CSE 3400/CSE 5850 - Introduction to Cryptography and Cybersecurity / Introduction to Cybersecurity

Lecture 10 Public Key Cryptography— Part I

Ghada Almashaqbeh UConn

Adapted from the textbook slides

Outline

- Introduction to public key cryptography and motivation.
- Number theory review.
- The discrete log assumption.
- The Diffie-Hellman key exchange protocol.

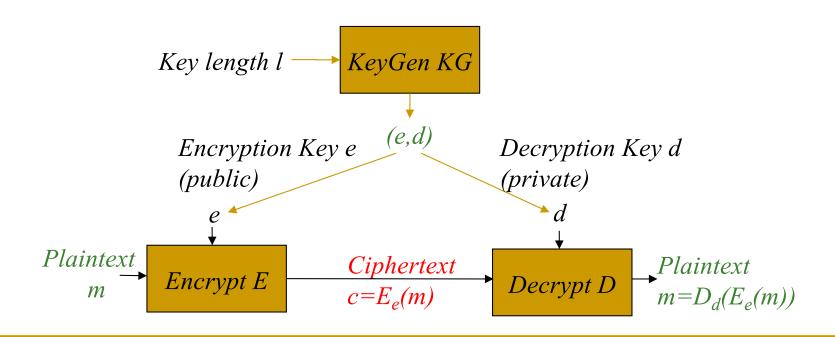
Intro to Public Key Cryptography

Public Key Cryptography

- Kerckhoff's principle: the cryptosystem (algorithm) is public
- What we learned until now: symmetric or shared key setting
 - Only the key is secret (unknown to attacker)
 - □ Same key for encryption and decryption → if you can encrypt, you can also decrypt!
 - Shared keys for MACs and PRFs, etc.
- But can we give asymmetric cryptographic capability, e.g., encryption capability without a decryption capability?
 - Yes, using public key cryptography!

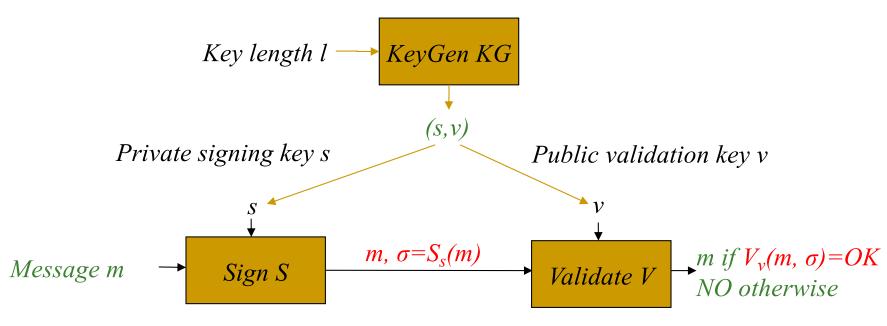
Public Key Cryptosystem (PKC)

- Kerckhoff: cryptosystem (algorithm) is public.
- [DH76]: can encryption key be public, too??
 - Decryption key will be different (and private).
 - Everybody can send me emails, only I can read them.



Is it Only About Encryption?

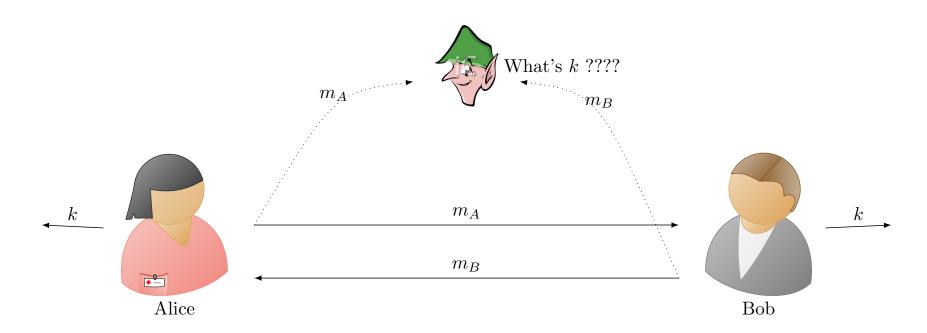
- Also: Digital signatures for integrity and non-repudiation.
 - \Box Sign with private key s, verify with public key v
 - (Recall MACs; a shared key cryptosystem for message authentication).



Anyone can verify the signature!

