CSE 3400/CSE 5850 - Introduction to Cryptography and
Cybersecurity
/ Introduction to Cybersecurity

Lecture 10
Public Key Cryptography— Part I

Ghada Almashaqgbeh
UConn

Adapted from the textbook slides

Outline

Introduction to public key cryptography and
motivation.

Number theory review.
The discrete log assumption.
The Diffie-Hellman key exchange protocol.

Intro to Public Key Cryptography

Public Key Cryptography

Kerckhoff's principle: the cryptosystem (algorithm) is
public

What we learned until now: symmefric or shared key
setting

o Only the key is secret (unknown to attacker)

0 Same key for encryption and decryption = if you can
encrypt, you can also decrypt!

o Shared keys for MACs and PRFs, etc.

But can we give asymmetric cryptographic capability,
e.g., encryption capability without a decryption
capability?

0 Yes, using public key cryptography!

Public Key Cryptosystem (PKC)

= Kerckhoff: cryptosystem (algorithm) is public.

= [DH76]: can encryption key be public, too??
o Decryption key will be different (and private).
o Everybody can send me emails, only | can read them.

Key length [‘_

(e.d) Decryption Key d

Encryption Key e
(pubV rivate)
d

e

Plaintext Ciphertext
m c=E,(m)

Plaintext
m=D4(E (m))

‘ Is it Only About Encryption?

= Also: Digital signatures for integrity and non-repudiation.
o Sign with private key s, verify with public key v

o (Recall MACs; a shared key cryptosystem for message
authentication).

Key length | ‘_

(5,v)

Private signing V Xubljc validation key v
A v
Message m m, 0=5,(m) m if V. (m, q)=OK
NO otherwise

Anyone can verify the signature!

More: Key-Exchange Protocols

= Establish shared key between Alice and Bob without
assuming an existing shared (‘master’) key !!

= Use public information from Alice and Bob to setup shared
secret key k.

= Eavesdroppers cannot learn the key k.

A é What’s k 7777

-

Alice

Public keys solve more problems ...

Signatures provide evidence
o Everyone can validate, only ‘'owner’ can sign.
Establish shared secret keys
o Use authenticated public keys

Signed by trusted certificate authority (CA)
o Or: use DH (Diffie Hellman) key exchange
Stronger resiliency to key exposure

o Perfect forward secrecy and recover security

These are stronger notions than FS and RS that we studied
before.

o Threshold security
Resilient to key exposure of t out of n parties

Public keys are easier...

To distribute:

o From directory or from incoming message (still need to
be authenticated)

o Less keys to distribute (same public key to all)
To maintain:

o Can keep in non-secure storage as long as being
validated (i.e., authenticated) before using

o Less keys: O(|parties|), not O(|parties|’)
So: why not always use public key crypto?

The Price of PKC

Assumptions

o Applied PKC algorithms are based on a small number
of specific computational assumptions

Mainly: hardness of factoring and discrete-log
Both may fail against quantum computers
Overhead
o Computational
o Key length
o Output length (e.g., ciphertext or signature)

10

Public key crypto 1s harder...

Requires related public, private keys

Commercial-grade security from [LV02]

o Usually we say a keypair (pk, sk)

o Public key does not expose private key
Substantial overhead

o Successful cryptanalytic shortcuts -2

need long keys

o Elliptic Curves (EC) may allow shorter

keys (almost no shortcuts found)

[LVO2] Required key size

Year AES RSA, | ECIES
DH

2010 78 | 1369 160

2020 86 | 1881 161

2030 93 | 2493 176

2040 101 | 3214 191

o Complex computations, e.g., complex
(slow) key generation

For the table:

The year indicates until when confidentiality to be preserved.
AES: A symmetric encryption scheme

RSA and DH: encryption schemes based on factoring and discrete log hardness problems

ECIES: Elliptic Curve Integrated Encryption Scheme

11

In Sum

Minimize the use of PKC
In particular: as possible, apply PKC only to short inputs
How??
o For signatures:
Hash-then-sign
o For public-key encryption:
Hybrid encryption

12

Hybrid Encryption

Challenge: public key cryptosystems are slow
Hybrid encryption:
Use a shared key encryption scheme to encrypt all messages.

But use a public key encryption scheme to exchange the shared
key.

Alice generates k, encrypts it under Bob’s public key and sends
the ciphertext ¢, to Bob.

Bob can decrypt and recover k, and then use k to decrypt cy,.

