse

Alice Bob

TA  clkA(·)
req, TA,MACk(1 ++ ‘A! B’ ++ TA ++ req)

req is valid if TA is larger than before,

and TA � clkB(·)��.

resp,MACk(2 ++ ‘A B’ ++ TA ++ resp)

resp is valid if received within 2�, and with correct TA.

Figure 5.11: Time-based Authenticated Request-Response protocol, using a
bound � on the maximal delay plus maximal clock bias. We use clkA(·) to
denote the time according to the local clock of Alice upon sending req, and
clkB(·) for Bob’s clock upon receiving req. Alice sets TA  clkA(·) when she
sends the request, and authenticates it with the request. Bob uses TA to validate
that the request is fresh, using the bound �, and ensuring TA is larger than
previously received TA values.

Bounded delay assumption. Let �delay � 0 denote a bound on the maxi-
mal delay. Namely, if one party sends a message at time t, then this message is
received by t+�delay or earlier.

Bounded clock skew. Let �skew � 0 denote a bound on the maximal clock
skew, i.e., the maximal di↵erence between the values of the clocks of two entities
at any given time. Let clkA(t) (clkB(t)) denote the value of the clock at Alice
(respectively, Bob) at time t; then we have:

clkA(t)��skew  clkB(t)  clkA(t) +�skew (5.5)

The protocol is illustrated in Figure 5.11, with Alice sending the request and
Bob responding. For simplicity, we use a combined bound: � ⌘ �skew+�delay,
and the notation clkA(·), clkB(·) for the value of clkA (respectively, clkB) at
the time Alice sends (Bob receives) the req message.

The protocol at Bob confirms the received request req is valid, as follows:

No modification: compare the received MAC value to the MAC computed
with the correct inputs.

req is a request from Alice to Bob: The fact that the input to the MAC
begins with 1 ++ ‘A! B’ ensures this is a request (first flow) from Alice
to Bob.

No replay: Bob validates that the received value of TA is larger than the
largest previously received value of TA.

Freshness (acceptable delay): Bob validates that the received TA is within
� from its own clock clkB(·) at the time the req is received.

Foundations of Cybersecurity: Applied Introduction to Cryptography
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The protocol at Bob confirms the received request req is valid, as follows:

No modification: compare the received MAC value to the MAC computed
with the correct inputs.

req is a request from Alice to Bob: The fact that the input to the MAC
begins with 1 ++ ‘A! B’ ensures this is a request (first flow) from Alice
to Bob.

No replay: Bob validates that the received value of TA is larger than the
largest previously received value of TA.

Freshness (acceptable delay): Bob validates that the received TA is within
� from its own clock clkB(·) at the time the req is received.

Foundations of Cybersecurity: Applied Introduction to Cryptography
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2RT-2PP with Confidentiality
n Secure connection: authentication, freshness, secrecy

n Independent keys: for encryption k.e, for authentication: k.a
n How can we derive them both from a single key k ? The PRF idea 

from before:
n k.e=PRFk(“Encrypt”), k.a=PRFk(“MAC”)

n Hmm… same key encrypts all messages, in all sessions L
n Can we improve security, by changing keys, e.g., between sessions ? 

A, NA

NB

Ek.e(req) , Mack.a(3 || AàB || NA || NB  || Ek.e(req) )

BobAlice

Ek.e(resp) , Mack.a(4 || AßB ||NA || NB || Ek.e(resp))
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2PP Key Exchange Protocol
n Allows generating independent session keys, i.e., each session will have its 

own key denoted as 𝑘#$.
n These keys are derived from the shared key that we now call a long-term 

‘master key’ denoted as 𝑘%.
n Improves security: 

n Exposure of a session key does not expose the master key, and does not expose 
keys of other sessions. 

n Thus, limited amount of ciphertext exposed if a session key is exposed (only that 
session rather than all ciphertexts of all sessions).266 CHAPTER 5. SHARED-KEY PROTOCOLS

Nurse

Alice

kSi = PRFkM (NA,i ++NB,i)

Bob

kSi = PRFkM (NA,i ++NB,i)

A, NA,i

NA,i, NB,i, PRFkM (2 ++ ‘A B’ ++NA,i ++NB,i)

NB,i, PRFkM (3 ++ ‘A! B’ ++NA,i ++NB,i)

Figure 5.12: The 2PP Key Exchange protocol, shown generating ith session key,
kSi .

