CSE 3400 - Introduction to Computer & Network Security
(aka: Introduction to Cybersecurity)

Lecture 7/
Hash Functions — Part I1

Ghada Almashaqgbeh
UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline

Hash based MACs.

Domain extension.

Merkle digest and Merkle trees.
Blockchains.

Hash based MAC

Hash-based MAC is often faster than
block-cipher MAC

How? Heuristic constructions:

Prepend Key: MAC;® (m) = h(k + m)

Append Key: MAC{E (m) = h(m + k)
Message-in-the-Middle: MACM*M (1) = h(k 4 m + k)

Are these secure assuming CRHF ? OWF ? Both ?
2 No.

o But: all ‘'secure in random oracle model’

Hash-based MAC: HMAC

HMAC uses only the unkeyed hash function h:
HMAC,(x)=h(k@opad || h(k @ipad || x))
0 opad, ipad: fixed sequences (of 36x, 5Cx resp.)
o Itis a secure MAC under ‘reasonable assumptions’ [beyond our scope]
Widely deployed
More results, more exposure = confidence!
Hash functions are useful for MACs in another way:
o Hash then MAC for efficiency.

Digest Schemes

Generalization of collision-resistant hash
o Input is a sequence of messages
o Output is n-bit digest, denoted A

Three types of schemes:

o Digest functions (or accumulators)
o Merkle Digest (and Merkle trees)
o Blockchains

In other textbooks, this is referred to as
Domain Extension.

Digest Functions

Generalization of collision-resistant hash
o Input is a sequence of messages
o Output is n-bit digest, denoted A

Definition A digest function A s an efficiently computable function
(in. PPT) that maps blocks (finite sequences of binary strings) to n-bit binary
string i.e., Az ({0,13)" = {0,1}", where n is the security parameter.
Dhgest function A is collision resistant if the digest collision-resistance
advantage 82%3(71) is negligible (in n), for every efficient adversary A € PPT,

where:

ehN(n) =Pr ((B,B') + A(1") s.t. B# B' ANA(B) = A(B"))

The Merkle-Damgard Digest Function

The Merkle-Damgard construction of:

o Collision-Resistant Digest function from CRHF
o VIL CRHF from compression function (FIL CRHF): [m;| =n

ldea: hash iteratively, message by message:

A(my, ..., m) = h(A(my, ..., m_y)||1]|my) ; A(my) = h(0™**||m,)
Lemma 4.2: if h is a CRHF, then A is a collision-resistant digest
Proof... (see details in textbook)

mi mao ms my

02::] = = L—
/ /

-
>

5 —>
A({m1,m2}) / A({ma, m2, ms}) A({m1,m2,m3,mq})

VIL CRHF trom FIL. CRHF

Recall: design and cryptanalyze simple (FIL) function,
use it to construct strong (VIL) function

Build VIL CRHF {0,1}*2{0,1}" from FIL CRHF
(aka compression function) comp:{0,1}"2{0,1}"

0 E.g. m=2n,1i.e. comp:{0,1)*">{0,1}"

x;€{0,1} —»\ comp(x;,x,) €{0,1}"
comp g
X) E{O’]}n —>/

o The Merkle-Damgard constructs a CRHF from a
compression function

Requires "MD-strengthening’ extension (next slide)

Merkle-Damgard Length-Padding

Aka Merkle - Damgard Strengthening
Let pad(x)=1||0"|bin (|x|) ; x =x||pad(x)
o Where bin (x|) is the L—bit binary representation of |x]|
o And: |x|+|pad(x)|=0 mod L
o Simplify: assume |x|=0 mod L, |pad(x)|=L
Let y,=IV be some fixed L bits (IV=Initialization Value)
Fori=I,.|x’|/Llety=cx’[i] || v.})

_ This is just a high level

Output A°(x) =y, idea, care needed to
x[1] |x[2] . |x/1]||10% | bin(]x|) avoid collisions

1V

MPO)=y=c(x| || v)

The Digest-Chain Extend Function

Beyond digest and collision resistance:
sequence-related integrity mechanisms

For digest-chain, the extend function:

o Input: digest and ‘next’ sequence
o Output: digest (of entire sequence)
o Correctness requirement:

ECI?tGTLd(Al, Ml—l-l,l’) — A(Ml —+ Ml—l—l,l’)

Use to (1) extend chain, (2) validate new digest (with
new seq.), or (3) use digest to validate a message

10

The Merkle-Damgard Extend Function

We can define Extend for Merkle-Damgard:
o ldea: Just continue last digest!