Encryption Decryption
C
k €{0.1)" ™ ¢, € PKE,(k) “—> k€& PKD,(Cy)
Plaintext ‘ Cy |, .
m CM éSKEk(m) " SKDk(CI\/l) > m

Note: the figure above only focuses on confidentiality, additional modules are needed to ensure integrity.

13

Going Forward

First, review the mathematical concepts (mainly number
theory) that we need for a particular primitive/protocol.
2 This would involve hardness problems/assumptions.

Then, study the primitive/protocol itself.

Lastly, and as before, show correctness and reason

about security.

o In general, security will be based on mathematical hardness
problems.

14

Number Theory Review
--Modular Arithmetic--

15

Notation

Z . The set of all integers {...,-3,-2,-1,0,1, 2, 3, ...}
Z.,: The set of integers modulo n, i.e., {0, 1, ..., n- 1}

N : The set of natural numbers {1, 2, 3, ...}.

Prime number: p is prime if its only factors are 1 and p.
Composite number: not prime.

Co-prime numbers: m and n are co-primes if their
greatest common divisor (gcd) is 1.

L, For a prime p, this is the set of integers modulo p
excluding zero, i.e., {1, ..., p- 1}

Zy,. For a composite n, it is the set of positive integers
that are less than n (excluding zero) and co-prime to n.

16

The Modulo Operation

Definition 1.2 (The modulo operation). Let a,m € Z be integers such that
m > 0. We say that an integer r is a residue of a modulo m if 0 < r < m
and (31 € Z)(a =71 +1i-m). For any given a, m € Z, there is exactly one such
residue of a modulo m; we denote it by a mod m.

Properties (make it easier to compute complex modular arithmetic
expressions):

(a+b) modm = [(@ modm)+ (b modm)] modm (1.2)
(a—b) modm = [(@ modm)— (b modm) modm (1.3)
a-b modm = [(a modm)-(b modm)] modm (1.4)

> modm = (¢ modm)’ modm (1.5)

17

Examples

7/ mod9="7
13 mod 8 =7
Omod 11 =7
4 mod4="7
(30 + 66) mod 11 =?

How about: 445 - (81 - 34 + 83 - 33%4%) mod 4

Denote 445 - (81 - 3413 4+ 83 - 33345) mod 4 by x. Then we find x as

follows:

= (445 mod 4)- ((81 mod 4)- (34 mod 4)*+
+(83 mod 4)- (33 mod 4)345) mod 4

= 1-(1-2"%+43-1°%)
= (2:4°4+3) mod4
= 3 mod4=3

mod 4

mod 4

18

Multiplicative Inverse

Needed to support division in modular arithmetic.
o Division does not always produce integers.
o Modular arithmetic requires integers to work with!!

To compute a/c mod m, multiply a by the multiplicative
iInverse of c.

o That is compute a/c mod m = ac’’ mod m.

o Where ¢ is the multiplicative inverse such that cc?
modm=1

Not all integers have multiplicative inverses with respect
to a specific modulus m.

19

Multiplicative Inverse

Fact A.2. Let a € Z be an integer. We say that integer b is the multiplicative
inverse modulo m of a, if a-b = 1 (mod m); if it exists, we denote the
multiplicative inverse by b = a~! mod m (or, when m is clear from context,
simply a™1).

An integer a has multiplicative inverse modulo integer m > 0, if and only if
a and m are coprime, namely, they do not have a common divisor (except 1).

d Examples:
d 3/5mod4=3.5"mod4="
d 3/5mod6=3.5"mod6="

The algorithm used to compute the inverse is called the
Extended Euclidean algorithm (out of scope for this course).

20

Modular Exponentiation

Will be encountered a lot; discrete log-based scheme,
RSA, etc.

We have seen a property to reduce the base, but how
about the exponent?

o Its reduction will be with respect to a different modulus
than the one in the original operation.

Fermat’s Little Theorem:

Theorem 1.1. For any integers a,b,p € Z, if p is a prime and p > 0, then

b

a® mod p = qb ™ed (P—1)

mod p 9
)b mod (p—1) (.)

= (a mod p mod p

21

Modular Exponentiation

Examples; Use Fermat’s Little theorem (if applicable) to
solve the following:

1332 mod 31 =7
19930 mod 4 = ?
190 mod 7 =7

Can we reduce the exponent for non-prime (composite)
modulus?

o We can use Euler's Theorem.

22

Euler’s Function

Called also Euler’s Totient function. For every integer n >
1, this function computes the number of positive integers
that are less than n and co-prime to n.
o Again, gcd is the greatest common devisor.