5.4.1 The Key Exchange extension of 2PP

In this subsection we discuss a simple extension to the 2PP protocol, which
ensures secure key-setup. This is achieved by outputting the session key kSi as:

kSi = PRFk(NA,i ++NB,i) (5.6)

In Equation 5.6, NA,i and NB,i are the nonces exchanged in the ith session of the
protocol, and kSi is the derived ith session key. We use kM to denote the master
(long-term) shared secret key, provided to both parties during initialization.
The protocol is illustrated in Figure 5.12.

Since both parties compute the session key kSi in the same way from NA,i ++
NB,i and the master key kMi , it follows that they will receive the same key,
i.e., the Key Exchange 2PP extension ensures key agreement. Since the session
keys are computed using a pseudo-random function, kSi = PRFk(NA,i ++NB,i),
it follows that the key of each session is pseudo-random, even given all other
session keys. Namely, the Key Exchange 2PP extension ensures secure key
setup.

Notice that there is another, seemingly unrelated change between the Mutual
Authentication 2PP (Figure 5.6) and the Key Exchange 2PP (Figure 5.12)
protocols, namely, the use of PRF instead ofMAC to authenticate the messages
in the protocol. This change is needed to avoid using the same key in two
di↵erent cryptographic schemes (MAC and PRF), which could, at least in some
‘absurd’ scenarios, be insecure. The change is also allowed, since every PRF is
also a MAC.

5.4.2 Deriving Per-Goal Keys

Following the key-separation principle (principle 7), session protocols often
use two separate keyed cryptographic functions, one for encryption and one
for authentication (MAC); the key used for each of the two goals should be
pseudo-random, even given the key to the other goal. We refer to such keys are
per-goal keys. The next exercise explains how we can use a single shared session

Foundations of Cybersecurity: Applied Introduction to Cryptography
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Key Distribution Centers (KDCs)

Establish a shared key between two or more entities, 
usually with the help of a trusted third party referred 

to as KDC
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Key Distribution Center (KDC)
n Will focus on three party protocols; Alice, Bob, and KDC.
n KDC: shares long-term master keys with all parties (each 

party will have a key for encryption and another for MAC). 
n denoted as  𝑘"# , 𝑘$# , … for MAC and 𝑘"% , 𝑘$% , … for encryption.

n Goal: help parties (A, B) to establish a shared master key 𝑘!"
n Based on which the parties generate two keys for MAC and 

encryption, namely, 𝑘"$# 	𝑎𝑛𝑑	𝑘"$%

n We will study two protocols; simplified versions of:
n The Kerberos protocol (secure) widely used in computer 

networks.
n The GSM protocol (insecure) used by cellular networks.
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The Kerberos KDC Protocol
q KDC shares keys 𝑘"%  (enc.), 𝑘"# (MAC) with Alice and 𝑘$% , 𝑘$# with Bob
q Goal: Alice and Bob share 𝑘"$# , then derive: 𝑘"$% , 𝑘"$#  
q KDC performs access control as well; controlling whom Alice can contact.
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Alice BobKDC

‘Bob’, time, MACkM

A

(time++ ‘Bob’)

cA = EkE

A

(kAB),mA = MACkM

A

(time++ ‘Bob’ ++ cA ++ cB ++mB)

cB = EkE

B

(kAB), mB = MACkM

B

(time++ ‘Alice’ ++ cB)

Use mA to validate cA, then extract kAB ;

k
M
AB  PRFkAB

(‘MAC’), k
E
AB  PRFkAB

(‘Enc’)

cB , mB , cReq = EkE

AB

(Request), mReq = MACkM

AB

(1 ++A! B ++ time++ cReq)

Validate and decrypt cB ,

and derive k
E
AB , k

M
AB

cResp = EkE

AB

(Response),mResp = MACkM

AB

(2 ++A B ++ time++ cResp)