More: Key-Exchange Protocols

- Establish shared key between Alice and Bob without assuming an existing shared ('master') key !!
- Use public information from Alice and Bob to setup shared secret key k.
- Eavesdroppers cannot learn the key k.



Public keys solve more problems ...

- Signatures provide evidence
 - Everyone can validate, only 'owner' can sign.
- Establish shared secret keys
 - Use authenticated public keys
 - Signed by trusted certificate authority (CA)
 - Or: use DH (Diffie Hellman) key exchange
- Stronger resiliency to key exposure
 - Perfect forward secrecy and recover security
 - These are stronger notions than FS and RS that we studied before.
 - Threshold security
 - Resilient to key exposure of t out of n parties

Public keys are easier...

- To distribute:
 - From directory or from incoming message (still need to be authenticated)
 - Less keys to distribute (same public key to all)
- To maintain:
 - Can keep in non-secure storage as long as being validated (i.e., authenticated) before using
 - Less keys: O(|parties|), not $O(|parties|^2)$
 - So: why not always use public key crypto?

The Price of PKC

- Assumptions
 - Applied PKC algorithms are based on a small number of specific computational assumptions
 - Mainly: hardness of factoring and discrete-log
 - Both may fail against quantum computers
- Overhead
 - Computational
 - Key length
 - Output length (e.g., ciphertext or signature)

Public key crypto is harder...

- Requires related public, private keys
 - Usually we say a keypair (pk, sk)
 - Public key does not expose private key
- Substantial overhead
 - □ Successful cryptanalytic shortcuts → need long keys
 - Elliptic Curves (EC) may allow shorter keys (almost no shortcuts found)
 - Complex computations, e.g., complex (slow) key generation

Commercial-grade security from [LV02]

[LV02]	Required key size						
Year	AES	RSA, DH	ECIES				
2010	78	1369	160				
2020	86	1881	161				
2030	93	2493	176				
2040	101	3214	191				

For the table:

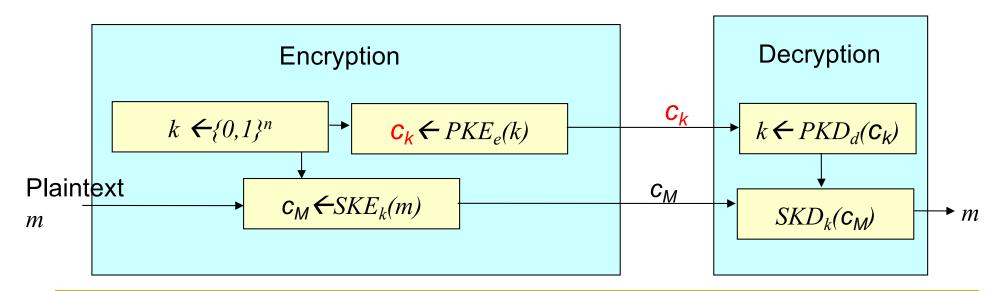
- The year indicates until when confidentiality to be preserved.
- AES: A symmetric encryption scheme
- RSA and DH: encryption schemes based on factoring and discrete log hardness problems
- ECIES: Elliptic Curve Integrated Encryption Scheme

In Sum

- Minimize the use of PKC
- In particular: as possible, apply PKC only to short inputs
- How??
 - For signatures:
 - Hash-then-sign
 - For public-key encryption:
 - Hybrid encryption

Hybrid Encryption

- Challenge: public key cryptosystems are slow
- Hybrid encryption:
 - Use a shared key encryption scheme to encrypt all messages.
 - But use a public key encryption scheme to exchange the shared key.
 - Alice generates k, encrypts it under Bob's public key and sends the ciphertext c_k to Bob.
 - Bob can decrypt and recover k, and then use k to decrypt c_M .



Note: the figure above only focuses on confidentiality, additional modules are needed to ensure integrity.

Going Forward

- First, review the mathematical concepts (mainly number theory) that we need for a particular primitive/protocol.
 - This would involve hardness problems/assumptions.
- Then, study the primitive/protocol itself.
- Lastly, and as before, show correctness and reason about security.
 - In general, security will be based on mathematical hardness problems.