¢(n) =|{i eN:i <n Agcd(i,n) =1}

Examples:
n 1 2 3 4 5 6 7 8 9 10
o(n) 1 1 2 2 4 2 6 4 6 4
factors? | none | none | none | 2-2 | none | 2-3 | none | 23 | 3-3|2-5

23

Fuler’s Function Properties

Lemma 1.1. For any prime p > 1 holds ¢(p) = p — 1. For prime q > 1 s.t.
q #p holds ¢(p-q) = (p—1)(¢ —1).

Lemma 1.2 (Euler function multiplicative property). If a and b are co-prime
positive integers, then ¢(a-b) = ¢(a) - ¢(b).

Lemma 1.3. For any prime p and integer | > 0 holds ¢(p') = p' — p!~1.

Theorem 1.3 (The fundamental theorem of arithmetic). Fvery number n > 1
has a unique representation as a product of powers of distinct primes.

Lemma 1.4. Let n =11}, (pé"’), where {p;} is a set of distinct primes (all

different), and l; is a set of positive integers (exponents of the different primes).

Then:
é(n) = ¢ (H?’:i (pﬁ;i)) =1L, (pﬁi - pff_l) (1.12)

24

Euler’s Theorem

Theorem 1.2 (Euler’s theorem). For any co-prime integers m,n holds m®n) =
1 mod n. Furthermore, for any integer | holds:

l

m! mod n = m! ™meod o)

mod n (1.19)

Examples:
a0 133" mod 31 =7
o 27 mod 10="7?

25

Key Exchange

26

The Key Exchange Problem

Alice and Bob want to agree on secret (key)
0 Secure against eavesdropper adversary
a2 Assume no prior shared secrets (key)

Aka key agreement

27

Detining a Key Exchange Protocol

Alice Bob | \

KG Pp~— kG

\
a ' 7 Shared key: KC(a, Pg) = KC(b, Py) "//1;//

*KG: Key Generate, KC: Key Compute, a and b are secret, while P, and Pg are public

Must satisfy:

« Correctness; both parties compute the same shared key,

« and key indistinguishability; the key that the two parties establish is
indistinguishable from random.

28

The Discrete Log (DL) Assumption

29

Group Theory Review 1

A group is a pair of (G, op) is composed of a set of elements ¢
and an operation op such that ¢ is closed under the operation

op, i.e., for any two elements a,b € G we haveaopb=c €G,
and it satisfies the following requirements:

Associativity: for every a,b,c € G holds (a-b)-c=a-(b-c).

Identity element: there exists a (unique) element in G, which we call the

wdentity element and usually denote by 1 € G, such that for every element
a € G holds: a=a-1=1"-a.

Inverse: For each a € G, there is an element a=' € G such that a - a™*
~1
a

-a =1, where 1 s the identity element. For each a, there is only one
such element, which we call the inverse of a and denote a=1. (From the

wdentity element property, it follows that the identity element is always its
own inverse.)

A commutative group s a group that also satisfies:

Commutativity: for every a,b € G holdsa-b=105-a.

Although the properties are for multiplication operations, same applies for addition. The only difference
is that the identity element is O.

30

Group Theory Review 11

We focus on finite commutative groups.
We will consider Finite Additive Groups:

o Example: (Z,,, +) where Z,, = {0, 1, 2, ..., (n — 1)} and the operation is
addition modulo n

o Exercise: show the group above satisfies all properties listed in the
previous slide.

We will consider Finite Multiplicative Groups, mostly, modulo a prime p:

o Example: (Z,.) where Z;, = {1,2, ...,(p — 1)} and the operation is
multiplication modulo p

o Exercise: show the group above satisfies all properties listed in the
previous slide.

We use the exponentiation notation to denote the repeated application
of the group operation.

a Thatis, al = aand a' = a1 op a and so on.

31

Cyclic Groups

Definition A.4 (Cyclic group, generator and order). A group G is cyclic, if
there is an element g € G such that for every element a € G, there is an integer
i such that a = ¢g*. Such an element g is called a generator of G. The order of
G 1s the integer ¢ > 0 such that g¢2 = 1, where g 1s a generator of G and 1 is
the unit element of G.

Note that G = {gt,...,99} = {1,9,4%,...,977 1}, hence, the order q of a
cyclic group G, is also the number of element in G. We also define the order of
an element a € G; this is the smallest possible integer ¢ > 0 such that a? = 1.
In particular, the order of a is the same as the order of G if, and only if, a is a
generator of g.

