
CSE 3400/CSE 5850 - Introduction to Cryptography &
Cybersecurity / Introduction to Cybersecurity

Lecture 7
Hash Functions – Part II

Ghada Almashaqbeh
UConn

Adapted from textbook slides

Outline
q Hash based MACs.
q Accumulators.

q Merkle-Damgard.
q Merkle trees.
q Blockchains.

2

3

Hash based MAC
n Hash-based MAC is often faster than block cipher-

based MACs.
n How? Heuristic constructions:

n Are these secure assuming CRHF? OWF? Both?
n No.

n But: all are ‘secure in the random oracle model’: when
the hash function is assumed to behave like a random
function.

202 CHAPTER 4. HASH AND DIGEST SCHEMES

most widely used applications of hash functions - the construction of a Message
Authentication Code (MAC) scheme from a hash function; we show several
constructions which are secure under ROM but insecure under the standard
model.

4.6.1 HMAC and other constructions of a MAC from a
Hash function

One common use of cryptographic hash functions, is for message authentication,
by implementing a MAC function. The common motivation is that some
cryptographic hash functions are extremely e�cient, and this e�ciency can be
mostly inherited by HMAC. For example, the Blake2b [4] cryptographic hash
function achieves speeds of over 109 bytes/second, using rather standard CPU
(intel I5-6600 with 3310MHz clock).

About the terms: keyed hash vs. MAC. Constructions of MAC func-
tions from hash functions are often referred to as keyed hash, where they assume
that the hash function is ‘keyed’, in some way, using a secret key k. This
di↵ers from the ‘standard’ use of the term ‘keyed hash function’, which we
adopt, where the key k is not secret (i.e., we assume that k is known to the
adversary). Indeed, why use ‘keyed hash’ to mean exactly the same thing as
MAC? And surely we can’t only use ‘keyed hash’ to mean MAC, considering
MAC functions may be constructed in di↵erent ways, e.g., from a block cipher,
e.g., the CBC-MAC (subsection 3.5.2)!

Security of constructions of MAC from hash. Let us return to the
‘real’ question: how to construct a MAC from a cryptographic hash? Many
heuristic proposals were made, mostly constructing the MAC from a keyless
hash function. Three of the most well known heuristics were presented and
compared by Tsudik [186]. Given keyless hash function h, key k and message
m, these are:

Prepend Key: MACPK
k (m) = h(k ++m)

Append Key: MACAK
k (m) = h(m++ k)

Message-in-the-Middle: MACMitM
k (m) = h(k ++m++ k)

An obvious question is whether these schemes are secure - assuming that the
cryptographic hash function h satisfies some assumption. Let us first observe
that all three constructions are secure under the ROM.

Exercise 4.15. Prove that (a) MACPK , (b) MACAK and (c) MACMitM are
secure under the ROM.

Proof sketch: assume an adversary outputs m,� for a message m which it
did not give as input to the ‘oracle’ for h. Then the output of the corresponding
h function, was never computed yet, i.e., it is still random. For example,

Foundations of Cybersecurity: Applied Introduction to Cryptography

4

Hash-based MAC: HMAC
n HMAC uses an unkeyed hash function ℎ:

HMACk(x)=h(kÅ opad || h(k Å ipad || x))
q opad, ipad: fixed sequences (of 36x, 5Cx resp.)

q It is a secure MAC under ‘reasonable assumptions’ [beyond our scope]
n Widely deployed
n More results, more exposure è confidence!
n Hash functions are useful for MACs in another way:

q Hash then MAC for efficiency.

Accumulators
n Generalization of collision-resistant hash

q Input is a sequence (ordered list) of messages
q Output is n-bit digest, denoted Δ

n Collision resistance accumulator means that
it is hard to find two different message lists
that have the same digest.

5

Accumulator Components
n Digest function ∆: 𝑚!𝜖 0,1 ∗ → 0,1 𝒏

q Also called accumulate function.
q Collision-resistance requirement

n Validation of Inclusion: 𝑃𝑜𝐼 and 𝑉𝑒𝑟𝑃𝑜𝐼
q 𝑃𝑜𝐼 function: compute Proof of Inclusion
q 𝑉𝑒𝑟𝑃𝑜𝐼 function: verify PoI
q Optional, also Proof-of-Non-Inclusion (PoNI)

n Extending the Sequence: Extend function with
optional 𝑃𝑜𝐶 and 𝑉𝑒𝑟𝑃𝑜𝐶
q 𝑃𝑜𝐶: Proof of Consistency (from old digest to new)
q 𝑉𝑒𝑟𝑃𝑜𝐶 function: verify PoC

6

Correctness and Security for PoI and
PoC

7

n Correctness means that on input a valid PoI,
VerPoI will output 1.
q Same for PoC.

n For PoI: security means that a PPT adversary
cannot forge a valid PoI for a message that is no
the hashed list.

n For PoC: security means that a PPT adversary cannot
forge a valid PoC for an invalid digest extension.

