CSE 3400/CSE 5850 - Introduction to Cryptography &
Cybersecurity / Introduction to Cybersecurity

Lecture 7/
Hash Functions — Part I1

Ghada Almashaqgbeh
UConn

Adapted from textbook slides

Outline

Hash based MACs.

Accumulators.

o Merkle-Damgard.
o Merkle trees.

o Blockchains.

Hash based MAC

Hash-based MAC is often faster than block cipher-
based MACs.

How? Heuristic constructions:
Prepend Key: MACLE (m) = h(k 4 m)
Append Key: MACE (m) = h(m + k)
Message-in-the-Middle: M ACM*M (m) = h(k 4 m + k)

Are these secure assuming CRHF? OWF? Both?

No.

But: all are ‘secure in the random oracle model’: when
the hash function is assumed to behave like a random
function.

Hash-based MAC: HMAC

HMAC uses an unkeyed hash function h:
HMAC,(x)=h(k@opad || h(k @ipad || x))
0 opad, ipad: fixed sequences (of 36x, 5Cx resp.)
o Itis a secure MAC under ‘reasonable assumptions’ [beyond our scope]
Widely deployed
More results, more exposure = confidence!
Hash functions are useful for MACs in another way:
o Hash then MAC for efficiency.

Accumulators

Generalization of collision-resistant hash

o Input is a sequence (ordered list) of messages
o Output is n-bit digest, denoted A

Collision resistance accumulator means that

it is hard to find two different message lists
that have the same digest.

Accumulator Components

Digest function A: {m;e{0,1}*} — {0,1}"
o Also called accumulate function.
o Collision-resistance requirement

Validation of Inclusion: Pol and VerPol

o Pol function: compute Proof of Inclusion

o VerPol function: verify Pol

o Optional, also Proof-of-Non-Inclusion (PoNI)
Extending the Sequence: Extend function with
optional PoC and VerPoC

o PoC: Proof of Consistency (from old digest to new)
o VerPoC function: verify PoC

Correctness and Security tor Pol and

PoC

Correctness means that on input a valid Pol,
VerPol will output 1.

o Same for PoC.
For Pol: security means that a PPT adversary

cannot forge a valid Pol for a message that is no
the hashed list.

For PoC: security means that a PPT adversary cannot
forge a valid PoC for an invalid digest extension.

We will Study Three Accumulator
Types
Merkle-Damgard accumulators.

Merkle trees.
Blockchains

The Merkle-Damgard Accumulator

|dea: hash iteratively, message by message:

A(my, ..., my) = h(A(m, ...

, m_)|[1][my) ; A(m,) = h(0n+1||m1)

If h is a CRHF, then A is a collision-resistant digest

o Proof... (out of scope, but you can see details in textbook)

0 —» 1 —> 1 —» 1 —
om ,?‘ :?‘ :7‘ > h —>
| Aqmb | AUmime) | Adma,ma,ma}) A({m1,mz,m3,m4})

Merkle-Damgard Length-Padding

Aka Merkle - Damgard Strengthening
Let pad(x)=1||0"|bin (|x|) ; x =x||pad(x)
o Where bin (x|) is the n—bit binary representation of |x|
Fori=1, ..., [, where [= |x’|/n, and let x’;is the i n-bit block of x’
Apply the construction in the prior slide to obtain the digest of x’

This is just a high level idea, care needed to avoid collisions

10

The Digest-Chain Extend Function

Beyond digest and collision resistance: sequence-related
integrity mechanisms

For digest-chain, the extend function:
o Input: digest and ‘next’ sequence

o Output: digest (of entire sequence)
o Correctness requirement:

Extend(Ay, Myi1) = A(M; 4+ Myyq)

11

The Merkle-Damgard Extend Function

We can define Extend for Merkle-Damgard:
o ldea: Just continue last digest!

(Let Ay < h(A 414 mq)
For [l =1: A4
For [> 1:
Mmo" Extend (A1, {ma, ..., m;})

Mmo" Extend (A, {m1,...,m;}) = <

\

Not secure to be used to construct a MAC!

my my
1— 1 pl - Ext(a, (my, ... , m)))

A h(A[[1]jmy)

12

Two-layered Merkle Tree

Short digest validates integrity of large object
o Often, object consists of multiple ‘files’

Merkle tree : integrity for many ‘messages’
o Hash each ‘message’ in block, then hash-of-hashes
6 = h(h(mq)||h(m2)||h(m3)||h(m4))
o Validate each ‘message’ independently
Advantages: efficiency (computation, communication) and privacy

mq my msa Mmy

h h h S Nk

h(m,) h(m;) h(ms) h(m,)
\>\> 4/4/

N h
)

13

Two-layered Merkle tree
Hash each item in block separately:
x1 = h(my),x; = h(my),
Digest is hash of hashes:
y = A(mq,my,...) = h(xq||x2]] ...)

h(m,) h(m;) h(ms) h(m,)
N 4/4%

{Allows each user to receive, validate only required items. How? }

14

To verify inclusion ot ms ...

2IMT . A(mq,..., my)
2IMT .Pol((my,..., mp),7)

h|lh(m;) # ... # h(my)]

{h(mi)}izy

[TRUE if z; = h(m), and]
d= h(zy#...H# =)

11l

2QAMT .VerPol(d,m,i,{z;}_,)

my
N\ h

<Receive and validate only m,. Other hashes still required, though. >

15

‘ The Merkle Tree Construction

= Reduce length of ‘proofs’ — send less hashes of ‘other msgs’

m) mso ms3 m4

] T =

\ hi -4 =h(hy 24 hs 1) /

{ HL=0: h(m;)

MTA(A[) = Else h (MTA (ml, ceeyMoL—1) " L u

HMT.A(mor—144,...,moL))

Merkle Tree: Proot of Inclusion (Pol)

= To prove inclusion of my

7

ma ms3

Nt/

\i<
h,y

2/

Nt

AN

, send also ‘proofs’: h{_5, hy

™

«/

\ hy -4 =h(hy 2 # h3 1)

/

)_/

17

‘ Blockchains

0 Seperate slide set.

18

Covered Material From the Textbook

Chapter 3: Sections 3.7, 3.8, and 3.9

o Only the material that corresponds to what we
covered in class

Chapter 4: Section 4.4.5

19

Thank Youl