Examples:

o For prime p , the additive group Z, = {0,1, ...,p — 1} is a cyclic group of
order p and every element in this group (except 0) is a generator (because
the order of this group is prime). Exercise: verify that!

o Forprime p , the group Z;, = {1,...p-1} is a cyclic multiplicative group. E.g.,
Z- ={1,2,..,6}is a cyclic group of order 6, a generator for this group is 3
(2, for example, is not a generator. Exercise: verify that!).

32

The Discrete L.og Problem

A computationally hard problem is one that is:
o Hard to solve
o But easy to verify

Discrete log problem: given a generator g and an element a € G, find
i such thata = g*

o Verification: exponentiation (efficient algorithm)

Computing logarithm is quite efficient over the real numbers. But is
discrete-log hard?

a0 Some ‘weak’ groups, i.e., where discrete log is not hard:
1, for prime p, where (p — 1) has only ‘small’ prime factors
0 Using the Pohlig-Hellman algorithm

Mistakes/trapdoors found, e.g., in OpenSSL’16, so always
check!

o Other groups studied, considered Ok (‘hard’)
o Safe-prime groups: Z,, for safe prime: p = 2q + 1 for prime g

33

Discrete LLog Assumption

q-1

Definition 6.2 (The discrete logarithm problem). Leﬁen be a PPT algorithm
that, on input 1™, outputs (g, q) such that {1,g,...,9%} is a cyclic group (using
a given group operation). We say that the discrete logarithm problem is hard

for groups generated by Gen, if for every PPT algorithm A holds:

Pr [(g,q) Gen(1™) s y & (1, g}y = ﬂ<gy)} e NEGL(1") (6.6)

And remember, discrete-log is hard with respect to a particular group!

34

The Diffie-Hellman (DH) Key Exchange Protocol
and
The Computational/Decisional Diffie-Hellman

Assumptions (CDH/DDH)

35

Dittie-Hellman [DH] Key Exchange

Using cyclic multiplicative group Z,
Setup: Agree on a random safe prime p and generator g for the cyclic
multiplicative group Z,,
Alice: pick at random secret integer a from Z;, , then compute P,= g mod p, and
send P, to Bob.

Bob: pick at random secret integer b from Z;, , then compute Pz= g’ mod p, and
send Py to Alice.

Both parties: compute the shared key k = g% mod p , do you see how?

Alice Bob
Select a Py=g*modp Select b
5)
2) Pr= 9® mod RE M

(g2)*=g**=(g*)® mod p

36

Caution: Authenticate the Public Keys!

= Diffie-Hellman key exchange is only secure against
eavesdroppers but not MitM attackers.

= So the public messages being sent must be authenticated,
e.g., using digital signatures.
o Still each party must have a certificate for her public (verification) key.

~
¢® mod p
Alice
(9°)" = g*¢ mod p (9%) “b

37

Security of [DH]| Key Exchange

Assume authenticated communication
DH key exchange requires stronger assumption than Discrete Log:

o Maybe from g’ mod p and g mod p, adversary can compute
g% mod p (without knowing/learning a,b or ab)?

The Computational Diffie-Hellman (CDH) Assumption is what we
need.

o In simple terms, it states that given g” mod p and g% mod p, an
efficient adversary cannot compute g% mod p with non-negligible
probability.

So DH key exchange protocol is secure for groups in which the
CDH assumption holds.

Assume CDH holds. Can we use g*’as key?

a Not necessarily; maybe finding some bits of g%? is easy?

38

Using DH securely?

Can g%, g’ expose something about g%® mod p ?

o Bad news: Finding (at least) one bit about g*> mod p is easy!
(details in textbook if interested)

So, how to use DH ‘securely’? Two options:
o Option 1: Use DH but with a "stronger’ group (other than
L) for which the stronger DDH assumption holds.

The Decisional DH (DDH) Assumption: adversary can’t
distinguish between [g%, g?, g%°] and [g%, g?, g€] for random a, b, c.

o Option 2: use DH with Z;, and safe prime p... (where only

CDH holds) but use a key derivation function (KDF) to
derive a secure shared key.

Example, use an unkeyed hash function to obtain k = h(g*’mod p),
where h is randomness-extracting hash function.

39

Covered Material From the Textbook

J Appendix A.2

J Chapter 6:
 Sections 6.1 (except 6.1.8.3),
1 Section 6.2 (6.2.1 and 6.2.2 are optional reading).

40

Thanx Youl