Number Theory Review -- Modular Arithmetic--

Notation

- Z: The set of all integers {..., -3, -2, -1, 0, 1, 2, 3, ...}.
- **Z**_n: The set of integers modulo n, i.e., $\{0, 1, ..., n-1\}$
- \mathbb{N} : The set of natural numbers $\{1, 2, 3, ...\}$.
- Prime number: p is prime if its only factors are 1 and p.
- Composite number: not prime.
- Co-prime numbers: m and n are co-primes if their greatest common divisor (gcd) is 1.
- \mathbb{Z}_p^* : For a prime p, this is the set of integers modulo p excluding zero, i.e., $\{1, ..., p 1\}$
- \mathbb{Z}_n^* : For a composite n, it is the set of positive integers that are less than n (excluding zero) and co-prime to n.

The Modulo Operation

Definition 1.2 (The modulo operation). Let $a, m \in \mathbb{Z}$ be integers such that m > 0. We say that an integer r is a residue of a modulo m if $0 \le r < m$ and $(\exists i \in \mathbb{Z})(a = r + i \cdot m)$. For any given $a, m \in \mathbb{Z}$, there is exactly one such residue of a modulo m; we denote it by $a \mod m$.

Properties (make it easier to compute complex modular arithmetic expressions):

$$(a+b) \mod m = [(a \mod m) + (b \mod m)] \mod m \qquad (1.2)$$

$$(a-b) \mod m = [(a \mod m) - (b \mod m)] \mod m \qquad (1.3)$$

$$a \cdot b \mod m = [(a \mod m) \cdot (b \mod m)] \mod m \qquad (1.4)$$

$$a^b \mod m = (a \mod m)^b \mod m \qquad (1.5)$$

Examples

- 7 mod 9 = ?
- 13 mod 8 = ?
- 0 mod 11 = ?
- 4 mod 4 = ?
- $(30 + 66) \mod 11 = ?$
- How about: $445 \cdot \left(81 \cdot 34^{13} + 83 \cdot 33^{345}\right) \mod 4$

Denote $445 \cdot (81 \cdot 34^{13} + 83 \cdot 33^{345}) \mod 4$ by x. Then we find x as follows:

$$x = 445 \cdot (81 \cdot 34^{13} + 83 \cdot 33^{345}) \mod 4$$

$$= (445 \mod 4) \cdot ((81 \mod 4) \cdot (34 \mod 4)^{13} + (83 \mod 4) \cdot (33 \mod 4)^{345}) \mod 4$$

$$= 1 \cdot (1 \cdot 2^{13} + 3 \cdot 1^{345}) \mod 4$$

$$= (2 \cdot 4^6 + 3) \mod 4$$

$$= 3 \mod 4 = 3$$

Multiplicative Inverse

- Needed to support division in modular arithmetic.
 - Division does not always produce integers.
 - Modular arithmetic requires integers to work with!!
- To compute a/c mod m, multiply a by the multiplicative inverse of c.
 - That is compute a/c mod m = ac⁻¹ mod m.
 - Where c⁻¹ is the multiplicative inverse such that cc⁻¹
 mod m = 1
- Not all integers have multiplicative inverses with respect to a specific modulus m.

Multiplicative Inverse

Fact A.2. Let $a \in \mathbb{Z}$ be an integer. We say that integer b is the multiplicative inverse modulo m of a, if $a \cdot b \equiv 1 \pmod{m}$; if it exists, we denote the multiplicative inverse by $b = a^{-1} \pmod{m}$ (or, when m is clear from context, simply a^{-1}).

An integer a has multiplicative inverse modulo integer m > 0, if and only if a and m are coprime, namely, they do not have a common divisor (except 1).

- ☐ Examples:
 - \square 3/5 mod 4 = 3 . 5⁻¹ mod 4 = ?
 - \square 3/5 mod 6 = 3 . 5⁻¹ mod 6 = ?

 The algorithm used to compute the inverse is called the Extended Euclidean algorithm (out of scope for this course).

Modular Exponentiation

- Will be encountered a lot; discrete log-based scheme, RSA, etc.
- We have seen a property to reduce the base, but how about the exponent?
 - Its reduction will be with respect to a different modulus than the one in the original operation.
- Fermat's Little Theorem:

Theorem 1.1. For any integers $a, b, p \in \mathbb{Z}$, if p is a prime and p > 0, then

$$a^{b} \mod p = a^{b \mod (p-1)} \mod p$$

$$= (a \mod p)^{b \mod (p-1)} \mod p$$

$$(1.9)$$

Modular Exponentiation

- Examples; Use Fermat's Little theorem (if applicable) to solve the following:
- \bullet 13³² mod 31 = ?
- \bullet 19⁹³⁰ mod 4 = ?
- \bullet 19⁶⁰ mod 7 = ?
- Can we reduce the exponent for non-prime (composite) modulus?
 - We can use Euler's Theorem.

