
CSE 3400/CSE 5850 - Introduction to Cryptography and
Cybersecurity / Introduction to Cybersecurity

Lecture 3
Encryption – Part II

(and Pseudo-randomness)
Ghada Almashaqbeh

UConn

Adapted from the textbook slides

Outline
• One time pad (OTP) encryption.
• Pseudorandom number generators (PRGs).
• Pseudorandom number functions (PRFs).
• Encryption schemes from PRGs and PRFs.

2

We can apply generic, exhaustive attacks to
every cryptosystem. So, is breaking just a
question of resources?

Can encryption be secure unconditionally –
even against attacker with unbounded time
and storage?

Yes it can!

3

4

One-Time-Pad (OTP)
n To encrypt message m, compute the bitwise

XOR of the key k with the message m:
q Ek(m)=c where c[i] = k[i] Å m[i]

n To decrypt ciphertext c, compute the bitwise
XOR of the key with the ciphertext:
q Dk(c)=m where m[i] = k[i] Å c[i]

... 1 1 1 0 0 0 1 0

1 0 0 0 1... 0 0 0 1 0 0 1 1
+Plaintext m Ciphertext c

Key k (pad)

[Frank Miller, 1882] and
[Vernham (and Mauborgne?), 1919]

12345678

12345678

12345678

5

One-Time-Pad: Example, Properties
k = 11001
m = 10011
c = 01010

k = 11001
c = 01010
m = 10011

• Correctness: k Å c = k Å (k Å m) = (k Å k) Å m = 0 Å m = m

• Very simple, and efficient… but:
• Stateful encryption (must remember the keys, or a counter of the key bits, used

so far to avoid using them again)
• Size of key must be (at least) equal to the message size.
• Key cannot be reused for several encryptions (one time!).

• Shannon [1949; simplified]: OTP is unconditionally secure, and for every
unconditionally-secure cipher, |k|≥|m|

• Proofs of these claims? See crypto course / books J
To go around the above limitations: we assume attackers are

computationally limited

Recall: Unconditional vs. Computational Security
• Unconditional security

• No matter how much computing power is available, the cipher
cannot be broken

• Computational security
• The cost of breaking the cipher exceeds the value of the

encrypted information
• The time required to break the cipher exceeds the useful

lifetime of the information
• So it deals with Probabilistic Polynomial Time (PPT) attackers.

Looking ahead: Stream Ciphers vs. Block Ciphers
• Stream cipher

• Encrypts a message bit by bit (stream of bits).
• Inherently stateful; needs to keep track of the location of last

encrypted bit.
• Block cipher

• Encrypts a block (string) of bits all at once.
• Can be stateless or stateful

Can we do computationally-secure
variant of OTP, with ‘short key’

(|k|<<|m|) ?

Yes, using pseudorandom number
generators (PRGs)!

9

PRG Stream Cipher
n Idea: `similar’ to OTP, but with bounded-length key k
q How?

q Use a pseudorandom generator 𝑓!"#(#)
q 𝑓!"#(𝑘) outputs a long stream of bits (longer than |k|)

q This stream is `indistinguishable from random’ bit-stream
q What is this ‘indistinguishability’ requirement??

q This is related to the famous Turing Test!

10

PRG Stream Cipher - Example

+Plaintext m Ciphertext c

Seed s
(as key)

PRG

Bit i of PRG(s)

Bit i of m ci

... 0 0 0 1 0 0 1 1
12345678

... 1 1 1 0 0 0 1 0
12345678

1 0 0 0 1
12345678

11

The Turing Test [1950]
q Defined by Alan Turing
q Machine M is intelligent, if an evaluator cannot distinguish

between M and a human
q Only textual communication, to avoid `technicalities’

q If M is ‘intelligent’, judge will only be able to make a random
guess
q I.e., probability of distinguishing would be (at most) ½

12

The PRG Indistinguishabity Test
q Consider function f that maps n-bits to m-bits (m>n)
q Let seed and rand be random strings s.t.: |seed|=n, |rand|=m
q f is a PRG if no efficient distinguisher D can tell which is which.

q i.e., cannot output 1 for f(seed) and 0 given rand with non-negligible
advantage.

rand
f()seed

(n-bits)

f(seed) m-bits m-bits?

