
CSE 3400/CSE 5850 - Introduction to Cryptography &
Cybersecurity

/ Introduction to Cybersecurity)

Lecture 5
Message Authentication Codes

Ghada Almashaqbeh
UConn

Adapted from the textbook slides

Outline
• Motivation.
• Message authentication codes (MACs)

definition.
• MAC security definition.
• MAC constructions.
• Combining message authentication and

encryption.

2

Encryption Ensures Confidentiality

q Man-in-the-Middle attacker
‘learns nothing’ about message

3

k

E Dm=“Hello”
c=Ek(m)

k

m
c

Integrity and Authentication?

q How can the recipient know that the message was
not tampered with and it is the original one sent by
the sender?

4

k

E Dm=“Hello”
c=Ek(m)

k

m‘=Dk(c’)c'
m’=“Bye”

Does Encryption Prevent Forgery?
q Cannot be guaranteed.

q Several secure encryption schemes are malleable (an
attacker might be able to alter the ciphertext, and hence,
the decrypted plaintext will be different).

q Clearly not for bitwise stream ciphers (& OTP).
q Given c=mÅk, attacker can send cÅmask, to invert any

bit in decrypted message.
q Example, send “Pay Bob $100” encrypted using OTP.

q Eve can change it to “Pay Eve $100” (note that this is a
KPA attacker). How?
q Take the ciphertext of the letter “B” above, denote it as c[4].
q Note that c[4] = k[4] Å “B” (note that we do know the key!)
q Compute a mask that does the following: c[4] Å mask = k[4] Å “E”

(this boils down to computing “B” Å mask = “E”)
q Repeat that for the rest of the letters.

5

Message Authentication Codes (MACs)
n A MAC allows a recipient to validate that a message

was not tampered with and that it was sent by a key
holder

Key k
Key k

m=“Hi”, MACk(m)

Valid MAC è Only Sponge
and I know k. So he sent m.

6

It is a symmetric key
setup!

Message Authentication Codes (MACs)
n Use shared key k to authenticate messages
q Pair (tag , m) is valid iff tag=MACk(m)
n Very efficient
n Does not support non-repudiation!

n Sponge may say that the key k has
been stolen, and so someone else sent
the message.

Alice

“Hi” “Bye”

Key k Key k

MACk(“Hi”) tag ??
++

k = ??
MACk() = ??“Bye”

7

Defining MAC Security
n Following the `conservative design principle’:
n Consider most powerful attacker

n Let attacker receive tag for any message it wants (so it
has an oracle access to MACk).

n And `easiest’ attacker-success criteria
n Attacker wins if it can produce a valid tag for any

message
n Except for these that the attacker asked to authenticate

8

MAC Security Definition

9

246 CHAPTER 4. SYMMETRIC-KEY MESSAGE AUTHENTICATION

Definition 4.1 (MAC). For any givne integer l and domain D, a func-
tion fMAC : {0, 1}→ → D ↑ {0, 1}l is called a (secure) MAC if for all ef-
ficient algorithms A, the advantage function ωMAC

fMAC ,A(n) is negligible in n

(ωMAC
fMAC ,A(n) ↓ NEGL(n)), i.e., smaller than any positive polynomial for su!-

ciently large n (as n ↑ ↔), where:

ωMAC
fMAC ,A(n) ↗ Pr

k
$↑{0,1}n

[
(m, fMAC

k (m)) ↘ AfMAC
k (·|except m)(1n)

]
≃ 1

2l
(4.1)

The probability is taken over the uniformly-random choice of an n bit key,
k

$↘ {0, 1}n, as well as over the coin tosses of A.

The definition has a lot in common with the definition of existential-
unforgeability of signature schemes (subsection 1.5.1). One obvious di!erence
is that the adversary does not receive the public signature verification key v. A
more subtle change is that the advantage is computed relative to 2↓l, where l is
the size of the output of the MAC. Signature schemes usually have su"ciently
long outputs, so that the probability of the attacker to win is negligible; many
MAC schemes, for e"ciency, have rather short l-bits output, therefore the
advantage is computed with respect to a random guess of an l-bits, i.e., 2↓l.

Notice that the definition does not require the ‘forged’ message to be
‘meaningful’; this means that it isn’t always trivial to exploit a vulnerable MAC.
Following the ‘conservative design principle (Principle 3), the definition does
not attempt to predict which forgeries will be meaningful, instead forbidding
any forgery.

Oracle notation. The definition uses the oracle notation AfMAC
k (·|except m)

(Definition 1.3) to imply that the adversary can give arbitrary inputs m↔ ⇐= m
and receive the corresponding value fMAC

k (m↔). Notice the exclusion of the
message m, i.e., the adversary cannot receive directly fMAC

k (m), since this
would have made the attack trivial (and prevented any secure MAC). We say
that the adversary A has an oracle to the MAC function fMAC

k (·) (excluding
the message m).