Euler's Function

- Called also Euler's Totient function. For every integer n ≥ 1, this function computes the number of positive integers that are less than n and co-prime to n.
 - Again, gcd is the greatest common devisor.

$$\phi(n) = |\{i \in \mathbb{N}: i < n \land \gcd(i, n) = 1\}|$$

Examples:

n	1	2	3	4	5	6	7	8	9	10
$\phi(n)$	1	1	2	2	4	2	6	4	6	4
factors?	none	none	none	$2 \cdot 2$	none	$2 \cdot 3$	none	2^3	$3 \cdot 3$	$2 \cdot 5$

Euler's Function Properties

Lemma 1.1. For any prime p > 1 holds $\phi(p) = p - 1$. For prime q > 1 s.t. $q \neq p$ holds $\phi(p \cdot q) = (p - 1)(q - 1)$.

Lemma 1.2 (Euler function multiplicative property). If a and b are co-prime positive integers, then $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$.

Lemma 1.3. For any prime p and integer l > 0 holds $\phi(p^l) = p^l - p^{l-1}$.

Theorem 1.3 (The fundamental theorem of arithmetic). Every number n > 1 has a unique representation as a product of powers of distinct primes.

Lemma 1.4. Let $n = \prod_{i=1}^{n} (p_i^{l_i})$, where $\{p_i\}$ is a set of distinct primes (all different), and l_i is a set of positive integers (exponents of the different primes). Then:

$$\phi(n) = \phi\left(\Pi_{i=i}^{n} \left(p_{i}^{l_{i}}\right)\right) = \Pi_{i=1}^{n} \left(p_{i}^{l_{i}} - p_{i}^{l_{i}-1}\right)$$
(1.12)

Euler's Theorem

Theorem 1.2 (Euler's theorem). For any co-prime integers m, n holds $m^{\phi(n)} = 1 \mod n$. Furthermore, for any integer l holds:

$$m^l \mod n = m^{l \mod \phi(n)} \mod n$$
 (1.19)

Examples:

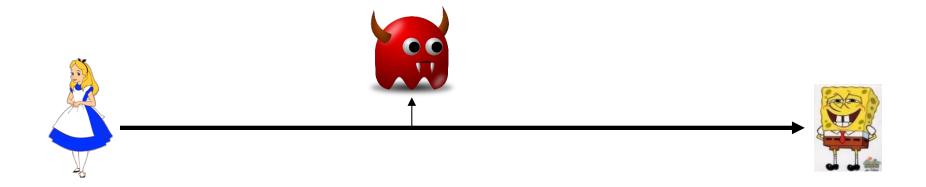
- $13^{31} \mod 31 = ?$
- \square 27²⁶ mod 10 = ?

Key Exchange

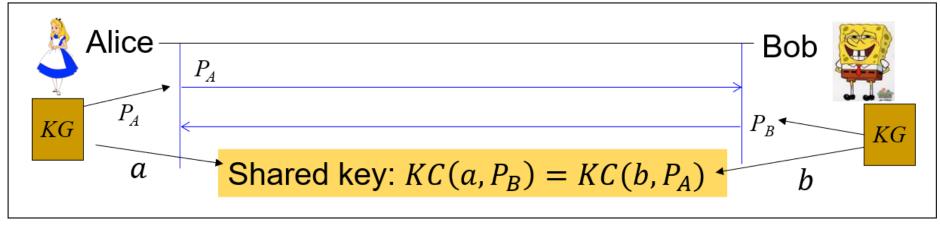
The Key Exchange Problem

Aka key agreement

- Alice and Bob want to agree on secret (key)
 - Secure against eavesdropper adversary
 - Assume no prior shared secrets (key)



Defining a Key Exchange Protocol



*KG: Key Generate, KC: Key Compute, a and b are secret, while P_A and P_B are public

Must satisfy:

- Correctness; both parties compute the same shared key,
- and *key indistinguishability*; the key that the two parties establish is indistinguishable from random.