1 if input is f(seed),
0 if input is rand

Recall: An Efficient (PPT) Algorithm
q An algorithm A is efficient if its running time is bounded

by some polynomial in the length of its inputs.
q PPT (Probabilistic Polynomial Time) is the set of all

randomized efficient algorithms
q Examples: Given 𝑛 bit input 𝑥	𝑎𝑛𝑑	𝑦 (i.e., 𝑛 = 𝑥 = |𝑦|),

is there an efficient algorithm that:
q Finds 𝑥𝑦 (multiplication)?
q Finds the factors of 𝑥?

13

Recall: Negligible Functions

q Informally, a negligible function 𝜀(𝑛) converges to
zero as 𝑛 approaches infinity.
q Example: 𝜀 𝑛 = !

"!

q Useful propositions:
q If 𝜀1(𝑛) and 𝜀2(𝑛) are negligible, then 𝜀3(𝑛)

= 𝜀1(𝑛) +𝜀2(𝑛) is also negligible.
q For any polynomial 𝑝(n) and negligible function 𝜀(𝑛),

the function 𝜀4(𝑛) = 𝑝 n . 𝜀(𝑛) is also negligible.

14

15

The PRG Advantage
q A random guess is correct half of the time
q A distinguisher in the PRG game will have an advantage:

rand
f()seed

(n-bits)

f(seed) m-bits m-bits?

1 if input is f(seed),
0 if input is rand

Pseudo-Random Generator: Definition
A PRG is an efficiently-computable function 𝑓 ∈ 𝑃𝑃𝑇, which

is length-increasing (∀𝑥 𝑓(𝑥) > 𝑥), and whose output
is indistinguishable from random, i.e. its advantage is
negligible.

randf(.)𝑥
(n-bits)

𝑓(𝑥) 𝑟𝑤

16

Exercise
q Let f(s) be a PRG, are the following PRGs?

q g(s) = 1||f(s)
q q(s) = (parity of s)||f(s)
q w(s) = ~f(s)

q ~ is the bitwise complement or negation

17

Many PRG proposals I
• Often based on Feedback Shift Register(s)

• Easy construction for efficient hardware implementations.
• Linear feedback (LFSR), or non-linear feedback function

(f(…) in the figure, e.g., XOR all previous bits to produce
the next one).
• LFSR is easily predictable (not a secure PRG)

18

Many PRG proposals II

• More complex (multi-registers, etc.), e.g. in GSM
• GSM’s original stream-ciphers (A5/1, A5/2): broken
• RC4; efficient for software implementations, but known

attacks on 1st byte L
• In practice, attacks on PRGs (or constructions that

use PRGs) are often caused by an incorrect use
of a PRG.
• Example: a PRG-based OTP encryption scheme with a

fixed PRG seed.
• What is wrong with this construction?

19

20

Example: Misusing Stream-Cipher
MS-Word 2002 uses RC4 to encrypt:
PAD = RC4(password)
Save PAD ⊕ Document (bitwise XOR)
The Problem: same pad used to encrypt when document is

modified
Attacker gets: c1=PAD xor d1, c2 = PAD xor d2
Enough redundancy in English to decrypt!
[Mason et al., CCS'06]

Cryptography is bypassed more often than broken!!

Provably-Secure PRG?
q 𝑓 is a secure PRG è no PPT distinguisher

q But given 𝑠, it is trivial to identify 𝑓(𝑠)
q This means that the PRG problem is in NP

q NP: in PPT, if given a ‘hint’ – e.g., 𝑠…
q So a provable secure PRG è 𝑃 ≠ 𝑁𝑃

q The ‘holy grail’ of the theory of complexity
q So don’t expect a ‘real’ provably-secure PRG
q Instead, we prove that a given PRG construction is

secure, if <assumption>
q The paradigm of proof by reduction

21

Provably-Secure PRG : by reduction
q Construct PRG 𝑓 from 𝑔,	assumed to be X

q X is some hard problem (or a hardness assumption)
q Known (or believed) to be hard to be broken.

q Reduction: if 𝑔	is secure X è 𝑓 is a secure
PRG
q Basic method of theory of cryptograph

q You will study it in a theory cryptography course.

q Many such PRG constructions.

22

PRG by reduction (informal) – An
Example

23

Let f : {0, 1}n → {0, 1}n+1 be a secure PRG. Is fʹ : {0, 1}n+1 → {0, 1}n+2,
defined as fʹ(b || x) = b || f(x), where b ∈ {0, 1}, also a secure PRG?

Hints:
- intuitively, is f’ a secure PRG? Why?
- How does security of f’ rely on the security of f?

24

Stream-Cipher Like but Stateless Encrypt?
n PRG-based stream ciphers are stateful.

n Need to remember how many bits (or bytes) were
already encrypted, and and how many bits (or bytes) of
PRG output have been used so far.

n Can secure encryption be stateless?
n The answer is…

Yes it can!