We will Study Three Accumulator
Types
n Merkle-Damgard accumulators.
n Merkle trees.
n Blockchains

8

9

The Merkle-Damgard Accumulator

n Idea: hash iteratively, message by message:
 Δ 𝑚!, … , 𝑚" = ℎ Δ 𝑚!, … , 𝑚"#! | 1 |𝑚" 	 ; 	 Δ 𝑚! = ℎ 0$%!||𝑚!

n If	ℎ is a CRHF, then Δ is a collision-resistant digest
q Proof… (out of scope, but you can see details in textbook)

10

Merkle-Damgard Length-Padding
n Aka Merkle - Damgard Strengthening
n Let pad(x)=1||0k||bin (|x|) ; x’=x||pad(x)

q Where bin (|x|) is the n–bit binary representation of |x|
n For i=1, ..., l, where l = |x’|/n, and let x’i is the ith n-bit block of x’.

n Apply the construction in the prior slide to obtain the digest of x’

This is just a high level idea, care needed to avoid collisions

The Digest-Chain Extend Function
n Beyond digest and collision resistance: sequence-related

integrity mechanisms
n For digest-chain, the extend function:

q Input: digest and ‘next’ sequence
q Output: digest (of entire sequence)
q Correctness requirement:

11

210 CHAPTER 4. HASH AND DIGEST SCHEMES

Exercise 4.18. Assume that |m1| = n, and consider a variant on the MD
construction where we change Equation 4.22 so that for l = 1, we have:
MDh.� ({m1}) ⌘ m1. This variant ‘saves’ a hash operation; however, show
that it may allow collisions.

4.7.3 The Extend Function and Validation of Entries and
Extensions

Digest schemes provide additional integrity mechanisms beyond collision resis-
tance. These mechanisms are useful for many applications and situations, in
which the sequence of messages is dynamic, such a in a log scenario. Clearly, in
a log, new messages may be added over time. Furthermore, we may want to
add messages to the log, to validate that a particular message appears in the
log, or to validate that a new digest of a log is consistent with a previous digest,
all without re-using the entire set of messages. There are two motivations for
not requiring the entire set of messages: improved e�ciency - and allowing
validation and log-extension by di↵erent parties, who may not even possess all
the messages in the log. The reader may already see how this will soon bring
us to more elaborate digest schemes, such as Merkle digests and Blockchains -
the topics of the following two sections.

However, for now, we still continue to discuss the simpler digest-chain
scheme. Our discussion so far was limited to the digest function, which can
be viewed as a very basic digest-chain scheme; we now extend it, to define a
‘proper’ digest-chain scheme.

The extension involves only one more function, which we actually refer to
as the extend function, and denote Extend. This function receives the ‘current’
digest and a sequence of (one or more) additional (‘new’) messages, and produces
the ‘new’ digest. The only additional requirement we need to make is that the
extend function is consistent with the digest function, i.e., that for any given
�l = �(Ml) and sequence of additional messages Ml+1,l0 , holds:

Extend(�l,Ml+1,l0) = �(Ml ++Ml+1,l0) (4.27)

The definition of a digest-chain scheme and its security requirements follows.

Definition 4.14. A Digest-Chain scheme is a pair (�, Extend) of PPT-
computable functions:

� is a digest function as defined in Definition 4.13.

Extend is the extend function, whose inputs are a digest �l and a sequence
of ‘additional’ messages Ml+1,l0 , and whose output is a ‘new’ digest �l0 .

A digest-chain scheme is correct if for any given �l = �(Ml) and sequence
of additional messages Ml+1,l0 , Equation 4.27 holds.

A digest-chain scheme is secure if it is correct and its digest function is
collision-resistant (see Definition 4.13).

Foundations of Cybersecurity: Applied Introduction to Cryptography

12

… 𝑚!𝑚"

The Merkle-Damgard Extend Function
n We can define Extend for Merkle-Damgard:

q Idea: Just continue last digest!

n Not secure to be used to construct a MAC!

h1 h Ext(Δ, 𝑚", … , 𝑚#)ℎ(Δ||1||𝑚")Δ
1

4.7. MERKLE-DAMGÅRD CONSTRUCTION 211

In spite of this simple definition and requirements, there are three di↵erent
ways to use the Extend function, for di↵erent applications and scenarios:

Extend current digest: this is direct use of � to extend the sequence of mes-
sages,Ml = {m1, . . . ,ml}, with additional messagesMl+1,l0{ml+1, . . . ,ml0 .
The digest function will receive as input the current digest �l = �(Ml),
and the sequence of additional messages Ml+1,l0 , and produce the new
digest �l0 . The basic correctness property is that this would be the digest
of the entire sequence, i.e., that �l0 = �(Ml ++Ml+1,l0).