The advantage function ωMAC
fMAC ,A(n) and key length n. The definition

is for l-bit MAC, i.e., the output is always a binary string of length l. Hence,
a random guess at the MAC of any input message m would be correct with
probability 2↓l. Therefore, we defined the advantage function ωMAC

fMAC ,A(n) as
the probability that the adversary finds a correct MAC value for a message
m (not input to the oracle), minus the ‘base success probability’ of 2↓l. The
function fMAC is a (secure) MAC, if this advantage ωMAC

fMAC ,A(n) is negligible.
The key length is denoted n, and in the definition, should not be bounded.

The reason that the key cannot be bounded is that the advantage of the
adversary over random guess, should be negligible in n, i.e., converge to zero
as n grows, faster than any (strictly positive) polynomial in n. In practice,

Applied Introduction to Cryptography and Cybersecurity

On the Use of MACs
n MACk(m) may expose information about m!

q Example: Let MAC be any secure MAC. Define
MAC’k(m)=MACk(m)||Lsb(m), where Lsb is least significant bit.

n MAC shows a key-holder computed it
n Could be any key holder (even recipient)…

n Replay attacks: an old message (and its tag) is being resent.
n Need to Ensure freshness (more about this later).

Key k Key k

m=“Hi”, MACk(m)

Key k

Cat, Sponge
(or I) sent m.

10

Constructing MAC: Three Approaches
1. Design `from scratch`, validate security by failure

to cryptanalyze
q Huge effort, risk à do only for few `building blocks`
q Maybe from EDC (Error Detection Code), but it is not

secure for every EDC.
2. Robust combiner of (two) MAC candidates:

q MACk,k’(m)=fk(m)||f’k’(m), MACk,k’(m)=fk(m)Åf’k’(m) are

secure MAC, if either f or f’ is a secure MAC.

3. Provable-secure constructions from:
q PRF/PRP/Block ciphers (next)

q First: PRF/PRP à Fixed-Input-Length (FIL) MAC
q Hash functions (later) – even more efficient.

11

Theorem: every PRF is also a MAC
Let F be a PRF from domain D to range 0,1 !.
Then F is also an 𝑙-bit MAC for D.

q Proof sketch: construct an attacker against PRF using
the attacker against the MAC.
q For a random function, the outcome of any `new’

value is random.
q So, probability of guessing is 2!".

q If a `new’ outcome of a PRF can be guessed with
significantly higher probability (which is the MAC
over a new message), then we can distinguish
between it and a random function! █

12

Every PRF is also a MAC
n A PRF is a MAC for l-bit messages.
n (l.n)-bit FIL MAC from n-bit PRP (block cipher):

use CBC-MAC – a variant of CBC
n What standard crypto function can we use as a PRF?
n A block cipher ? But …

13

Using a Block Cipher for MAC
n Problem 1: block cipher is PRP, not PRF

n Solution: the switching lemma says that a
PRP is also a PRF!

14

Using a Block Cipher for MAC
n Problem 2: block ciphers are defined only

for (short) fixed input length (FIL)
n Ideally a MAC should work for any input string

(Variable Input Length – VIL)
n We already had a similar problem… where?

n Block ciphers.
n We solved by using various encryption modes of

operation.
n A solution for MACs: the CBC-MAC mode of

operation!

15

Cipher Block Chaining MAC: CBC-MAC

Split plaintext m into
blocks

Fixed, known (zero)
Initialization Vector (IV)

Recall: MACs are
deterministic functions

142
CHAPTER 3. MESSAGE AUTHENTICATION CODE (MAC) AND SIGNATURE

SCHEMES

Ek

m1

Ek

m2

Ek

m3

0n

CBC �MACE
k (m)

Figure 3.3: CBC-MAC: construction of l · n�bit PRF (and MAC), from n�bit
PRF.

We next present Lemma 3.2 which shows that CBC-MAC constructs a
secure PRF (and hence also MAC), provided that the underlying function E is
a PRF.

Lemma 3.2. If E is an n-bit PRF, then CBC �MACE
k (·) is a secure n · l-bit

PRF and MAC, for any constant integer l > 0.

Proof: see in [16].

CBC-MAC is not a VIL-MAC . The CBC-MAC construction is defined
for input which is an integral number of blocks, i.e., n · l bits. Would it work for
inputs of arbitrary length, or how can we extend it so it does support input of
arbitrary length, i.e., a variable input length (VIL) PRF (and MAC) - defined
for input domain domain {0, 1}⇤ ?

One obvious problem is that an arbitrary binary string, may not even consist
of an integral number of blocks, while CBC-MAC is defined only for inputs
which are of length n · l, i.e., integral number of blocks. However, let us ignore
that problem for now, and focus on inputs whose length is an integral number
of blocks, i.e., the inputs in the domain VIBC domain, defined as:

V IBC ⌘
�
m 2 {0, 1}n·l|l 2 mathbbZ+

(3.3)

Where VIBC stands for variable input block-count.
However, CBC-MAC is not a PRF - or even a MAC - even for input domain

VIBC. We show this in the following exercise.

Exercise 3.4 (CBC-MAC is not VIL MAC). Show that CBC-MAC is not a
MAC for the domain VIBC (Equation 3.3), and hence is definitely not a MAC
for {0, 1}⇤, or a PRF for either VIBC or {0, 1}⇤-.