The Discrete Log (DL) Assumption

Group Theory Review I

A group is a pair of (G, op) is composed of a set of elements G and an operation op such that G is closed under the operation op, i.e., for any two elements $a, b \in G$ we have $a \circ p \circ b = c \in G$, and it satisfies the following requirements:

Associativity: for every $a, b, c \in G$ holds $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

Identity element: there exists a (unique) element in G, which we call the identity element and usually denote by $1 \in G$, such that for every element $a \in G$ holds: $a = a \cdot 1 = 1 \cdot a$.

Inverse: For each $a \in G$, there is an element $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$, where 1 is the identity element. For each a, there is only one such element, which we call the inverse of a and denote a^{-1} . (From the identity element property, it follows that the identity element is always its own inverse.)

A commutative group is a group that also satisfies:

Commutativity: for every $a, b \in G$ holds $a \cdot b = b \cdot a$.

Group Theory Review II

- We focus on finite commutative groups.
- We will consider Finite Additive Groups:
 - □ Example: $(\mathbb{Z}_n, +)$ where $\mathbb{Z}_n = \{0, 1, 2, ..., (n-1)\}$ and the operation is addition modulo n
 - Exercise: show the group above satisfies all properties listed in the previous slide.
- We will consider Finite Multiplicative Groups, mostly, modulo a prime p:
 - Example: $(\mathbb{Z}_p^*,.)$ where $\mathbb{Z}_p^* = \{1,2,...,(p-1)\}$ and the operation is multiplication modulo p
 - Exercise: show the group above satisfies all properties listed in the previous slide.
- We use the exponentiation notation to denote the repeated application of the group operation.
 - □ That is, $a^1 = a$ and $a^i = a^{i-1} op a$ and so on.

Cyclic Groups

Definition A.4 (Cyclic group, generator and order). A group G is cyclic, if there is an element $g \in G$ such that for every element $a \in G$, there is an integer i such that $a = g^i$. Such an element g is called a generator of G. The order of G is the integer q > 0 such that $g^q = 1$, where g is a generator of G and G is the unit element of G.

Note that $G = \{g^1, \ldots, g^q\} = \{1, g, g^2, \ldots, g^{q-1}\}$, hence, the order q of a cyclic group G, is also the number of element in G. We also define the order of an element $a \in G$; this is the smallest possible integer q > 0 such that $a^q = 1$. In particular, the order of a is the same as the order of a if, and only if, a is a generator of a.

Examples:

- For prime p, the additive group $\mathbb{Z}_p = \{0, 1, ..., p-1\}$ is a cyclic group of order p and every element in this group (except 0) is a generator (because the order of this group is prime). *Exercise: verify that!*
- For prime p, the group $\mathbb{Z}_p^* = \{1, \dots, p-1\}$ is a cyclic multiplicative group. E.g., $\mathbb{Z}_7^* = \{1, 2, \dots, 6\}$ is a cyclic group of order 6, a generator for this group is 3 (2, for example, is not a generator. *Exercise: verify that!*).

The Discrete Log Problem

- A computationally hard problem is one that is:
 - Hard to solve
 - But easy to verify
- Discrete log problem: given a generator g and an element a ∈ G, find i such that a = gⁱ
 - Verification: exponentiation (efficient algorithm)
- Computing logarithm is quite efficient over the real numbers. But is discrete-log hard?
 - □ Some 'weak' groups, i.e., where discrete log is **not** hard:
 - lacksquare \mathbb{Z}_p^* for prime p, where (p-1) has only 'small' prime factors
 - Using the Pohlig-Hellman algorithm
 - Mistakes/trapdoors found, e.g., in OpenSSL'16, so always check!
 - Other groups studied, considered Ok ('hard')
 - □ Safe-prime groups: \mathbb{Z}_p^* for safe prime: p = 2q + 1 for prime q

Discrete Log Assumption

Definition 6.2 (The discrete logarithm problem). Let $Gen\ be\ a\ PPT\ algorithm$ that, on input 1^n , outputs (g,q) such that $\{1,g,\ldots,g^n\}$ is a cyclic group (using a given group operation). We say that the discrete logarithm problem is hard for groups generated by Gen, if for every $PPT\ algorithm\ \mathcal{A}\ holds$:

q -1

$$\Pr\left[(g,q) \leftarrow Gen(1^n) \; ; \; y \stackrel{\$}{\leftarrow} \{1,\ldots,q\} : y = \mathcal{A}(g^y)\right] \in NEGL(1^n) \quad (6.6)$$

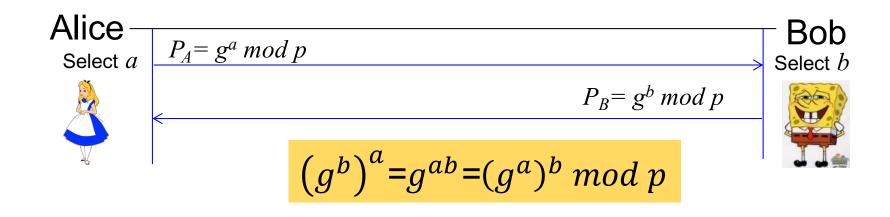
And remember, discrete-log is hard with respect to a particular group!