(Let Ay < h(A 414 mq)
For [l =1: A4
For [> 1:
Mmo" Extend (A1, {ma, ..., m;})

Mmo" Extend (A, {m1,...,m;}) = <

\

Not secure to be used to construct a MAC!

my my
1— 1 0pl - Ext(a, (my, ... , m)))

A h(A[[1]jmy)

11

Merkle Digest Schemes
Digest function A: {m;e{0,1}*} — {0,1}"

Collision-resistance requirement
Validation of Inclusion: Pol and VerPol
o Pol function: compute Proof of Inclusion
o VerPol function: verify Pol
o Both: mandatory and optimized
o Optional, also Proof-of-Non-Inclusion (PoNI)

Extending the Sequence: PoC and VerPoC

o PoC: Proof of Consistency (from old digest to new)
o VerPoC function: verify PoC

o Optional

12

Merkle digest scheme: detinition

Definition (Merkle digest scheme). A Merkle digest scheme 171 is a tuple
of three PPT functions (NM.A,111.Pol, 1.V erPol), where:

M.A is the Merkle tree digest function, whose input is a sequence of mes-
sages B = {m; € {0,1}*}; and whose output is an n-bit digest: NM.A :

({0,1}*)" — {0,1}".

M.Pol 1s the Proof-of-Inclusion function, whose input is a sequence of messages
B ={m; € {0,1}*};, an integer i € [1,|B]|| (the index of one message in
B), and whose output is a Proof-of-Inclusion (Pol): M.PoI : ({0,1}*)" x
N — {0,1}*.

M.VerPol 1is the Verify-Proof-of-Inclusion predicate, whose inputs are digest
d € {0,1}", message m € {0,1}*, index i € N, proof p € {0,1}*, and
whose output is a bit (1 for true’ or 0 for ‘false’): NM.VerPol : {0,1}™ x
{0,1}* x N x {0,1}* — {0, 1}.

13

Merkle digest: correctness and security

Correctness means that on input a valid Pol,
VerPol will output 1.

Security means that a PPT adversary cannot find
collisions against the digest functions, and cannot

forge a valid Pol.

14

Proot ot Consistency (PoC)

A Merkle digest scheme supports PoC if it
has two more functions:

M.PoC (B¢, By) is the Extend and Proof-of-Consistency function PoC, whose
input are two sequences, Bo and By, and whose output Pcn = 1. PoC (B¢, By)

1s a binary string which we call the Proof-of-Consistency from Ac =
mA(Bc) to AC’N = mA(BCN)

M.VerPoC(Ac,Acn,lo,ln,p) € {True, False} is the Verify-Proof-of-Consistency
predicate, whose inputs are the two digests Ac, Acn, the numbers of en-
tries (lc and ly), and a string (PoC') p.

Correctness and security of PoC:

o Correctness: A valid generated PoC will cause
VerPoC to output 1.

o Security: a PPT adversary cannot forge a valid PoC.

15

Two-layered Merkle tree

Short digest validates integrity of large object
o Often, object consists of multiple ‘files’

Merkle tree : integrity for many ‘messages’
o Hash each ‘message’ in block, then hash-of-hashes
6 = h(h(my)||h(my)||h(m3)||h(m,))
o Validate each ‘message’ independently
Advantages: efficiency (computation, communication) and privacy

mq my msa Mmy
h h h h
h(m,) h(m;) h(ms) h(m,)
\>\> 4/4/
h

16

Two-layered Merkle tree
Hash each item in block separately:
x; = h(my),x, = h(my),
Digest is hash of hashes:
y = A(my,m,,...) = h(xq]||x2]] ...)

h(m,) h(m;) h(ms) h(m,)
N 4/4%

{Allows each user to receive, validate only required items. How? }

17

To verify inclusion ot ms ...

2IMT .A(m,, ..., m;)
2IMT .Pol((m,,..., my),7)

h|h(mi) # ... # h(my)]
{h(.'ni)}i—l
TRUE if ; = h(m), and
d= h(.l‘l “H"...‘H*.I‘[)

Il

2AMT VerPol(d,m,i,{z;}_,)

my
N\ h

<Receive and validate only m,. Other hashes still required, though. >

18

‘ The Merkle Tree Construction

= Reduce length of ‘proofs’ — send less hashes of ‘other msgs’

m) mso ms3 m4

] T =

\ hi -4 =h(hy 24 hs 1) /

{ HL=0: h(m;)

MTA(A[) = Else h (MTA (ml, ceeyMoL—1) " L u

HMT.A(mor—144,...,moL))

Merkle Tree: Proot of Inclusion (Pol)

= To prove inclusion of my

7

ma ms3

Nt/

\i<
h,y

2/

Nt

AN

, send also ‘proofs’: hy{_,, hy

™

«/

\ hy -4 =h(hy 2 # h3 1)

/

)_/

20

‘ Blockchains

o Next slides set.

21

Covered Material From the Textbook

Chapter 3: Sections 3.7, 3.8, and 3.9
Chapter 4: Section 4.6.3

22

Thank Youl