Figure 5.13: Simplified Kerberos Key Distribution Center Protocol. The KDC
shares with Alice kEA for encryption and kMA for MAC, and with Bob, kEB for
encryption and kMB for MAC. The KDC selects a shared session key kAB to
be used by Alice and Bob for the specific session (request-response). Alice
and Bob use kAB and a pseudo-random function PRF to derive two shared
keys, kEAB = PRFkAB

(‘Enc’) (for encryption) and kMAB = PRFkAB
(‘MAC’)

(for authentication, i.e., MAC). All parties validate contents of MACs before
decrypting authenticated ciphertexts.

Note that in the above protocol, the KDC never initiates communication, but
only responds to an incoming request; this communication pattern, where a server
machine (in this case, the KDC) only responds to incoming requests, is referred
to as client-server. Server machines usually use client-server communication,
since it relieves the server (e.g., KDC) from the need to maintain state for
di↵erent clients, except for the long-term keys (e.g., kA and kB). This makes
it easier to implement an e�cient service, especially when clients may access
di↵erent servers.

In Kerberos, the TTP has an additional role: access control. Namely, the
TTP controls the ability of the client (Alice) to contact the service (Bob). In
this case, the mB authenticator will also be a ticket or permit for the use of the
server. Access control is an important aspect of computer and network security.

5.5.2 The GSM Key Exchange Protocol

We next discuss the GSM Key Distribution and Key Exchange protocol, an
important-yet-vulnerable shared-key Key Exchange protocol. This protocol
is performed at the beginning of each connection between a Mobile device
belonging to a user, e.g., mobile phone, a Visited Network (VN), and the user’s
Home Network. The mobile is only connected via the Visited Network, i.e., any
communication between the mobile and the Home Network must be via the

Foundations of Cybersecurity: Applied Introduction to Cryptography
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The GSM Handshake Protocol
q Mobile client

q Identified by 𝑖 (IMSI: International Mobile Subscriber Identifier)
q Visited network (aka Base station); not fully trusted
q Home network; trusted, shares key 𝑘& with client 𝑖272 CHAPTER 5. SHARED-KEY PROTOCOLS

Mobile
client

Visited
network

Home
network

i (IMSI) i (IMSI)

r
$ {0, 1}128

(Kc, s) A38(ki, r)

(r, s,Kc)r

(Kc, s) A38(ki, r)

s

Ok

ECC(m1)�A5/v(Kc, 1)[1 : 114]

ECC(resp1)�A5/v(Kc, 1)[115 : 228]

ECC(m2)�A5/v(Kc, 2)[1 : 114]

ECC(resp2)�A5/v(Kc, 2)[115 : 228]

(...and so on for more messages)

Figure 5.14: The GSM Key Exchange Protocol; the standard defines ‘crypto-
graphic functions’ A38 (defined in the specifications as a OWF, but actually
used as a PRF) and A5 (referred in the specifications as encryption, but actually
also used as a PRF). The standard defines three variants of A5 denoted A5/v
for v 2 {0, 1, 2, 3}, where A5/0 denotes no encryption. The GSM standard also
specifies the Error Correction Code function ECC(·).

Fig. 5.14 also shows an example of two messages m1,m2 sent from Mobile
client to the Visited Network, and two corresponding ‘responses’, resp1, resp2,
sent from the Visited Network to the Mobile client. Note that these do not
have to be really responses to the messages; the Visited Network would send in
the same way any other message to the Mobile client, e.g., from some remote
communicating client - we just used ‘resp’ (for ‘response’) since it seems a bit
clearer, avoiding confusion with messages from the Mobile client. Of course, in
typical real use, the mobile and the Visited Network exchange more that two
messages and responses.

Foundations of Cybersecurity: Applied Introduction to Cryptography

A38: derive secret, random 𝐾& , 𝑠 , 
from 𝐾# and 𝑟. 
GSM spec: OWF, but really should 
be a PRF!
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A5: provide ‘pad’ for encryption

Several variants: 
A5/1 - `regular’ 
A5/2 - `weak’ 
A5/3 – more secure 
Really should be a PRF!