The Diffie-Hellman (DH) Key Exchange Protocol and The Computational/Decisional Diffie-Hellman Assumptions (CDH/DDH)

Diffie-Hellman [DH] Key Exchange

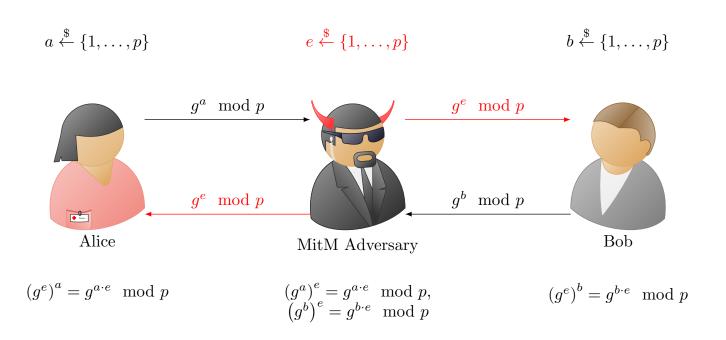
Using cyclic multiplicative group \mathbb{Z}_p^*

- Setup: Agree on a random safe prime p and generator g for the cyclic multiplicative group \mathbb{Z}_p^*
- Alice: pick at random secret integer a from \mathbb{Z}_p^* , then compute $P_A = g^a \mod p$, and send P_A to Bob.
- Bob: pick at random secret integer b from \mathbb{Z}_p^* , then compute $P_B = g^b \mod p$, and send P_B to Alice.
- Both parties: compute the shared key $k = g^{ab} \mod p$, do you see how?



Caution: Authenticate the Public Keys!

- Diffie-Hellman key exchange is only secure against eavesdroppers but not MitM attackers.
- So the public messages being sent must be authenticated, e.g., using digital signatures.
 - Still each party must have a certificate for her public (verification) key.



Security of [DH] Key Exchange

- Assume authenticated communication
- DH key exchange requires stronger assumption than Discrete Log:
 - □ Maybe from $g^b \mod p$ and $g^a \mod p$, adversary can compute $g^{ab} \mod p$ (without knowing/learning a,b or ab)?
 - The Computational Diffie-Hellman (CDH) Assumption is what we need.
 - □ In simple terms, it states that given $g^b \mod p$ and $g^a \mod p$, an efficient adversary cannot compute $g^{ab} \mod p$ with non-negligible probability.
 - So DH key exchange protocol is secure for groups in which the CDH assumption holds.
 - Assume CDH holds. Can we use g^{ab} as key?
 - Not necessarily; maybe finding some bits of g^{ab} is easy?

Using DH securely?

- Can g^a , g^b expose something about $g^{ab} \mod p$?
 - Bad news: Finding (at least) one bit about g^{ab} mod p is easy!
 (details in textbook if interested)
- So, how to use DH 'securely'? Two options:
 - □ Option 1: Use DH but with a `stronger' group (other than \mathbb{Z}_p^*) for which the stronger DDH assumption holds.
 - The **Decisional DH (DDH) Assumption**: adversary can't **distinguish** between $[g^a, g^b, g^{ab}]$ and $[g^a, g^b, g^c]$ for random a, b, c.
 - □ Option 2: use DH with \mathbb{Z}_p^* and safe prime p... (where only CDH holds) but use a **key derivation function (KDF)** to derive a secure shared key.
 - Example, use an unkeyed hash function to obtain $k = h(g^{ab} mod p)$, where h is randomness-extracting hash function.

Covered Material From the Textbook

- ☐ Appendix A.2
- ☐ Chapter 6:
 - □ Sections 6.1 (except 6.1.8.3),
 - ☐ Section 6.2 (6.2.1 and 6.2.2 are optional reading).

Thank You!

