
CSE 3400/CSE 5850 - Introduction to Cryptography and
Cybersecurity

/ Introduction to Cybersecurity

Lecture 10
Public Key Cryptography– Part I

Ghada Almashaqbeh
UConn

Adapted from the textbook slides

Outline
q Introduction to public key cryptography and

motivation.
q Number theory review.
q The discrete log assumption.
q The Diffie-Hellman key exchange protocol.

2

Intro to Public Key Cryptography

3

4

Public Key Cryptography
n Kerckhoff’s principle: the cryptosystem (algorithm) is

public
n What we learned until now: symmetric or shared key

setting
q Only the key is secret (unknown to attacker)
q Same key for encryption and decryption è if you can

encrypt, you can also decrypt!
q Shared keys for MACs and PRFs, etc.

n But can we give asymmetric cryptographic capability,
e.g., encryption capability without a decryption
capability?
q Yes, using public key cryptography!

5

Public Key Cryptosystem (PKC)
n Kerckhoff: cryptosystem (algorithm) is public.
n [DH76]: can encryption key be public, too??

q Decryption key will be different (and private).
q Everybody can send me emails, only I can read them.

Encrypt E Decrypt D
Plaintext
 m

Plaintext
m=Dd(Ee(m))

Ciphertext
c=Ee(m)

Encryption Key e
(public)

KeyGen KG

(e,d)

Key length l

e d

Decryption Key d
(private)

6

Is it Only About Encryption?
n Also: Digital signatures for integrity and non-repudiation.

q Sign with private key s, verify with public key v
q (Recall MACs; a shared key cryptosystem for message

authentication).

Sign S Validate VMessage m m if Vv(m, σ)=OK
NO otherwise

m, σ=Ss(m)

Private signing key s

KeyGen KG

(s,v)

Key length l

s v

Public validation key v

Anyone can verify the signature!

7

More: Key-Exchange Protocols
n Establish shared key between Alice and Bob without

assuming an existing shared (‘master’) key !!
n Use public information from Alice and Bob to setup shared

secret key 𝑘.
n Eavesdroppers cannot learn the key 𝑘. 298 CHAPTER 6. PUBLIC KEY CRYPTOLOGY

Nurse

Alice

k

Bob

k

What’s k ????

mA

mB

mA mB

Figure 6.2: Intuitive model of key exchange protocols. Alice and Bob have,
initially, no shared secret information (e.g., no ‘master key’); they exchange
messages between them (two shown, but in principle, could be more), and at
the end, they should both output the same shared secret key k. The goal is
that the adversary learns nothing about k, i.e., k is pseudorandom. Typically,
key-exchange protocols are designed using the eavesdropper adversary model,
i.e., during the run of the protocol, the adversary may only eavesdrop on, and
not to modify or inject, messages between the parties.

Security without assuming shared key. Using public key cryptology, we
can establish secure communication between parties, without requiring
them to previously share a secret key between them, or to share a secret
key and communicate with an additional party (such as a KDC, see § 5.5).
One method to do so is to use a key-exchange protocol; this is secure
if the attacker only has eavesdropping capabilities during the exchange
(this is not secure against a MitM attacker). Another alternative is when
one party (e.g., the client) knows the public key of the other party (e.g.,
the server); in this case, the client can encrypt a shared key and send to
the server. Finally, one party, e.g., the server (Bob), can send its public
key PB to the other party, e.g., the client (Alice), we can send the public
key PB signed by a trusted party, allowing the client to validate the key
and then use it (to encrypt a shared key and send to Bob). We refer to
the signed pubic key as a public key certificate; public key certificates are
a very important aspect of applied cryptography, and we discuss them
extensively in chapter 8.

Stronger resiliency to exposure. In § 5.6 we discussed the goal of resiliency
to exposure of secret information, in particular, of the ‘master key’ of
shared-key key-setup protocols, and presented the forward secrecy key-
setup handshake. In subsection 5.6.3, we also briefly discussed some
stronger resiliency properties, including Perfect Forward Secrecy (PFS),
Threshold security and Proactive security. Designs for achieving such

Foundations of Cybersecurity: Applied Introduction to Cryptography

8

Public keys solve more problems …
n Signatures provide evidence

q Everyone can validate, only ‘owner’ can sign.
n Establish shared secret keys

q Use authenticated public keys
n Signed by trusted certificate authority (CA)

q Or: use DH (Diffie Hellman) key exchange
n Stronger resiliency to key exposure

q Perfect forward secrecy and recover security
n These are stronger notions than FS and RS that we studied

before.

q Threshold security
n Resilient to key exposure of 𝑡 out of 𝑛 parties

9

Public keys are easier…

n To distribute:
q From directory or from incoming message (still need to

be authenticated)
q Less keys to distribute (same public key to all)

n To maintain:
q Can keep in non-secure storage as long as being

validated (i.e., authenticated) before using
q Less keys: O(|parties|), not O(|parties|2)

n So: why not always use public key crypto?

The Price of PKC
n Assumptions

q Applied PKC algorithms are based on a small number
of specific computational assumptions
n Mainly: hardness of factoring and discrete-log
n Both may fail against quantum computers

n Overhead
q Computational
q Key length
q Output length (e.g., ciphertext or signature)

10

11

Public key crypto is harder…
n Requires related public, private keys

q Usually we say a keypair (pk, sk)
q Public key does not expose private key

n Substantial overhead
q Successful cryptanalytic shortcuts à

need long keys
q Elliptic Curves (EC) may allow shorter

keys (almost no shortcuts found)
q Complex computations, e.g., complex

(slow) key generation

[LV02] Required key size

Year AES RSA,
DH

ECIES

2010 78 1369 160

2020 86 1881 161

2030 93 2493 176

2040 101 3214 191

For the table:
n The year indicates until when confidentiality to be preserved.
n AES: A symmetric encryption scheme
n RSA and DH: encryption schemes based on factoring and discrete log hardness problems
n ECIES: Elliptic Curve Integrated Encryption Scheme

Commercial-grade security from [LV02]

In Sum
n Minimize the use of PKC
n In particular: as possible, apply PKC only to short inputs
n How??

q For signatures:
n Hash-then-sign

q For public-key encryption:
n Hybrid encryption

12

Hybrid Encryption
n Challenge: public key cryptosystems are slow
n Hybrid encryption:

n Use a shared key encryption scheme to encrypt all messages.
n But use a public key encryption scheme to exchange the shared

key.
n Alice generates k, encrypts it under Bob’s public key and sends

the ciphertext ck to Bob.
n Bob can decrypt and recover k, and then use k to decrypt cM.

k ß{0,1}n ckß PKEe(k)

cMßSKEk(m)

Encryption

Plaintext
m

Decryption

kß PKDd(ck)

SKDk(cM)

ck

m
cM

13
Note: the figure above only focuses on confidentiality, additional modules are needed to ensure integrity.

Going Forward
n First, review the mathematical concepts (mainly number

theory) that we need for a particular primitive/protocol.
q This would involve hardness problems/assumptions.

n Then, study the primitive/protocol itself.
n Lastly, and as before, show correctness and reason

about security.
q In general, security will be based on mathematical hardness

problems.

14

Number Theory Review
--Modular Arithmetic--

15

Notation

16

n ℤ : The set of all integers {…, -3, -2, -1, 0, 1, 2, 3, …}.

n ℤ!: The set of integers modulo n, i.e., {0, 1, …, n - 1}
n ℕ : The set of natural numbers {1, 2, 3, …}.

n Prime number: p is prime if its only factors are 1 and p.
n Composite number: not prime.
n Co-prime numbers: m and n are co-primes if their

greatest common divisor (gcd) is 1.
n ℤ"∗ : For a prime p, this is the set of integers modulo p

excluding zero, i.e., {1, …, p - 1}
n ℤ!∗ : For a composite n, it is the set of positive integers

that are less than n (excluding zero) and co-prime to n.