272 CHAPTER 5. SHARED-KEY PROTOCOLS
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Foundations of Cybersecurity: Applied Introduction to Cryptography

ECC: error correcting code. 
Used to allow recovery from 
errors.

Example – Sending two messages
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Kc is the session key
s is a secret 
authenticator

(… and so on for more messages)



Attacks on GSM Handshake Protocol 
n We will explore two attacks:

n Visited network impersonation replay attack.
n We will study this one in detail.

n Ciphersuite downgrade attack.
n Only high level description.
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Visited-network 
Impersonation 
Attack
Note: does NOT 
Impersonate mobile, only 
Visited network. 
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Figure 5.15: The VN-impersonation attack by a MitM attacker on the GSM
Key Exchange. The Key Exchange between the client and the Home Network
is exactly like in Figure 5.14, but here we omit the Home Network and the
messages exchanged between the Visited Network and the Home Network. This
figure is simplified, in particular, it does not include the cipher-negotiation
details; see these in Figure 5.16. A5/v denotes the GSM encryption scheme;
standard values are for v 2 {0, 1, 2, 3}.

in Figure 5.14, except that, for simplicity, Figure 5.15 does not show the
Home Network and the messages exchanged between the Visited Network
and the Home Network.

Cryptanalysis: in the second phase, the attacker cryptanalyzes the cipher-
texts collected during the eavesdrop phase. Assume that the attacker is

Foundations of Cybersecurity: Applied Introduction to Cryptography
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In the cryptanalysis phase, the 
attacker exposes Kc based on 
the cyphertexts it collected in the 
eavesdropping phase (recall 
A5/1 and A5/2 are not secure). 

In the impersonate phase, the 
attacker will send the same r 
and s from before (replay 
attack), which will lead to the 
same Kc he obtained in the 
cryptanalysis phase. 



GSM Ciphersuites Downgrade Attack
• A ciphersuite is the set of cryptographic schemes used in a protocol execution.
• Ciphersuite negotiation:

• Mobile sends a list of cipher-suites it supports
• Visited-network selects best one (the strongest/most secure) that it also 

supports
• Goal of negotiation is to support interoperability between devices of 

different capabilities.
• GSM encryption algorithms 𝐸':

• A5/0: none, A5/1: broken, A5/2: useless (break with only 1sec), A5/3: 
‘other’

• A MitM attacker may trick these parties to use a weak suite although the 
parties can support a stronger one.
• It works due to key reuse in GSM (same key is used across various 

encryption schemes).
• For full details, see the textbook.
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Improving Resiliency to Key Exposure
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Forward Secrecy
n So far: session key 𝑘-. ⇏ 𝑘/

. (expose no other keys) 
n And master key was fixed for all sessions

n Idea: we can do better!
n Change the master key each session: 𝑘01, 𝑘21, …

n Forward Secrecy (FS): master key 𝑘-1 ⇏ 𝑘/(𝑗 < 𝑖) 
n I.e., 𝑘-1(and 𝑘-.) don’t expose keys, communication of 

previous sessions (𝑗 < 𝑖) 

21



Forward Secrecy 2PP Key Exchange
n This protocol generates a different master key for each 

session (or period ) 𝑖	denoted	as	𝑘-1

n The initial master key shared between the parties is 𝑘31

22
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Nurse

Alice

kMi = PRFkM
i→1

(0)

kSi = PRFkM
i
(NA,i ++NB,i)

Bob

kMi = PRFkM
i→1

(0)

kSi = PRFkM
i
(NA,i ++NB,i)

A, NA,i

NA,i, NB,i, PRFkM
i
(2 ++ ‘A → B’ ++NA,i ++NB,i)

NB,i, PRFkM
i
(3 ++ ‘A ↑ B’ ++NA,i ++NB,i)

Figure 5.19: The forward secrecy 2PP key exchange protocol. This protocol is
similar to the 2PP key exchange protocol (Figure 5.12). The main di!erence is
that this protocol uses a di!erent master key kMi for each period i; the initial
master key, shared by the two parties, is kM0 .

of the entity will not compromise the confidentiality of information sent by the
entity or sent to the entity in session i.