In three steps (or versions):
1. Use less state
2. Use no state with a random function
3. Use no state, but with pseudo-random function

First, what’s a (‘truly’) random function f?
n Fix domain D, usually binary strings: {0,1}!

n Fix range R, usually binary strings: {0,1}"
n For each value x in D, randomly select a value y in R
n f(x) = y
n Example:

Domain D
{0,1}!

Range R {0,1}"f()
00
01
10
11

25

What’s a (‘truly’) random function?
n Fix domain D, usually binary strings: {0,1}!

n Fix range R, usually binary strings: {0,1}"
n For each value x in D, randomly select a value y in R
n f(x) = y
n Example:

Range R {0,1}"

Domain D
{0,1}!

f()
00 01101
01 11010
10 01101
11 11101

26

What’s a (‘truly’) random function?
n Another example:
n Domain D: integers
n Range R: bits {0,1}
n For each integer i, randomly select a bit f(i)
n Example:

Domain:
integers

Range: bits {0,1}i f(i)
1
2
3
4
5
6
… …

27

What’s a (‘truly’) random function?
n Another example:
n Domain D: integers
n Range R: bits {0,1}
n For each integer i, randomly select a bit f(i)
n Example:

Domain:
integers

Range: bits {0,1}i f(i)
1 0
2 1
3 1
4 0
5 0
6 1
… …

28

Random-Function-Based Encryption
Stateful (counter) Design

- Sync-state (counter)
- No extra random bits required
- |ciphertext|=|plaintext|

Randomized Design

- Stateless
- 𝑛 random bits per plaintext bit
- |ciphertext|=(𝑛 + 1) ⋅|plaintext|

29

Random-Function Bitwise-Encryption
Randomized DesignStateful (counter) Design

Drawbacks:
- Require random function (impractical)
- Invoke function once-per-bit (computational overhead)

30

31

Reduce Overhead: Block-Encryption
n Optimization: operate in blocks (say of n bits)

n f be random function from n-bits strings (`blocks’) to n-bits strings (`blocks’)
n p(i) be i-th block of n-bits of plaintext
n c(i) be i-th block of n-bits of ciphertext

n Challenge: sharing such random function f (both sender and
recipient must have it)!!
n Size of table? 2n entries of n bits each…

n Idea: use pseudo-random function (PRF) instead!

86
CHAPTER 2. CONFIDENTIALITY: ENCRYPTION SCHEMES AND

PSEUDO-RANDOMNESS

message bits with the corresponding l-bit output of f(r) (or f(i)). In this
way, the n bits of r allow encryption of l bits of plaintext. See Figure 2.16.

Use f(r) as seed of a PRG: if we use a su�ciently large range, a PRG could
‘expand’ f(r) into as many bits as required to bit-wise XOR with the
plaintext: Ef (m) = (r, PRG(f(r))�m). In this way, the n bits of r allow
encryption of arbitrarily long plaintext m - requiring new n random bits
only to encrypt new plaintext, and only if the state (of the PRG) was not
retained. This is essentially what is done by the Output Feedback (OFB)
mode of operation, which we see later on, except that the OFB mode
also implements the PRG using the PRF, instead of using two separate
functions (a PRF and a PRG). Figure 2.17 shows this design, using a
PRF Fk.

i

f(·)

ci = (
z }| {
mi � f(i))

mi /
n

/ n

/ n

(a) Stateful block encryption with
Random Function f(·).

ri
$ {0, 1}n

f(·)

ci = (
z }| {
mi � f(ri), ri)

mi /
n

/ n

/ n

(b) Stateless, randomized block encryp-
tion with Random Function f(·).

Figure 2.16: Block (n-bits) encryption using a Random Function f(·). Use only
one function application for n plaintext bits.

2.5.8 pseudorandom functions (PRFs)

A pseudorandom function (PRF) is an e�cient substitute to the use of a random
function, which ensures similar properties, while requiring the generation and
sharing of only a short key. The main limitation is that PRFs are secure only
against computationally bounded adversaries.

A PRF scheme has two inputs: a secret key k and a ‘message’ m; we
denote it as PRFk(m). Once k is fixed, the PRF becomes only a function of
the message. The basic property of PRF is that this function (PRFk(·)) is
indistinguishable from a truly random function. Intuitively, this means that a
PPT adversary cannot tell if it is interacting with PRFk(·) with domain D and
range R, or with a random function f from D to R. Hence, PRFs can be used

Foundations of Cybersecurity: Applied Introduction to Cryptography

32

Encryption with PRF
n Operate in blocks (say of n bits)
n Use Pseudo-Random Function (PRF) 𝑓((⋅), output n bits

n Efficient , compact

But what’s a PRF ?