The Modulo Operation

1.2. BACKGROUND 13

It is not known whether factoring is in P , i.e., is e�ciently computable; if
it is, then there is an e�cient algorithm that finds the RSA private key and
allows decryption of messages. However, factoring definitely is in NP ; hence, if
P = NP , factoring is also in P , which would imply that RSA is insecure.

To see that factoring is in NP, we observe that there is an e�cient algorithm
to verify the factors of a large composite number such as n = pq. Namely, given
p and q, there is an e�cient algorithm that finds if n = pq. In fact, in this case,
verification consists simply of multiplying p by q and comparing the result to n.
In fact, even if given only one of the two, say p, verification is still easy: divide
n by p and confirm that the result is an integer q with no residue.

1.2.2 Background: modular arithmetic

Number theory is often used in the design and analysis of cryptographic schemes.
In this section, we introduce the minimal subset of number theory that is
necessary for our study of applied cryptography. The subset of number theory
that we need is mostly focused on modular arithmetic.

Modular arithmetic is based on the modulo operation, denoted mod , which
takes two inputs, an integer, say a, and a positive integer m which is called the
modulus. The modulo operation is denoted a mod m and returns the residue6

of division of the integer a by the modulus m. For example, 13 mod 4 = 1,
since 13 = 1 + 3 · 4. Note that for any given a,m 2 Z such that m > 0, there is
exactly one such residue of a modulo m, as the reader should be able to confirm.
The following definition tries to make this more clear.

Definition 1.2 (The modulo operation). Let a,m 2 Z be integers such that
m > 0. We say that an integer r is a residue of a modulo m if 0  r < m
and (9 i 2 Z)(a = r + i ·m). For any given a,m 2 Z, there is exactly one such
residue of a modulo m; we denote it by a mod m.

Note that a may be negative; in this case, i will also be negative. Similarly,
if m > a � 0, then a = a mod m, i.e., a = r + 0 ·m = r and i = 0.

Modular arithmetic is the computation of expressions involving arithmetic
operations over integers, where the operations include modulo operations. The
mod operation is applied after all ‘regular’ arithmetic operations such as
addition and multiplication; i.e., (a+ b mod m) = [(a+ b) mod m].

The reader should be able to confirm the following useful, basic properties of
the modular operation, which hold for every integers a, b,m 2 Z where m > 0:

(a+ b) mod m = [(a mod m) + (b mod m)] mod m (1.2)

(a� b) mod m = [(a mod m)� (b mod m)] mod m (1.3)

a · b mod m = [(a mod m) · (b mod m)] mod m (1.4)

ab mod m = (a mod m)b mod m (1.5)

6Some people use the term remainder in stead of residue.

Foundations of Cybersecurity: Applied Introduction to Cryptography

1.2. BACKGROUND 13

It is not known whether factoring is in P , i.e., is e�ciently computable; if
it is, then there is an e�cient algorithm that finds the RSA private key and
allows decryption of messages. However, factoring definitely is in NP ; hence, if
P = NP , factoring is also in P , which would imply that RSA is insecure.

To see that factoring is in NP, we observe that there is an e�cient algorithm
to verify the factors of a large composite number such as n = pq. Namely, given
p and q, there is an e�cient algorithm that finds if n = pq. In fact, in this case,
verification consists simply of multiplying p by q and comparing the result to n.
In fact, even if given only one of the two, say p, verification is still easy: divide
n by p and confirm that the result is an integer q with no residue.

1.2.2 Background: modular arithmetic

Number theory is often used in the design and analysis of cryptographic schemes.
In this section, we introduce the minimal subset of number theory that is
necessary for our study of applied cryptography. The subset of number theory
that we need is mostly focused on modular arithmetic.

Modular arithmetic is based on the modulo operation, denoted mod , which
takes two inputs, an integer, say a, and a positive integer m which is called the
modulus. The modulo operation is denoted a mod m and returns the residue6

of division of the integer a by the modulus m. For example, 13 mod 4 = 1,
since 13 = 1 + 3 · 4. Note that for any given a,m 2 Z such that m > 0, there is
exactly one such residue of a modulo m, as the reader should be able to confirm.
The following definition tries to make this more clear.

Definition 1.2 (The modulo operation). Let a,m 2 Z be integers such that
m > 0. We say that an integer r is a residue of a modulo m if 0  r < m
and (9 i 2 Z)(a = r + i ·m). For any given a,m 2 Z, there is exactly one such
residue of a modulo m; we denote it by a mod m.

Note that a may be negative; in this case, i will also be negative. Similarly,
if m > a � 0, then a = a mod m, i.e., a = r + 0 ·m = r and i = 0.

Modular arithmetic is the computation of expressions involving arithmetic
operations over integers, where the operations include modulo operations. The
mod operation is applied after all ‘regular’ arithmetic operations such as
addition and multiplication; i.e., (a+ b mod m) = [(a+ b) mod m].

The reader should be able to confirm the following useful, basic properties of
the modular operation, which hold for every integers a, b,m 2 Z where m > 0:

(a+ b) mod m = [(a mod m) + (b mod m)] mod m (1.2)

(a� b) mod m = [(a mod m)� (b mod m)] mod m (1.3)

a · b mod m = [(a mod m) · (b mod m)] mod m (1.4)

ab mod m = (a mod m)b mod m (1.5)

6Some people use the term remainder in stead of residue.

Foundations of Cybersecurity: Applied Introduction to Cryptography

Properties (make it easier to compute complex modular arithmetic
expressions):

17

Examples
n 7 mod 9 = ?
n 13 mod 8 = ?
n 0 mod 11 = ?
n 4 mod 4 = ?
n (30 + 66) mod 11 = ?
n How about:

14 CHAPTER 1. INTRODUCTION

Example 1.1. Let A = anan�1 . . . a2a1a0 be an n + 1-digits number. Let us
use Equations (1.2) and (1.4) to prove that A is divisible by 3 if and only if the
sum of its digits

Pn
i=0

ai is divisible by 3:

iX

i=0

(10iai) mod 3 =
iX

i=0

(10iai mod 3) mod 3

=
iX

i=0

[(10i mod 3)(ai mod 3)] mod 3

=
iX

i=0

[(1)(ai mod 3)] mod 3

=
iX

i=0

(ai mod 3) mod 3

=
iX

i=0

ai mod 3

The reader is encouraged to prove the similar rule for division by 9.

Exercise 1.1. Use Eq. (1.5) to show that for any integers a, b holds ab

mod (a� 1) = 1.

Similar properties hold for any polynomial p(x) with integer coe�cients and
input (x 2 Z), as well as for a polynomial p(x1, x2, . . .) with integer coe�cients
and multiple integer parameters (x1, x2, . . . 2 Z):

[p(x)] mod m = [p(x mod m)] mod m (1.6)

[p(x1, x2, . . .)] mod m = p(x1 mod m,x2, . . .) mod m = (1.7)

= p(x1 mod m, . . .) mod m (1.8)

These properties often make it much easier to compute the residue of a
complex expression or calculation, as the following exercise shows.

Exercise 1.2. Compute the following values:

1. 9 mod 7

2. 45 mod 7

3. 45

9
mod 7

4. 445 ·
�
81 · 3413 + 83 · 33345

�
mod 4

Solutions:

1. 9 mod 7 = 2 since 9 = 2 + 1 · 7.

2. 45 mod 7 = 3 since 45 = 3 + 6 · 7.

Foundations of Cybersecurity: Applied Introduction to Cryptography

1.2. BACKGROUND 15

3. 45

9
mod 7 = 5 mod 7 = 5.

4. Denote 445 ·
�
81 · 3413 + 83 · 33345

�
mod 4 by x. Then we find x as

follows:

x = 445 ·
�
81 · 3413 + 83 · 33345

�
mod 4

= (445 mod 4) ·
�
(81 mod 4) · (34 mod 4)13+

+(83 mod 4) · (33 mod 4)345
�

mod 4

= 1 ·
�
1 · 213 + 3 · 1345

�
mod 4

=
�
2 · 46 + 3

�
mod 4

= 3 mod 4 = 3

1.2.3 Background: Multiplicative inverses

Note that when we solved the third item of exercise 1.2, we did not compute the
modulo of the numerator and denominator and then divide - that would have
resulted in 3

2
mod 7, and 3

2
is not even an integer, so it would have no modulus.

