
CSE 3400/5850 - Introduction to Computer & Network
Security

/ Introduction to Cybersecurity

Lecture 8
Shared Key Protocols – Part I

Ghada Almashaqbeh
UConn

Adapted from the Textbook Slides

Outline
q Cryptography protocols.
q Session or record protocols.
q Entity authentication protocols.

2

Modeling Cryptographic Protocols
q A protocol is a set of PPT (efficient) functions or

algorithms
q Each receiving (state, input), outputting (state, output)
q Two (or more) parties, each has its own state

q Including Init, In, [and if needed Wakeup] functions
q And task-specific functions, e.g., Send

q The execution process is a series of function
invocations based on which the protocol proceeds.

q Our discussion (from here) is focused on shared-key,
two-party protocols, MitM adversary.

3

Record Protocols

Secure communication between two parties using shared
keys.

Two-party, shared-key Record protocol
q Parties/peers: Alice (sender), Bob (receiver)

q Simplest – yet applied – protocol
q Simplify: only-authentication for what Alice sends to Bob

q Goal: Bob outputs m only if Alice had Send(m)

q Let’s design the protocol! define the protocol
functions
q 𝐼𝑛𝑖𝑡(𝑘) [Initialize Alice/Bob with secret key k]
q 𝑆𝑒𝑛𝑑(𝑚): Alice sends message m and a tag

over m (to Bob)
q 𝐼𝑛(𝑚) : Bob receives (m, tag) and accepts m is

the tag is valid.
5

Two-party, shared-key Record protocol
q Design has many simplifications, easily

avoided:
q Only message authentication

q No confidentiality!

q Only ensure same message was sent
q Does not address duplication, out-of-order, `stale’

messages, losses

q To add confidentiality: use encryption
q Namely, employ EtA (encrypt then authenticate).

6

Two-party record protocol with Confidentiality

q 𝐼𝑛𝑖𝑡(𝑘) [Initialize Alice/Bob with secret key k]
q {𝑠	ß	(𝑘! = 𝐹" `𝐸` 	, 𝑘# = 𝐹" `𝐴`)

q 𝑆𝑒𝑛𝑑(𝑚): Alice sends message m (to Bob)
q {𝑂𝑢𝑡𝑝𝑢𝑡	𝑥 = 	 (𝐸"!(𝑚),𝑀𝐴𝐶""(𝐸"!(𝑚)))	; 	}

q 𝐼𝑛((𝑐, 𝑡𝑎𝑔)) : Bob receives (𝑐, 𝑡𝑎𝑔) from
adversary
q {𝑂𝑢𝑡𝑝𝑢𝑡	𝐷𝑘(𝑐) if (𝑡𝑎𝑔 = 𝑀𝐴𝐶""(𝑐))	; }

7

So, security guarantees …

What does a secure shared-key two-party
record protocol mean?

How about the security of the one with
confidentially?

Shared-key Entity Authentication
Protocols

Ensure the identity of an entity (or a peer) involved in
communication.

Mutual Authentication Protocols
q Our focus.
q In mutual authentication, each party

authenticates herself to the other.
q Alice knows that she is communicating with Bob,

and vice versa

q This requires, at least, one exchange of
messages.
q A message from Alice and a response from Bob (or

vice versa).

q Such a flow is called a handshake.

10

Handshake Entity-Authentication protocol
q A protocol to open sessions between parties

q Each party assigns its own unique ID to each
session, and maps peer’s-IDs to its own IDs
q Alice maps Bob’s 𝑖! to its identifier 𝐼𝐷" 𝑖!
q Bob maps Alice’s 𝑖" to its identifier 𝐼𝐷! 𝑖"

q ‘Matching’ goal: 𝑖" = 𝐼𝐷" 𝐼𝐷! 𝑖" 	, 𝑖! = 𝐼𝐷! 𝐼𝐷" 𝑖!

q Allow concurrent sessions and both to open
q Simplify: no timeout / failures / close, ignore session protocol, …

11

Handshake Entity-Authentication protocol
q Protocol functions

q 𝐼𝑛𝑖𝑡 𝑘 :	Initialize Alice/Bob with secret key k
q 𝑂𝑝𝑒𝑛: Alice/Bob open a session
q 𝑂𝑢𝑡(𝑥) : party sends 𝑥 to peer
q 𝐼𝑛(𝑥) : party receives 𝑥 from channel (via MitM)

q Protocol outputs
q 𝑂𝑝𝑒𝑛(𝑖): party opened session 𝑖
q (and received messages).

12

13

Example : IBM’s SNA Handshake
qFirst dominant networking technology
qHandshake uses encryption with shared key k

A, NA

Ek(NA), NA ,NB

NB,Ek(NB)

BobAlice

SNA (Systems Network Architecture): IBM’s proprietary network architecture,
dominated market @ [1975-1990s], mainly in banking, government.

NA and NB - randomly
chosen nonces

Insecure !! Why ?

14

Attack on SNA’s Handshake
qMitM opens two sessions with Bob, sending NB to Bob in
2nd connection to get Ek(NB)

q SNA is secure for sequential mutual authentication handshakes but not
concurrent ones.

BobMitM (spoofing as Alice)
Session 1 Session 2 Session 1 Session 2

A, NA=1234
Ek(1234),NB=5678

5678 A, NA=5678

Ek(5678),NB=9012Ek(5678)

Ek(5678) Alice `identified`
(spoofed)

Fixing Mutual Authentication
n Encryption does not ensure authenticity

q Use MAC to authenticate messages!
n Prevent redirection

q Identify party in challenge
q Better: use separate keys for each direction

n Prevent replay and reorder
q Identify flow and connection
q Prevent use of old challenge: randomness, time or state

n Do not provide the adversary with an oracle access!
n Do not compute values from Adversary
q Include self-chosen nonce in the protected reply

15

Secure Two-Party Handshake Protocol (2PP)

Use MAC rather than encryption to authenticate
Prevent redirection: include identities (A,B)
Prevent replay and reorder:
q Nonces (NA,NB)
q Separate 2nd and 3rd flows: 3 vs. 2 input blocks

q Provably secure [formal proof is out of scope]

A, NA

NA, NB , Mack(2 || AßB ||NA || NB)

NB , Mack(3 || AàB || NA || NB) BobAlice

16

Covered Material From the Textbook
q Chapter 5

q Sections 5.1 and 5.2

17