Solution: Let fk(·) = CBC �MACE
k (·) be the CBC-MAC using an under-

lying n-bit block cipher Ek. Namely, for a single-block message a 2 {0, 1}n, we
have fk(a) = Ek(a); and for a two block message a ++ b, where a, b 2 {0, 1}n,
we have fk(a++ b) = Ek(b� Ek(a)).

Foundations of Cybersecurity: Applied Introduction to Cryptography

The tag is the cipher of the last block

CBC-MACE
k(m1||m2||..||ml) = Ek(mlÅEk(…Ek(m1))))

16

CBC-MAC
q Widely deployed standard
q More efficient ‘modes’ exist

q E.g., allow for parallel computation.
q It is also provably secure.

Theorem [BKR94]: if E is a FIL-PRF for domain {0,1}!, then
CBC-MACE is a PRF for domain {0,1}"#	(for	l>1).

n Corollary: … then CBC-MACE is a {0,1}"#-MAC

But what of VIL (variable-length input) MAC?

17

CBC-MAC-based VIL-MAC
n Is CBC-MACE a VIL-MAC?

n No!
n Ask for b=CBC-MACEk(a)=Ek(a) ;
n then output (ac, b) so m = ac with tag = b where c= aÅb.
n This is valid, since the attacker did not ask the oracle for a tag

for ac and b for ac is a valid tag since
CBC-MACEk(ac)=Ek(cÅEk(a))=Ek(cÅb)= Ek(aÅbÅb)= Ek(a)= b.

n Solution: prepend message length (called CMAC)
n Let CMACEk(m)=CBC-MACEk(L(m)||m)

n Where 𝐿 𝑚 is a 1-block encoding of 𝑚

n CMAC is a secure VIL MAC construction!

18

Examples of MAC Constructions
q Are the following constructions a secure MAC:
1. Let Ek be a block cipher that takes input of length n bits. For

a message m of length 2n bits, compute the tag as:
 MACk(m) = Ek(mL) xor Ek(mR)

2. Let G be a secure PRG. For a message m of length n bits,
compute the tag as:

 MACk(m) = k xor PRG(m)

19

Combining Authentication and Encryption

q For confidentiality, use encryption
q For authentication, use MAC
q For both confidentiality and authentication?

q Option 1: Combine MAC and encryption
q Possible pitfalls (vulnerabilities)

q Option 2: authenticated-encryption schemes (or
modes)

q Easier to deploy (securely)
q Generic combination of MAC and Encryption schemes
q Or direct combined constructions (can be more efficient)

q Might be ad-hoc or rely on complex or less-tested security
assumptions.

20

Generic MAC and Encryption Combinations

q Three standards, three ways…
q Authenticate and encrypt (A&E):

q c = Enc(m), tag = MAC(m), send (c, tag)

q Authenticate then encrypt (AtE):
q tag = MAC(m), c = Enc(m, tag), send c

q Encrypt then authenticate (EtA):
q c = Enc(m), tag = MAC(c), send (c, tag)

q Some of these may be vulnerable even when combining
some secure encryption and MAC schemes!

21

Security of Generic MAC/Enc Combinations

q A&E may be vulnerable!
q Example:

q Let MAC be any secure MAC scheme
q Let MAC’k’(m)=MACk’(m)|| lsb(m)
q MAC’ is a secure MAC.
q But A&E(m) leaks least significant bit of m (even if the encryption

scheme is secure!!!).
q Recall that the security guarantee of a MAC is about

integrity (or preventing forgery)!
q It has nothing to do with confidentiality!

q What about AtE, EtA ?
q AtE: also may be vulnerable (not IND-CPA)!

22

Security of Generic MAC/Enc Combinations

n How about EtA ? Provably CCA-Secure [CK01]!
n è Secure encryption; otherwise attack Enc(m) by

appending MAC
n è Secure authentication, since any change in (c,

MAC(c)) is detected
n Also: reject fake messages w/o decryption

è efficiency and foil Denial of Service (DoS), CCA
attacks

n Note: using separate keys for Enc and MAC; what if
we use same key?

23

Keys for MAC and Encryption?
Using same key for MAC+Encryption? Insecure
q Exercise: show (contrived) examples vulnerabilities:

q A&E: both vulnerable…
𝐸!",!"" 𝑚 = 𝐸!## 𝑚 ||𝑘′′
𝑀𝐴𝐶!",!"" 𝑚 = 𝑀𝐴𝐶!"" 𝑚 	||𝑘′

q (you can show other contrived examples for the other
combinations.)

q So: should we use two independent keys?
q Overhead: key generation, transmission, storage

q Secure enc+MAC – using a single key? Use PRFS

Solution: kmac:= PRFk(`MAC’), kenc:= PRFk(‘Encrypt’)

24

Covered Material From the Textbook
q Chapter 4

q Sections 4.1 – 4.4 except sections 4.4.1, 4.4.5.
q Section 4.5.3 (only what we covered in class) except

sections 4.5.3.4, 4.5.4, 4.5.5

25