Indeed, division was not included in equations 1.2 to 1.8; in fact, division of
two integers, a

b , is not always an integer - hence,
�
a
b

�
mod m may not even be

defined. Of course, we picked an example - 45

9
mod 7 - where 45

9
= 5, i.e., is

an integer, so 45

9
mod 7 was defined.

Of course, in ‘regular’ algebra, we often use division to solve equations; so
what can we do in modular arithmetic? The answer is that instead of dividing,
we can multiply by the multiplicative inverse. This actually also works in ‘regular’
algebra over the reals: every non-zero number x 6= 0 has a multiplicative inverse
which we denote by x�1 or 1

x , and for any y holds y
x = y · x�1. Let us show a

similar multiplicative inverse for modular arithmetic.

Definition 1.3. Let x,m 2 Z be integers such that m > 0 and x mod m 6= 0.
Then there is a unique integer x�1 such that x · x�1 mod m = 1 and m >
x�1 > 0. We say that x�1 is the multiplicative inverse of x modulo m.

Furthermore, the multiplicative inverse modulo m can be e�ciently found.

Fact 1.2. Let x,m 2 Z be integers such that m > 0 and x mod m 6= 0. Then
there is an e�cient algorithm that finds x�1 mod m.

Proof (partial): By definition, x · x�1 mod m = 1; hence, (x mod m) · x�1

mod m = 1. Let z ⌘ x mod m; then, by definition again (in the reverse direc-
tion), we have x�1 mod m = (x mod m)�1 mod m = z�1 mod m. There-
fore, we can find z�1 mod m, for z ⌘ x mod m, and it is the same as x�1

mod m. That’s a bit easier, since 0  z < m.
To finish the solution, find integers a, b that solve a · x+ b ·m = 1; it follows

that x�1 mod m = a mod m. To find a, b, use the (e�cient and simple)
Extended Euclidean algorithm; details omitted. In typical exercises, one can
find a, b by simple arithmetic; any pair of integers satisfying the equation will
do.

Foundations of Cybersecurity: Applied Introduction to Cryptography

18

Multiplicative Inverse
n Needed to support division in modular arithmetic.

q Division does not always produce integers.
q Modular arithmetic requires integers to work with!!

n To compute a/c mod m, multiply a by the multiplicative
inverse of c.
q That is compute a/c mod m = ac-1 mod m.
q Where c-1 is the multiplicative inverse such that cc-1

mod m = 1
n Not all integers have multiplicative inverses with respect

to a specific modulus m.

19

Multiplicative Inverse

n The algorithm used to compute the inverse is called the
Extended Euclidean algorithm (out of scope for this course).

q Examples:
q 3/5 mod 4 = 3 . 5-1 mod 4 = ?
q 3/5 mod 6 = 3 . 5-1 mod 6 = ?

20

658 APPENDIX A. BACKGROUND

4. Denote 445 ·
(
81 · 3413 + 83 · 33345

)
mod 4 by x. Then we find x as

follows:

x = 445 ·
(
81 · 3413 + 83 · 33345

)
mod 4

= (445 mod 4) ·
(
(81 mod 4) · (34 mod 4)13+

+(83 mod 4) · (33 mod 4)345
)

mod 4

= 1 ·
(
1 · 213 + 3 · 1345

)
mod 4

=
(
2 · 46 + 3

)
mod 4

= 3 mod 4 = 3

The reader should be able to show that congruence modulo m is an equiva-
lence relation, namely, that it satisfies the following properties:

Reflexivity: a → a (mod m).

Symmetry: a → b (mod m) if b → a (mod m).

Transitivity: if a → b (mod m) and b → c (mod m) then a → c (mod m).

A.2.2 Multiplicative inverses

Note that when we solved the third item of exercise A.2, we did not compute
the modulo of the numerator and denominator and then divide - that would
have resulted in 3

2 mod 7, and 3
2 is not even an integer, so it would have no

modulus. Indeed, division was not included in equations A.2 to A.8; in fact,
division of two integers, a

b , is not always an integer - hence,
(
a
b

)
mod m may

not even be defined. We picked an example - 45
9 mod 7 - where 45

9 = 5, i.e., is
an integer, so 45

9 mod 7 is defined (and equal to 5).
Of course, in ‘regular’ algebra, we often use division to solve equations; so

what can we do in modular arithmetic? The answer is that often - but not
always - instead of dividing, we can multiply by the multiplicative inverse. This
actually also usually works in ‘regular’ algebra over the reals: every non-zero
real number x ↑ R/0, i.e., x ↓= 0, has a multiplicative inverse which we denote
by x→1 or 1

x , and for any y holds y
x = y · x→1. The following fact similarly

defines a multiplicative inverse modulo m, and shows a su!cient and necessary
condition for its existence.

Fact A.2. Let a ↑ Z be an integer. We say that integer b is the multiplicative
inverse modulo m of a, if a · b → 1 (mod m); if it exists, we denote the
multiplicative inverse by b = a→1 mod m (or, when m is clear from context,
simply a→1).

An integer a has multiplicative inverse modulo integer m > 0, if and only if
a and m are coprime, namely, they do not have a common divisor (except 1).

Proof: see number-theory textbooks such as [232].

Applied Introduction to Cryptography and Cybersecurity

Modular Exponentiation
n Will be encountered a lot; discrete log-based scheme,

RSA, etc.
n We have seen a property to reduce the base, but how

about the exponent?
q Its reduction will be with respect to a different modulus

than the one in the original operation.
n Fermat’s Little Theorem:

1.2. BACKGROUND 17

n 1 2 3 4 5 6 7 8 9 10
�(n) 1 1 2 2 4 2 6 4 6 4

factors? none none none 2 · 2 none 2 · 3 none 23 3 · 3 2 · 5

Table 1.2: Euler’s function �(n), computed for small integers; see Equation 1.10.

In some cases, reducing the exponent is possible, and even simple and
e�cient; however, this reduction would not use the same modulus. In particular,
for computing exponentiation modulo a prime p, we may reduce the exponent
modulo p� 1; this is often referred to as Fermat’s little theorem, as follows.

Theorem 1.1. For any integers a, b, p 2 Z, if p is a prime and p > 0, then

ab mod p = ab mod (p�1) mod p

= (a mod p)b mod (p�1) mod p
(1.9)

Proof: See, e.g., [106].

Exercise 1.4. Compute the following, without a calculator. Use Fermat’s little
theorem (Theorem 1.1), if it is applicable; and use, if/where necessary, the
modulo operation rules.

1. 1331 mod 31

2. 17734 mod 4

3. 1926 mod 17

We can often reduce the exponent even when p is not a prime, using Euler’s
Theorem (Theorem 1.2). Euler’s theorem is a fundamental result from number
theory, which is a generalization of Fermat’s little theorem.

Euler’s function �. Before we present Euler’s theorem, we must introduce
Euler’s function �(n), also referred to as Euler’s totient7 function. We define
�(1) = 1, and for every integer n > 1, we define �(n) as the number of positive
integers which are less than n and co-prime to n. Two integers i, n are co-prime
if they do not have any common divisor (except 1, of course, which divides all
integers). Namely:

�(n) ⌘ |{i 2 N|i < n ^ gcd(i, n) = 1}| (1.10)

Where gcd(i, n) is the greatest common divisor of i and n, i.e., the largest integer
j s.t. 0 = i mod j and 0 = n mod j.

Euler’s function �(n), computed for small integers, is shown in Table 1.2.
The following lemma shows that if p is a prime then �(p) = p� 1. Further-

more, for a multiplication of two primes p, q holds: �(p · q) = (p� 1) · (q � 1).
Notice how this holds for the respective values in Table 1.2, e.g., �(7) = 6,
�(10) = 4.

7The word ‘totient’ comes from ‘how many’ in Latin.