Some authors use the term weak forward secrecy to what we define and refer
to as forward secrecy, to emphasize the distinction from the stronger notion of
perfect forward secrecy (which we present later).

We next discuss forward secrecy 2PP key exchange, a forward secrecy variant
of the key exchange 2PP extension, which we discussed and presented earlier,
in subsection 5.4.1. The di!erence is that instead of using a single master key k,
received during initialization, the forward secrecy key exchange uses a sequence
of master keys kM0 , kM1 , . . .; for simplicity, assume that each master key kMi is
used only for the ith key exchange, with kM0 received during initialization.

The key to achieving the forward secrecy property is to allow easy deriva-
tion of pseudorandom future master keys kMi+1, . . . from the current pseudo-
random master key kMi , but prevent the reverse, i.e., maintain the previous
master keys kMi→1, k

M
i→2, . . . , k

M
0 pseudorandom, even for an adversary who knows

kMi , kMi+1, . . .. Namely, the derivation of the master key should be a ‘one-way’
operation. However, this should be done carefully, e.g., deriving future master
keys using a one-way function (OWF) may not be secure.

Exercise 5.6. Consider the following OWF-based derivation of master keys:
kMi = h(kMi→1). Show that this design may not be secure for some one-way
functions.

Hint: Assume a given secure OWF h↑, and use it to construct an intentionally-
weak OWF such that the design is insecure, yet h still satisfies the definition of
a OWF. In particular, notice that the output of a OWF is not required to be
uniformly random.

However, it is not di"cult to design a secure process for deriving the master
keys by using an appropriate cryptographic scheme such as a PRF (or a block
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Forward Secrecy 2PP Key Exchange
n This protocol produces unidirectional master keys:

 𝑘-1 ⇒ 𝑘-401  but 𝑘-401 ⇏ 𝑘-1

n Exposing a session master key does not impact prior 
sessions.
n But future sessions will be exposed! 
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Secure
kM1 = PRFkM

0
(0)

kS1 = PRFkM
1
(NA,1 ++NB,1)

Exposed
kM2 = PRFkM

1
(0)

kS2 = PRFkM
2
(NA,2 ++NB,2)

Remains insecure

kM3 = PRFkM
2
(0)

kS3 = . . .

Figure 5.20: Result of running the forward secrecy 2PP key exchange for three
periods, with the keys exposed in the second period. Periods prior to the
exposure (in this example, only the first period) remain secure even after the
period where keys are exposed. Periods from the exposure onward are insecure.

cipher). In particular, consider the following design using a secure PRF denoted
simply PRFk(·):

kMi = PRFkM
i→1

(0) (5.3)

The session key kSi for the ith session can also be easily derived using the
same PRF and master key. One way to derive the session keys is using the
corresponding minor change to Equation 5.2, namely:

kSi = PRFkM
i
(NA ++NB) (5.4)

The resulting forward secrecy 2PP key exchange protocol is illustrated in
Figure 5.19. The use of NA and NB in Eq. (5.4) is not really necessary, since
each master key is used only for a single key exchange.

The Forward-Secure 2PP key exchange protocol ensures that the communi-
cation in any period that completed before any key exposure, remains secure
regardless of key exposures in later periods. See Figure 5.20.

5.6.2 Recover security key exchange protocols

We use the term recover security to refer to key setup protocols where a single
session without eavesdropping or other attacks su!ces to recover security from
previous key exposures. Definition follows.

Definition 5.2 (Recover security key exchange). A key exchange protocol
recovers security if session i is secure, i.e., kMi , the master key of session i, is
pseudorandom, when either of the following holds:

No attack during session: during session i, there was no exposure of the
master key kMi , and all of the key exchange messages were delivered
correctly, without eavesdropping, injection or modification.