33

The PRF Indistinguishabity Test
q F is a PRF from domain D to range R, if no distinguisher A:

q Outputs 1 (signaling PRF) given oracle access to Fk(.) (for random n-bits key k), and
q Outputs 0 (signaling random) given oracle access to f(.), a random function (from D to

R)

f(.)Fk(.)

n-bit Key k

x1,x2,…,xi

…, Fk(xi)

Box 0: random functionBox 1: PRF

k x1,x2,…,xi

…, f(xi)

?

1 if oracle is to Fk(.),
0 if oracle is to f(.)

A

PRF Definition
n A PRF is `as secure as random function’

n Against efficient adversaries (PPT), allowing negligible advantage
n Yet practical, even efficient

n Formally, a PRF 𝐹# is:

34

88
CHAPTER 2. CONFIDENTIALITY: ENCRYPTION SCHEMES AND

PSEUDO-RANDOMNESS

(or ‘true’) if given access to the PRF Fk. The idea of the definition is illustrated
in Fig. 2.18.

Figure 2.18: The pseudorandom function (PRF) Indistinguishability Test. We
say that function Fk(x) : {0, 1}⇤⇥D ! R is a (secure) pseudo-random generator
(PRG), if no distinguisher D can e�ciently distinguish between Fk(·) and a
random function f from the same domain D to the same range R, when the
key k is a randomly-chosen su�ciently-long binary string.

We now finally define a pseudorandom function (PRF), Fk(x) : {0, 1}⇤⇥D !
R. The domain10 consists of the key, which we assume to be an (arbitrary
long) binary string, i.e., from the set {0, 1}⇤; and of an input from an arbitrary
set D. The scheme must allow for arbitrary length for the key, since security
requirements - in this case, indistinguishability - are defined asymptotically, i.e.,
for su�ciently long keys; see Chapter 1.

Definition 2.7. A pseudorandom function (PRF) is a polynomial-time com-
putable function Fk(x) : {0, 1}⇤ ⇥ D ! R s.t. for all PPT algorithms A,
"PRF
A,F (n) 2 NEGL, i.e., is negligible, where the advantage "PRF

A,F (n) of the PRF
F against adversary A is defined as:

"PRF
A,F (n) ⌘ Pr

k
$ {0,1}n

⇥
AFk(1n)

⇤
� Pr

f
$ {D!R}

⇥
Af (1n)

⇤
(2.29)

The probabilities are taken over random coin tosses of A, and random choices

of the key k
$ {0, 1}n and of the function f

$ {D ! R}.

Overview of the PRF indistinguishability test. The basic idea of this
definition is the use of indistinguishability test, much like in the definition of
a secure PRG (Definition 2.6), and even the Turing indistinguishability test

10The notation {0, 1}⇤ ⇥D simply means a pair: a key from {0, 1}⇤ and an element from
set D.

Foundations of Cybersecurity: Applied Introduction to Cryptography

Constructing a PRF
q Heuristics: efficient, not proven secure
q Construct PRF from PRG

q Provably secure - if PRG is secure (reduction)
q But many PRG calls for each PRF computation

q è Not deployed in practice

q Provable secure PRF without assumptions?
q If exists, would imply that 𝑃 ≠ 𝑁𝑃 . Why?

q Given the key k , it is trivial to identify the PRF
q 𝑃	: problems solvable in polynomial time
q 𝑁𝑃	: same, but given also any ‘hint’ (e.g. key k)

36

PRF Applications
n PRFs have many more applications:

n Encryption, authentication, key management…
n Example: derive independent key for each day d

n Easy, with PRF and single shared key k
n Key for day d is kd = Fk(d)
n Exposure of keys of Monday and Wednesday does not

expose key for Tuesday
n Similarly: separate keys for different goals, e.g., encryption

and authentication

Key k PRF Fk

d

Fk(d)

Examples on the white board
q Let Fk be a PRF, are the following PRFs and why?

q F’k(x) = F1
n(x) || Fk(x)

q F’’k(x) = Fk(x) || lsb(Fk(x))
q lsb is the least significant bit

37

Covered Material From the Textbook
q Chapter 2:

q Section 2.5
q Section 2.6
q Section 2.7