Foundations of Cybersecurity: Applied Introduction to Cryptography

21

Modular Exponentiation
n Examples; Use Fermat’s Little theorem (if applicable) to

solve the following:
n 1332 mod 31 = ?
n 19930 mod 4 = ?
n 1960 mod 7 = ?

n Can we reduce the exponent for non-prime (composite)
modulus?
q We can use Euler’s Theorem.

22

Euler’s Function
n Called also Euler’s Totient function. For every integer n ≥

1, this function computes the number of positive integers
that are less than n and co-prime to n.
q Again, gcd is the greatest common devisor.

𝜙 𝑛 = |	{𝑖	 ∈ ℕ: 𝑖 < 𝑛	 ∧ gcd 𝑖, 𝑛 = 1}|
1.2. BACKGROUND 17

n 1 2 3 4 5 6 7 8 9 10
�(n) 1 1 2 2 4 2 6 4 6 4

factors? none none none 2 · 2 none 2 · 3 none 23 3 · 3 2 · 5

Table 1.2: Euler’s function �(n), computed for small integers; see Equation 1.10.

In some cases, reducing the exponent is possible, and even simple and
e�cient; however, this reduction would not use the same modulus. In particular,
for computing exponentiation modulo a prime p, we may reduce the exponent
modulo p� 1; this is often referred to as Fermat’s little theorem, as follows.

Theorem 1.1. For any integers a, b, p 2 Z, if p is a prime and p > 0, then

ab mod p = ab mod (p�1) mod p

= (a mod p)b mod (p�1) mod p
(1.9)

Proof: See, e.g., [106].

Exercise 1.4. Compute the following, without a calculator. Use Fermat’s little
theorem (Theorem 1.1), if it is applicable; and use, if/where necessary, the
modulo operation rules.

1. 1331 mod 31

2. 17734 mod 4

3. 1926 mod 17

We can often reduce the exponent even when p is not a prime, using Euler’s
Theorem (Theorem 1.2). Euler’s theorem is a fundamental result from number
theory, which is a generalization of Fermat’s little theorem.

Euler’s function �. Before we present Euler’s theorem, we must introduce
Euler’s function �(n), also referred to as Euler’s totient7 function. We define
�(1) = 1, and for every integer n > 1, we define �(n) as the number of positive
integers which are less than n and co-prime to n. Two integers i, n are co-prime
if they do not have any common divisor (except 1, of course, which divides all
integers). Namely:

�(n) ⌘ |{i 2 N|i < n ^ gcd(i, n) = 1}| (1.10)

Where gcd(i, n) is the greatest common divisor of i and n, i.e., the largest integer
j s.t. 0 = i mod j and 0 = n mod j.

Euler’s function �(n), computed for small integers, is shown in Table 1.2.
The following lemma shows that if p is a prime then �(p) = p� 1. Further-

more, for a multiplication of two primes p, q holds: �(p · q) = (p� 1) · (q � 1).
Notice how this holds for the respective values in Table 1.2, e.g., �(7) = 6,
�(10) = 4.

7The word ‘totient’ comes from ‘how many’ in Latin.

Foundations of Cybersecurity: Applied Introduction to Cryptography

Examples:

23

Euler’s Function Properties18 CHAPTER 1. INTRODUCTION

Lemma 1.1. For any prime p > 1 holds �(p) = p � 1. For prime q > 1 s.t.
q 6= p holds �(p · q) = (p� 1)(q � 1).

Proof: A prime p is clearly co-prime to any positive integer smaller than it,
hence �(p) = p� 1.

For primes p, q, the number of positive integers smaller than p · q is again
p ·q�1; but some of them are divided by either p or by q. Let Ap ⌘ {p, 2p, ·(q�
1)p} denote the set of positive integers smaller than p · q divided by p, and
Aq ⌘ {q, 2q, ·(p � 1)q} denote the set of positive integers smaller than p · q
divided by q. Then:

�(p · q) = (p · q � 1)� |Ap [Aq| (1.11)

Let us compute the size of |Ap [Aq|. First note that no positive integer
smaller than p · q can be divided by both p and q, since they are (di↵erent)
primes. Hence |Ap [Aq| = |Ap|+ |Aq|. Directly from the definition of each of
these sets we see that |Ap| = q � 1 and |Aq| = p� 1.

By substituting in Equation 1.11, we have:

�(p · q) = (p · q � 1)� (p� 1)� (q � 1) = p · q � p� q + 1 = (p� 1)(q � 1)

The next lemma generalizes Lemma 1.1, and states that the Euler function
is multiplicative for co-prime inputs, as follows.

Lemma 1.2 (Euler function multiplicative property). If a and b are co-prime
positive integers, then �(a · b) = �(a) · �(b).

Proof: Omitted.
Note that if a is co-prime to both b and c, than a is co-prime to bc. Hence,

Lemma 1.2 generalizes to a multiplication of multiple co-primes, e.g., if each
pair among a, b and c is co-prime, then �(a · b · c) = �(a) · �(b) · �(c).

We are getting close to being able to compute the Euler function for any
integer, given its factors. However, the Lemmas so far do not allow us to
compute the Euler function of an integer which is a power of a prime, i.e., pi

where p is a prime and i is a positive integer. For example, 9 = 32 and �(3) = 2,
but �(9) = 6. Let us now compute the Euler function for pi.

Lemma 1.3. For any prime p and integer l > 0 holds �(pl) = pl � pl�1.

Proof: Left to the reader. Hint: use the same idea as in proof of Lemma 1.1.

We next observe that using the above lemmas, we can compute the Euler
function given any multiplication of primes. This also generalizes the previous
lemmas.

Lemma 1.4. Let n = ⇧n
i=i

⇣
plii

⌘
, where {pi} is a set of distinct primes (all

di↵erent), and li is a set of positive integers (exponents of the di↵erent primes).
Then:

�(n) = �
⇣
⇧n

i=i

⇣
plii

⌘⌘
= ⇧n

i=1

⇣
plii � pli�1

i

⌘
(1.12)

Foundations of Cybersecurity: Applied Introduction to Cryptography

18 CHAPTER 1. INTRODUCTION

Lemma 1.1. For any prime p > 1 holds �(p) = p � 1. For prime q > 1 s.t.
q 6= p holds �(p · q) = (p� 1)(q � 1).

Proof: A prime p is clearly co-prime to any positive integer smaller than it,
hence �(p) = p� 1.

For primes p, q, the number of positive integers smaller than p · q is again
p ·q�1; but some of them are divided by either p or by q. Let Ap ⌘ {p, 2p, ·(q�
1)p} denote the set of positive integers smaller than p · q divided by p, and
Aq ⌘ {q, 2q, ·(p � 1)q} denote the set of positive integers smaller than p · q
divided by q. Then:

�(p · q) = (p · q � 1)� |Ap [Aq| (1.11)

Let us compute the size of |Ap [Aq|. First note that no positive integer
smaller than p · q can be divided by both p and q, since they are (di↵erent)
primes. Hence |Ap [Aq| = |Ap|+ |Aq|. Directly from the definition of each of
these sets we see that |Ap| = q � 1 and |Aq| = p� 1.

By substituting in Equation 1.11, we have:

�(p · q) = (p · q � 1)� (p� 1)� (q � 1) = p · q � p� q + 1 = (p� 1)(q � 1)

The next lemma generalizes Lemma 1.1, and states that the Euler function
is multiplicative for co-prime inputs, as follows.

Lemma 1.2 (Euler function multiplicative property). If a and b are co-prime
positive integers, then �(a · b) = �(a) · �(b).

Proof: Omitted.
Note that if a is co-prime to both b and c, than a is co-prime to bc. Hence,

Lemma 1.2 generalizes to a multiplication of multiple co-primes, e.g., if each
pair among a, b and c is co-prime, then �(a · b · c) = �(a) · �(b) · �(c).

We are getting close to being able to compute the Euler function for any
integer, given its factors. However, the Lemmas so far do not allow us to
compute the Euler function of an integer which is a power of a prime, i.e., pi

where p is a prime and i is a positive integer. For example, 9 = 32 and �(3) = 2,
but �(9) = 6. Let us now compute the Euler function for pi.