Preserve security from previous session: during session i there was no
exposure of the master key kMi , and the previous session (i→1) was secure,
i.e., kMi→1 is pseudorandom.
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Recover Security (RS)
n  Can we recover security? So if 𝑘-1is exposed, yet future 

sessions can remain secure? 
n Idea: assume no attack during a ‘recovery session’.

n Thus, recover security means that a single session without 
eavesdropping or other attacks suffices to recover security 
from previous key exposures.

n We can achieve that using a modified version of the 2PP 
protocol key exchange protocol (se next slide).
n Thus, we get BOTH forward secrecy and recover 

security with this protocol.

24



2PP Key Exchange with RS and FS
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Secure
(MitM attacker)

kM1 = PRFkM
0
(NA,1 →NB1)

kS1 = PRFkM
1
(NA,1 ++NB,1)

kM

1 or kM

2 exposed
kM2 = PRFkM

1
(NA,2 →NB2)

kS2 = PRFkM
2
(NA,2 ++NB,2)

Remains insecure
(If attacker eavesdrops)

kM3 = PRFkM
2
(NA,3 →NB3)

kS3 = PRFkM
3
(NA,3 ++NB,3)

Recover security
(If no attack)

kM4 = PRFkM
3
(NA,4 →NB4)

kS4 = PRFkM
4
(NA,4 ++NB,4)

Remains secure

(MitM attacker)
kM5 = PRFkM

4
(NA,5 →NB5)

kS5 = . . .

Figure 5.21: The recover security 2PP key exchange protocol, running the
recover security key exchange protocol for five periods. The master key and the
session key are exposed in the second period; security is recovered after at the
fourth period since there is no exposure of the master key and no network attack
(not even eavesdropping). Periods prior to the exposure (in this example, only
the first period) remain secure even after the period where the keys are exposed.
Periods after exposure, e.g., period 3, remain insecure, until a ‘recovery period’
(in this example, period 4) where there is no attack. Following recovery period,
security is maintained until the next exposure.

The forward-secure 2PP key exchange protocol (Figure 5.19) ensures forward
secrecy - but not recover security. This is since the attacker can use one exposed
master key, say kMj , to derive all the following master keys, including kMi for
i > j, using Equation 5.3; in particular, kMj+1 = PRFkM

j
(0).

However, a simple extension su!ces to ensure recover security, as well as
forward secrecy. One way to extend the protocol to ensure also recover security
is to use the random values exchanged in each session, i.e., NA,i, NB,i, in the
derivation of the next master key, e.g., as follows:

kMi = PRFkM
i→1

(NA,i →NB,i) (5.5)

We refer to this protocol as the recover security 2PP key exchange protocol, and
illustrate its operation in Figure 5.21.

By computing the new master key using the nonces (and the previous master
key), the new master key would be secret provided that at least one of the
nonces or the previous key is secret. Since the recover security requirement
assumes at least one session where the attacker does not eavesdrop or otherwise
interfere with the communication, then both NA,i and NB,i are secret, hence
the new master key kMi is secret. Indeed, we could have used just one of NA,i

and NB,i; by XOR-ing with both of them, we ensure secrecy of the master key
even if the attacker is able to capture one of the two flows, i.e., even stronger
security.

Two notes are in order. The first note is that, as described, the protocol
is fragile, in the sense that an attacker who sends corrupted nonce value
to one (or both) parties in a given period, can prevent recovery of (secure)
communication in future rounds. This can be improved with some additional
protocol complexity; we leave it as a challenge to the interested reader.

The second note is that the protocol requires the parties to have a source of
true randomness, i.e., a source which produces random bits even if the party
is broken-into, ensuring indistinguishability even against a computationally-
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So now generating a session master key not only requires prior session 
master key but also the random nonces that the parties exchanged in the 
session (as part of the 2PP protocol).

n  Run the 2PP key exchange protocol from before but 
generate the master session keys in a slightly different way.
n And of course, you get recover security if there is a single session 

that is attack free.



Covered Material From the Textbook
q Chapter 5

q Section 5.3
q Section 5.4 
q Section 5.5

q Except Sections 5.5.4 and 5.5.5 (only what we 
covered in class about these sections)

q Section 5.6
q Except Section 5.6.3
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