Validate digest consistency: in this use-case, the current digest �l and the
new digest �l0 are computed by one entity, e.g., a bank, and received
by a di↵erent entity, Val, e.g., a customer. Val may want to validate
that �l0 is consistent with �l, and with a given set of new messages,
e.g., transactions, Ml+1,l0{ml+1, . . . ,ml0 . Namely, Val needs to know that
�l0 = �(Ml ++Ml+1,l0 , for some set of messages Ml, committed-to by the
old digest �l, i.e., �l = �(Ml). Notice that in some applications, Val may
not even be interested in the specific additional transactions in the set
Ml+1,l0 , but they must be used for validation when using a digest-chain
scheme; this will be avoided in the Merkle-digest scheme and Blockchain
scheme, presented in the following sections.

Validate Inclusion: in this use-case, Val is an entity who has a digest �l0 ,
and receives a particular message ml+1. Val wants to validate that ml+1

appeared in the sequence whose digest is the known �l0 , possibly also
with its sequence number. To this end, Val must be provided with the
�l = �(Ml) and with the entire sequence of additional messages Ml+1,l0 ,
and use these to reproduce �l0 .

The Merkle-Damg̊ard extend function. As mentioned in subsection 4.6.1,
it is well known that the Merkle-Damg̊ard construction allows extension; in
fact, for some applications such as MAC, this is not always a welcome feature.
However, this is a required feature for a digest-chain scheme. We therefore
define the Merkle-Damg̊ard extend function MDh.Extend, based on a hash
function h:

MDh.Extend (�, {m1, . . . ,ml}) ⌘

8
>><

>>:

Let �1 h(�++ 1 ++m1)
For l = 1: �1

For l > 1:
MDh.Extend (�1, {m2, . . . ,ml})

(4.28)

Lemma 4.4. If h is a CRHF, then (MDh.�,MDh.Extend) is a secure digest-
chain scheme.

Proof: Correctness follows by substituting using the definitions of the
functions, and collision resistance of MDh.� was proven in 4.2.

Foundations of Cybersecurity: Applied Introduction to Cryptography

Two-layered Merkle Tree
n Short digest validates integrity of large object

q Often, object consists of multiple ‘files’

n Merkle tree : integrity for many ‘messages’
q Hash each ‘message’ in block, then hash-of-hashes

𝛿 = ℎ(ℎ 𝑚" ||ℎ 𝑚$ ||ℎ 𝑚% ||ℎ 𝑚&)
q Validate each ‘message’ independently

n Advantages: efficiency (computation, communication) and privacy

13

𝑚" 𝑚# 𝑚$ 𝑚%

ℎ
ℎ(𝑚")

ℎ
ℎ(𝑚#)

ℎ
ℎ(𝑚$)

ℎ
ℎ(𝑚%)

ℎ
𝛿

Two-layered Merkle tree
n Hash each item in block separately:

𝑥" = ℎ 𝑚" , 𝑥$ = ℎ 𝑚$, …
n Digest is hash of hashes:

𝑦 = ∆ 𝑚",𝑚$,… = ℎ 𝑥"||𝑥$|| …	

14

𝑚" 𝑚# 𝑚$ 𝑚%

ℎ
ℎ(𝑚")

ℎ
ℎ(𝑚#)

ℎ
ℎ(𝑚$)

ℎ
ℎ(𝑚%)

ℎ
𝑦

𝑥" 𝑥# 𝑥%

Allows each user to receive, validate only required items. How?

To verify inclusion of 𝑚!…

15

𝑚#

ℎ
ℎ(𝑚#)

ℎ
𝑑

𝑥"
𝑥#

𝑥%

Receive and validate only 𝑚#. Other hashes still required, though.

𝑥$

16

The Merkle Tree Construction
n Reduce length of ‘proofs’ – send less hashes of ‘other msgs’

17

Merkle Tree: Proof of Inclusion (PoI)
n To prove inclusion of 𝑚% , send also ‘proofs’: ℎ".$, ℎ&

Blockchains
q Seperate slide set.

18

Covered Material From the Textbook
q Chapter 3: Sections 3.7, 3.8, and 3.9

q Only the material that corresponds to what we
covered in class

q Chapter 4: Section 4.4.5

19