Lemma 1.3. For any prime p and integer l > 0 holds �(pl) = pl � pl�1.

Proof: Left to the reader. Hint: use the same idea as in proof of Lemma 1.1.

We next observe that using the above lemmas, we can compute the Euler
function given any multiplication of primes. This also generalizes the previous
lemmas.

Lemma 1.4. Let n = ⇧n
i=i

⇣
plii

⌘
, where {pi} is a set of distinct primes (all

di↵erent), and li is a set of positive integers (exponents of the di↵erent primes).
Then:

�(n) = �
⇣
⇧n

i=i

⇣
plii

⌘⌘
= ⇧n

i=1

⇣
plii � pli�1

i

⌘
(1.12)

Foundations of Cybersecurity: Applied Introduction to Cryptography

18 CHAPTER 1. INTRODUCTION

Lemma 1.1. For any prime p > 1 holds �(p) = p � 1. For prime q > 1 s.t.
q 6= p holds �(p · q) = (p� 1)(q � 1).

Proof: A prime p is clearly co-prime to any positive integer smaller than it,
hence �(p) = p� 1.

For primes p, q, the number of positive integers smaller than p · q is again
p ·q�1; but some of them are divided by either p or by q. Let Ap ⌘ {p, 2p, ·(q�
1)p} denote the set of positive integers smaller than p · q divided by p, and
Aq ⌘ {q, 2q, ·(p � 1)q} denote the set of positive integers smaller than p · q
divided by q. Then:

�(p · q) = (p · q � 1)� |Ap [Aq| (1.11)

Let us compute the size of |Ap [Aq|. First note that no positive integer
smaller than p · q can be divided by both p and q, since they are (di↵erent)
primes. Hence |Ap [Aq| = |Ap|+ |Aq|. Directly from the definition of each of
these sets we see that |Ap| = q � 1 and |Aq| = p� 1.

By substituting in Equation 1.11, we have:

�(p · q) = (p · q � 1)� (p� 1)� (q � 1) = p · q � p� q + 1 = (p� 1)(q � 1)

The next lemma generalizes Lemma 1.1, and states that the Euler function
is multiplicative for co-prime inputs, as follows.

Lemma 1.2 (Euler function multiplicative property). If a and b are co-prime
positive integers, then �(a · b) = �(a) · �(b).

Proof: Omitted.
Note that if a is co-prime to both b and c, than a is co-prime to bc. Hence,

Lemma 1.2 generalizes to a multiplication of multiple co-primes, e.g., if each
pair among a, b and c is co-prime, then �(a · b · c) = �(a) · �(b) · �(c).

We are getting close to being able to compute the Euler function for any
integer, given its factors. However, the Lemmas so far do not allow us to
compute the Euler function of an integer which is a power of a prime, i.e., pi

where p is a prime and i is a positive integer. For example, 9 = 32 and �(3) = 2,
but �(9) = 6. Let us now compute the Euler function for pi.

Lemma 1.3. For any prime p and integer l > 0 holds �(pl) = pl � pl�1.

Proof: Left to the reader. Hint: use the same idea as in proof of Lemma 1.1.

We next observe that using the above lemmas, we can compute the Euler
function given any multiplication of primes. This also generalizes the previous
lemmas.

Lemma 1.4. Let n = ⇧n
i=i

⇣
plii

⌘
, where {pi} is a set of distinct primes (all

di↵erent), and li is a set of positive integers (exponents of the di↵erent primes).
Then:

�(n) = �
⇣
⇧n

i=i

⇣
plii

⌘⌘
= ⇧n

i=1

⇣
plii � pli�1

i

⌘
(1.12)

Foundations of Cybersecurity: Applied Introduction to Cryptography

18 CHAPTER 1. INTRODUCTION

Lemma 1.1. For any prime p > 1 holds �(p) = p � 1. For prime q > 1 s.t.
q 6= p holds �(p · q) = (p� 1)(q � 1).

Proof: A prime p is clearly co-prime to any positive integer smaller than it,
hence �(p) = p� 1.

For primes p, q, the number of positive integers smaller than p · q is again
p ·q�1; but some of them are divided by either p or by q. Let Ap ⌘ {p, 2p, ·(q�
1)p} denote the set of positive integers smaller than p · q divided by p, and
Aq ⌘ {q, 2q, ·(p � 1)q} denote the set of positive integers smaller than p · q
divided by q. Then:

�(p · q) = (p · q � 1)� |Ap [Aq| (1.11)

Let us compute the size of |Ap [Aq|. First note that no positive integer
smaller than p · q can be divided by both p and q, since they are (di↵erent)
primes. Hence |Ap [Aq| = |Ap|+ |Aq|. Directly from the definition of each of
these sets we see that |Ap| = q � 1 and |Aq| = p� 1.

By substituting in Equation 1.11, we have:

�(p · q) = (p · q � 1)� (p� 1)� (q � 1) = p · q � p� q + 1 = (p� 1)(q � 1)

The next lemma generalizes Lemma 1.1, and states that the Euler function
is multiplicative for co-prime inputs, as follows.

Lemma 1.2 (Euler function multiplicative property). If a and b are co-prime
positive integers, then �(a · b) = �(a) · �(b).

Proof: Omitted.
Note that if a is co-prime to both b and c, than a is co-prime to bc. Hence,

Lemma 1.2 generalizes to a multiplication of multiple co-primes, e.g., if each
pair among a, b and c is co-prime, then �(a · b · c) = �(a) · �(b) · �(c).

We are getting close to being able to compute the Euler function for any
integer, given its factors. However, the Lemmas so far do not allow us to
compute the Euler function of an integer which is a power of a prime, i.e., pi

where p is a prime and i is a positive integer. For example, 9 = 32 and �(3) = 2,
but �(9) = 6. Let us now compute the Euler function for pi.

Lemma 1.3. For any prime p and integer l > 0 holds �(pl) = pl � pl�1.

Proof: Left to the reader. Hint: use the same idea as in proof of Lemma 1.1.

We next observe that using the above lemmas, we can compute the Euler
function given any multiplication of primes. This also generalizes the previous
lemmas.

Lemma 1.4. Let n = ⇧n
i=i

⇣
plii

⌘
, where {pi} is a set of distinct primes (all

di↵erent), and li is a set of positive integers (exponents of the di↵erent primes).
Then:

�(n) = �
⇣
⇧n

i=i

⇣
plii

⌘⌘
= ⇧n

i=1

⇣
plii � pli�1

i

⌘
(1.12)

Foundations of Cybersecurity: Applied Introduction to Cryptography

24

20 CHAPTER 1. INTRODUCTION

Exercise 1.6. Prove the following, using the appropriate ‘tools’ among these
we learned. There may be more than one way to prove.

1. 1331 mod 31 = 13

2. 17734 mod 4 = 1

3. 2726 mod 10 = 9

4. 35841 mod 12 = 11

Congruence (mod m). Quite often in modular arithmetic, and in particular
in cryptography, we use equations of the form:

a mod m = b mod m (1.20)

Where a and b are some expressions, variables or values. Namely, in such
equations, we have two expressions, a and b, with the same residue modulo m.

There is an equivalent notation to such relation between expressions a and
b, called congruence modulo m, and denoted:

a ⌘ b (mod m) (1.21)

We may sometimes err and write a = b (mod m), but really that would be
just a typo. The meaning should still be clear from the use of (mod m) rather
than just mod m, as in a = b mod m. Note that a = b mod m means that
a is the residue of b modulo m; if the meaning was congruence, this is an error,
which could be misleading.

The reader should be able to show that congruence modulom is an equivalence
relation, namely, that it satisfies the following properties:

Reflexivity: a ⌘ a (mod m).

Symmetry: a ⌘ b (mod m) if b ⌘ a (mod m).

Transitivity: if a ⌘ b (mod m) and b ⌘ c (mod m) then a ⌘ c (mod m).

The fundamental theorem of arithmetic. We finish this section with the
‘classical’ fundamental theorem of arithmetic, also referred to as the unique
factorization theorem. We mention this result due to its importance and relation
to factorization; but we do not use it, so it is just informative. The theorem
states that each integer n > 1 can be represented as a multiplication of primes;
hence, once we are given this factorization, we can compute the Euler function
of n, using Lemma 1.4. The theorem also states that this representation is
unique. The first presentation and proof of this theorem are due to Euclid.

Theorem 1.3 (The fundamental theorem of arithmetic). Every number n > 1
has a unique representation as a product of powers of distinct primes.

Proof: omitted. Note that 1 is not considered a prime.

Foundations of Cybersecurity: Applied Introduction to Cryptography

Euler’s Theorem

1.2. BACKGROUND 19

Proof: Every pair of powers of distinct primes (plii , p
lj
j) are co-primes; hence

from Lemma 1.2, generalized to a multiplication of multiple co-primes, it follows
that �(n) = ⇧n

i=1
�(plii). The claim follows from Lemma 1.3.

The following exercise may improve your understanding of the Euler function
and the di↵erent ways to compute it.

Exercise 1.5. Compute the following; use the lemmas and facts above, as
necessary.

1. �(31)

2. �(93)

3. �(29)

4. �(125)

5. �(603)

Solution of item 5: first notice that 60 = 3 · 4 · 5 = 3 · 22 · 5.
To compute �(60), we apply Lemma 1.2:

�(60) = �(3 · 22 · 5) (1.13)

= �(3) · �(22) · �(5) (1.14)

= 2 · 2 · 4 = 16 (1.15)

To compute �(603), we apply Lemma 1.4:

�(607) = �(33 · 26 · 53) (1.16)

= (33 � 32) · (26 � 25) · �(53 � 52) (1.17)

= 18 · 32 · 100 = 57600 (1.18)

Euler’s theorem. Finally, we can now present Euler’s theorem:

Theorem 1.2 (Euler’s theorem). For any co-prime integers m,n holds m�(n) =
1 mod n. Furthermore, for any integer l holds:

ml mod n = ml mod �(n) mod n (1.19)

With Euler’s theorem, we now have several modular arithmetic tools. First,
we have the ‘basic’ modular-reduction rules (Equations 1.2 to 1.8). Second, we
have Fermat’s little theorem and Euler’s theorem. Finally, to apply Euler’s
theorem, we can use Lemma 1.4 to compute the Euler’s function �(m) for an
integer m, if we have the factorization of m.

The following exercise requires the use of these tools to compute several
modular computations. The challenge, of course, is to identify and use the
‘right tool’ for each exercise.

Foundations of Cybersecurity: Applied Introduction to Cryptography

25

n Examples:
q 1331 mod 31 = ?
q 2726 mod 10 = ?

Key Exchange

26

27

The Key Exchange Problem
n Alice and Bob want to agree on secret (key)

q Secure against eavesdropper adversary
q Assume no prior shared secrets (key)

Aka key agreement

Defining a Key Exchange Protocol

28

310 CHAPTER 6. PUBLIC KEY CRYPTOLOGY

Figure 6.5: Key Exchange protocol. Each party, Alice and Bob, runs the Key-
Generation algorithm KG, which outputs a (private, public) key-pair: a, PA for
Alice and b, PB for Bob. The parties exchange their public keys (PA and PB).
Then, each party applies a key-combining function KC to its own private key (a
for Alice and b for Bob), and to the public key received from the peer (PA from
Alice and PB from Bob). A key-exchange protocol should ensure correctness
(kA = KC(a, PB) = KC(b, PA) = kB) and key-indistinguishability (kA = kB is
pseudorandom), allowing use of kA = kB as a shared key.

A key exchange protocol should ensure correctness and key-secrecy. The
correctness requirement is that both parties will derive the same key, namely
that for every security parameter 1n holds:

⇣
8(a, PA)

$ KG(1n), (b, PB)
$ KG(1n)

⌘
KC(a, PB) = KC(b, PA) (6.5)

Key-indistinguishability requires, intuitively, that an eavesdropping adversary,
who ‘sees’ PA and PB , cannot learn anything about the shared key; equivalently,
it requires that the adversary cannot distinguish between being given randomly-
generated PA, PB and the key derived from them, versus being given randomly-
generated PA, PB and a random string of the same length as the key. The
following definition states this requirement more precisely.

Definition 6.5 (The key indistinguishability requirement). Let (KG,KC) be
a key-exchange protocol, and A be an e�cient (PPT) adversary. We say that
(KG,KC) ensures key-indistinguishability if for every PPT adversary A and
for su�ciently-large security parameter 1l, holds:

Pr

2

6664

A (PA, PB ,KC(a, PA)) = 1
where

(a, PA)
$ KG(1l),

(b, PB)
$ KG(1l)

3

7775
�Pr

2

666664

A (PA, PB , r) = 1
where

(a, PA)
$ KG(1l),

(b, PB)
$ KG(1l),

r
$ {0, 1}|KC(a,PA)|

3

777775
2 NEGL(1l)

(6.6)

6.2.3 Some candidate key exchange protocol

In this subsection, we present few ‘prototype’ key-exchange protocols, which
help us to properly explain the Di�e-Hellman protocol. Unlike the physical

Foundations of Cybersecurity: Applied Introduction to Cryptography

Must satisfy:
• Correctness; both parties compute the same shared key,
• and key indistinguishability; the key that the two parties establish is

indistinguishable from random.

*KG: Key Generate, KC: Key Compute, a and b are secret, while PA and PB are public

The Discrete Log (DL) Assumption

29

30

Group Theory Review I
n A group is a pair of (𝐺, 𝑜𝑝) is composed of a set of elements 𝐺

and an operation 𝑜𝑝 such that 𝐺 is closed under the operation
𝑜𝑝,	i.e., for any two elements 𝑎, 𝑏	 ∈ 𝐺 we have 𝑎	𝑜𝑝	𝑏 = 𝑐	 ∈ 𝐺 ,
and it satisfies the following requirements:

664 APPENDIX A. BACKGROUND

With Euler’s theorem, we now have several modular arithmetic tools. First,
we have the ‘basic’ modular-reduction rules (Equations A.2 to A.8). Second, we
have Fermat’s theorem and Euler’s theorem. Finally, to apply Euler’s theorem,
we can use Lemma A.4 to compute the Euler’s toitent function ω(m) for an
integer m, if we have the factorization of m.

The following exercise requires the use of these tools to compute several
modular computations. The challenge, of course, is to identify and use the ‘right
tool’ for each exercise.

Exercise A.7. Prove the following, using the appropriate ‘tools’ among these
we learned. There may be more than one way to prove.

1. 1331 mod 31 = 13

2. 17734 mod 4 = 1

3. 2726 mod 10 = 9

4. 35841 mod 12 = 11

A.2.4 Group Theory, Cyclic Groups and Generators

In this subsection, we introduce basic notions from the domain of group theory,
which are used widely in applied cryptography, and a bit in this textbook.

Let us first define a group. A group is a pair (G, ·) of a set G of elements,
and an operation, which we denoted ·, which is defined on all pairs of elements
from G, and whose outcome is always also in G, i.e., G is closed under the
operation ·. In this book (and in many texts), we usually use the symbol · for the
operation of the group, like the typical notation for multiplication, i.e., a · b → G
for every a, b → G; we may sometimes omit the dot and simply write ab, with the
same meaning, or use the standard notation for exponentiation, e.g., a2 = a · a.
However, it is also possible to use other symbols for the group operation, e.g., ↑
or +.

The requirements from group operations are simple, and familiar from both
regular arithmetic and modular arithmetic; let us define a group, including these
requirements.

Definition A.3. A group is a set G of elements and an operation, denoted ·,
satisfying the following requirements:

Associativity: for every a, b, c → G holds (a · b) · c = a · (b · c).

Identity element: there exists a (unique) element in G, which we call the
identity element and usually denote by 1 → G, such that for every element
a → G holds: a = a · 1 = 1 · a.

Inverse: For each a → G, there is an element a→1 → G such that a · a→1 =
a→1 · a = 1, where 1 is the identity element. For each a, there is only one
such element, which we call the inverse of a and denote a→1. (From the

Applied Introduction to Cryptography and Cybersecurity

A.2. BACKGROUND: NUMBER THEORY AND GROUP THEORY 665

identity element property, it follows that the identity element is always its
own inverse.)

A commutative group6 is a group that also satisfies:

Commutativity: for every a, b → G holds a · b = b · a.

We focus on finite commutative groups. One such group is the finite additive
group denoted Zn (or Zn), which consists of the set Zn = {0, 1, . . . , (n↑ 1)},
for integer n > 1, and where the group operation is addition modulo n. For this
group, it is more natural to denote the group operation by + rather than by ·;
note that we do not include mod n, however, we obviously refer to mod n
addition. Let us see that Zn is indeed a group, by validating that it satisfies the
requirements:

Associativity: for every a, b, c → Zn holds (a+ b mod n) + c mod n = (a+
b) + c mod n = a + (b + c) mod n = a + (b + c mod n) mod n. We
included the mod n notation, to make it easier to follow the argument.

Identity element: the identity element is zero; for every i → Zn holds i+ 0 =
0 + i = i.

Inverse: consider any i → Zn except zero. Then (n↑ i) → Zn is the inverse of
i, since i+ (n↑ i) mod n = n mod n = 0. Zero is the inverse of itself.

Commutativity: for every a, b → Zn holds a+ b = b+ a.

We also use finite multiplicative groups, mostly, the mod p multiplicative
group denoted Z→

p, which is also called a prime order group. The Z→
p group

consists of the set Z→
p = {1, . . . , (n↑ 1)}, for a prime p, and the group operation

of multiplication modulo p. Let us see that Z→
p is a commutative group:

Associativity: for every a, b, c → Zp holds (a · b mod p) · c mod p = (a · b) · c
mod p = a · (b · c) mod p = a · (b · c mod p) mod p. We included the
mod p notation, to make it easier to follow the argument.

Identity element: the identity element is one; for every i → Z→
p holds i · 1 =

1 · i = i.

Inverse: consider any a → Z→
p except one. From Fact A.3, a has an inverse

(ap↑2 mod p).

Commutativity: for every a, b → Z→
n holds a · b = b · a.

We use the exponentiation notation to denote repeated application of the
group operation with the same operand, i.e., a1 = a and ai = ai↑1 · a for
every positive integer i. Exponentiation generalizes naturally to zero or negative
exponents, with a0 defined to be the unit element of the group, denoted simply 1,
and a↑i defined as the multiplicative inverse of ai.

6Commutative groups are also called Abelian groups.

Applied Introduction to Cryptography and Cybersecurity

Although the properties are for multiplication operations, same applies for addition. The only difference
is that the identity element is 0.

31

Group Theory Review II
n We focus on finite commutative groups.
n We will consider Finite Additive Groups:

q Example: (ℤ!, +) where ℤ! = {0, 1, 2, … , 𝑛 − 1 } and the operation is
addition modulo 𝑛

q Exercise: show the group above satisfies all properties listed in the
previous slide.

n We will consider Finite Multiplicative Groups, mostly, modulo a prime 𝑝:
q Example: (ℤ"∗ , .) where ℤ"∗ = {1, 2, … , 𝑝 − 1 } and the operation is

multiplication modulo 𝑝
q Exercise: show the group above satisfies all properties listed in the

previous slide.
n We use the exponentiation notation to denote the repeated application

of the group operation.
q That is, 𝑎$ = 𝑎 and 𝑎% = 	𝑎%&$	𝑜𝑝	𝑎 and so on.

32

Cyclic Groups

Examples:
q For prime 𝑝 , the additive group ℤ! = 0, 1, … , 𝑝 − 1 is a cyclic group of

order 𝑝 and every element in this group (except 0) is a generator (because
the order of this group is prime). Exercise: verify that!

q For prime 𝑝 , the group ℤ!∗ = {1,…p-1} is a cyclic multiplicative group. E.g.,
ℤ#∗ = {1, 2, … , 6} is a cyclic group of order 6, a generator for this group is 3
(2, for example, is not a generator. Exercise: verify that!).

666 APPENDIX A. BACKGROUND

We now define the important concepts of a (finite) cyclic group, a generator
and the order of a cyclic group.

Definition A.4 (Cyclic group, generator and order). A group G is cyclic, if
there is an element g → G such that for every element a → G, there is an integer
i such that a = gi. Such an element g is called a generator of G. The order of
G is the integer q > 0 such that gq = 1, where g is a generator of G and 1 is
the unit element of G.

Note that G = {g1, . . . , gq} = {1, g, g2, . . . , gq→1}, hence, the order q of a
cyclic group G, is also the number of element in G. We also define the order of
an element a → G; this is the smallest possible integer q > 0 such that aq = 1.
In particular, the order of a is the same as the order of G if, and only if, a is a
generator of g.

In subsubsection 6.1.8.2 we define the discrete logarithm problem, which is
another important number-theoretic problem considered computationally hard,
and used as the basis for public-key cryptography, including the Di!e-Hellman
(DH) key agreement protocol and the El-Gamal public key cryptosystem.

A.3 Background: Probability

Probabilistic analysis and algorithms are very important for computer science in
general and for cryptography in particular. However, luckily, only the very basics
are required for our study of applied cryptography. For more in-depth coverage,
take a course and/or read one of the many excellent textbooks, e.g., [118,197].

Probability deals with events which result in a value from some predefined
set. For simplicity, we only consider a finite set of possible outcomes. The
classical example is a coin-flip, which has two possible outcomes: Head or Tail.
With a fair coin, either outcome is equally likely; and, even for a biased coin,
we expect each coin-flip to be independent of other coin-flips.

Let {x1, x2, . . . , xn} denote the set of n outcomes of coin-flips, i.e., (↑i ↓
n) xi → {Head,Tail}; each of the xi values is called a random variable, i.e.,
it is a variable whose value is set by a random experiment. Since we expect
each coin-flip to be independent of the others, it makes sense to compute the
average number of outcomes with a given value, e.g. Head. We refer to the
average fraction of Head outcomes as the probability (likelihood) that the random
outcome of a coin flip would be Head. Let Pr(x = Head) denote the probability
that an outcome x of a random coin toss is Head, and denote Pr(Tail) similarly.
Then:

Pr(x = Head) = lim
n↑↓

∑n
i=1{1 if xi = Head, 0 else}

n

Pr(x = Tail) = lim
n↑↓

∑n
i=1{1 if xi = Tail, 0 else}

n

(A.22)

Clearly, 0 ↓ Pr(x = Head) ↓ 1, 0 ↓ Pr(x = Tail) ↓ 1 and Pr(x =
Head) + Pr(x = Tail) = 1. If x is the random outcome of a fair coin flip, then:
Pr(x = Head) = Pr(x = Tail) = 1

2 .

Applied Introduction to Cryptography and Cybersecurity

33

The Discrete Log Problem
n A computationally hard problem is one that is:

q Hard to solve
q But easy to verify

n Discrete log problem: given a generator 𝑔 and an element 𝑎 ∈ 𝐺, find
𝑖 such that 𝑎 = 𝑔%

q Verification: exponentiation (efficient algorithm)
n Computing logarithm is quite efficient over the real numbers. But is

discrete-log hard?
q Some ‘weak’ groups, i.e., where discrete log is not hard:

n ℤ"∗ for prime 𝑝, where (𝑝 − 1) has only ‘small’ prime factors
q Using the Pohlig-Hellman algorithm

n Mistakes/trapdoors found, e.g., in OpenSSL’16, so always
check!

q Other groups studied, considered Ok (‘hard’)
q Safe-prime groups: ℤ"∗ for safe prime: 𝑝 = 2q + 1 for prime 𝑞

Discrete Log Assumption

34

And remember, discrete-log is hard with respect to a particular group!

352 CHAPTER 6. PUBLIC KEY CRYPTOGRAPHY

Fact 6.1. Let g be a generator of of a cyclic group G which contains p → 1
elements, e.g., Z→

p. Then for every integer k s.t. 1 ↑ k < p→ 1 holds gk ↓↔ 1.

Proof: suppose for some k : 1 ↑ k < p → 1 holds gk ↔ 1. Then gk+1 ↔
gk · g ↔ g, and in general, gi ↔ gi mod k, i.e., there are only k < p→ 1 di!erent
values for gi for all possible integers i. However, this contradicts the assumption
that g is a generator of G, since, by definition, if g is a generator of G then
every element x ↗ G must satisfy x ↔ gi for some integer i, and G contains
p→ 1 > k elements.

We define the discrete logarithm problem below; the definition is for a
general finite cyclic group G, with the prime order group Z→

p being a special
case. In this definition, we consider a PPT algorithm Gen which receives, as
input, a security parameter 1n, and generates (outputs) the generator g and the
order q of G. The definition requires the attacker to have negligible probability
of success for a generator g chosen by the generation algorithm Gen.

Definition 6.2 (The discrete logarithm problem). Let Gen be a PPT algorithm
that, on input 1n, outputs (g, q) such that {1, g, . . . , gq} is a cyclic group (using
a given group operation). We say that the discrete logarithm problem is hard
for groups generated by Gen, if for every PPT algorithm A holds:

Pr
[
(g, q) ↘ Gen (1n) ; y

$↘ {1, . . . , q} : y = A(gy)
]
↗ NEGL(1n) (6.6)

Note that there are some cyclic groups for which the discrete-logarithm
problem is easy, and in particular, for some primes p, the discrete-logarithm
problem for Z→

p is easy. In particular:

Fact 6.2 (Computing discrete logarithms mod p is easy if p→1 is smooth). Let
p be a prime such that p→1 is smooth, i.e., p→1 has only ‘small’ prime factors.
Then there are known algorithms, such as the Pohlig-Hellman algorithm [363],
that e!ciently compute discrete logarithms mod p.

Examples of primes p s.t. p→ 1 is smooth. Let us give two simple examples
of primes p such that p→ 1 is smooth. The first example is of Fermat’s primes,
i.e., primes of the form p = 2x + 1 for integer x. The second, possible better4
example is of Pierpont’s primes, i.e., primes of the form p = 2x · 3y + 1 for
integers x, y.

Fact 6.2 motivates the use of a modulus p where p→ 1 has large factors, i.e.,
is not smooth. In this textbook, we focus on the most well-known family of
such primes, which are called safe prime, as we next define.

Definition 6.3 (A safe prime). A prime number p ↗ N is called a safe prime,
if p = 2q + 1 for some prime q ↗ N. If p is a safe prime, we say that the group
Z→
p, containing the numbers from 1 to p → 1, with the modular multiplication

operation, is a safe prime group.
4Pierpont’s primes may be a better example since very large Pierpont’s primes are known,

in fact, the number of Pierpont’s primes is conjectured to be infinite. In contrast, only five
Fermat’s primes are known, and the largest currently known is 65537 = 216 + 1.

Applied Introduction to Cryptography and Cybersecurity

q -1

The Diffie-Hellman (DH) Key Exchange Protocol
and

The Computational/Decisional Diffie-Hellman
Assumptions (CDH/DDH)

35

Diffie-Hellman [DH] Key Exchange
n Setup: Agree on a random safe prime p and generator g for the cyclic

multiplicative group ℤ!∗
n Alice: pick at random secret integer a from ℤ!∗ , then compute PA= ga mod p, and

send PA to Bob.
n Bob: pick at random secret integer b from ℤ!∗ , then compute PB= gb mod p, and

send PB to Alice.
n Both parties: compute the shared key k = gab mod p , do you see how?

36

PA= ga mod p

PB= gb mod p

BobAlice

Using cyclic multiplicative group ℤ!∗

Select a Select b

𝑔0 1=𝑔10= 𝑔1 0	𝑚𝑜𝑑	𝑝

37

Caution: Authenticate the Public Keys!
n Diffie-Hellman key exchange is only secure against

eavesdroppers but not MitM attackers.
n So the public messages being sent must be authenticated,

e.g., using digital signatures.
q Still each party must have a certificate for her public (verification) key.316 CHAPTER 6. PUBLIC KEY CRYPTOLOGY

Nurse

Alice

a
$ {1, . . . , p}

(ge)a = ga·e mod p

Bob

b
$ {1, . . . , p}

(ge)b = gb·e mod p

MitM Adversary

e
$ {1, . . . , p}

(ga)e = ga·e mod p,�
gb
�e

= gb·e mod p

ga mod p ge mod p

gb mod pge mod p

Figure 6.10: MitM attack on the DH key-exchange protocol. The DH protocol
is believed to be secure against an eavesdropping adversary - or if the messages
are authenticated.

Definition 6.6 (Computational DH (CDH) for safe prime groups). The Com-
putational DH (CDH) assumption for safe prime groups holds, if for every PPT
algorithm A, every constant c 2 R, and every su�ciently-large integer n 2 N,
holds:

Pr
a,b

$ Z⇤
p

⇥
A(ga mod p, gb mod p) = gab mod p

⇤
2 NEGL (6.7)

for every safe prime p of at least n bits and every generator g of Z⇤p =
{1, 2, . . . , p� 1}.

However, note that even if the CDH assumption for safe prime groups holds,
an eavesdropper may still be able to learn some partial information about gab

mod p. The following claim shows that this allows immediate deduction of
whether gab mod p is a quadratic residue modulo p, i.e., exposes ‘one bit of
information’ about gab mod p: whether it is a quadratic residue or not.

Claim 6.3. Let PA = ga mod p and PB = gb mod p, where p is a prime, g
is a generator for Z⇤p, and a, b are positive integers. Given PA, PB, we can

e�ciently deduce if gab mod p is a quadratic residue modulo p.

Proof: from Claim 6.1, the attacker can e�ciently find if ga mod p and
gb mod p are quadratic residues modulo p. From Claim 6.2, this gives us the
least significant bit (LSb) of a and b, since, e.g., LSb(a) = 0 if and only if ga

mod p is a quadratic residue modulo p. Clearly, ab is even, i.e., LSb(ab) = 0, if
either a or b is even. Hence, given PA = ga mod p and PB = gb mod p, we

Foundations of Cybersecurity: Applied Introduction to Cryptography

38

Security of [DH] Key Exchange
n Assume authenticated communication
n DH key exchange requires stronger assumption than Discrete Log:

q Maybe from gb mod p and ga mod p, adversary can compute
gab mod p (without knowing/learning a,b or ab)?

n The Computational Diffie-Hellman (CDH) Assumption is what we
need.
q In simple terms, it states that given gb mod p and ga mod p, an

efficient adversary cannot compute gab mod p with non-negligible
probability.

n So DH key exchange protocol is secure for groups in which the
CDH assumption holds.

n Assume CDH holds. Can we use 𝑔'(as key?
q Not necessarily; maybe finding some bits of 𝑔'(is easy?

39

Using DH securely?
n Can ga , gb expose something about gab mod p ?

q Bad news: Finding (at least) one bit about gab mod p is easy!
(details in textbook if interested)

n So, how to use DH ‘securely’? Two options:
q Option 1: Use DH but with a `stronger’ group (other than
ℤ"∗) for which the stronger DDH assumption holds.
n The Decisional DH (DDH) Assumption: adversary can’t

distinguish between [𝑔$, 𝑔% , 𝑔$%] and [𝑔$, 𝑔% , 𝑔&] for random 𝑎, 𝑏, 𝑐.

q Option 2: use DH with ℤ"∗ 	and safe prime p… (where only
CDH holds) but use a key derivation function (KDF) to
derive a secure shared key.
n Example, use an unkeyed hash function to obtain 𝑘 = ℎ 𝑔$%𝑚𝑜𝑑	𝑝 ,

where h is randomness-extracting hash function.

Covered Material From the Textbook
q Appendix A.2
q Chapter 6:

q Sections 6.1 (except 6.1.8.3),
q Section 6.2 (6.2.1 and 6.2.2 are optional reading).

40

