
CSE 3400/CSE 5850 - Introduction to Computer & Network
Security

/ Introduction to Cybersecurity)

Lecture 5
Message Authentication Codes

Ghada Almashaqbeh
UConn

Adapted from textbook slides by Prof. Amir Herzberg
UConn

Outline
• Motivation.
• Message authentication codes (MACs)

definition.
• MAC security definition.
• MAC constructions.
• Combining message authentication and

encryption.

2

Encryption Ensures Confidentiality

q Man-in-the-Middle attacker
‘learns nothing’ about message

3

k

E Dm=“Hello”
c=Ek(m)

k

m
c

Integrity and Authentication?

q How can the recipient know that the message was
not tampered with and it is the original one sent by
the sender?

4

k

E Dm=“Hello”
c=Ek(m)

k

m‘=Dk(c’)c'
m’=“Bye”

Does Encryption Prevent Forgery?
q Cannot be guaranteed.

q Several secure encryption schemes are malleable (an
attacker might be able to alter the ciphertext, and hence,
the decrypted plaintext will be different).

q Clearly not for bitwise stream ciphers (& OTP).
q Given c=mÅk, attacker can send cÅmask, to invert any

bit in decrypted message.
q Example, send “Pay Bob $100” encrypted using OTP.

q Eve can change it to “Pay Eve $100” (note that this is a
KPA attacker). How?
q Take the ciphertext of the letter “B” above, denote it as c[4].
q Note that c[4] = k[4] Å “B” (note that we do know the key!)
q Compute a mask that does the following: c[4] Å mask = k[4] Å “E”

(this boils down to computing “B” Å mask = “E”)
q Repeat that for the rest of the letters.

5

Message Authentication Codes (MACs)
n A MAC allows a recipient to validate that a message

was not tampered with and that it was sent by a key
holder

Key k
Key k

m=“Hi”, MACk(m)

Valid MAC è Only Sponge
and I know k. So he sent m.

6

It is a symmetric key
setup!

Message Authentication Codes (MACs)
n Use shared key k to authenticate messages
q Pair (tag , m) is valid iff tag=MACk(m)
n Very efficient
n Does not support non-repudiation!

n Sponge may say that the key k has
been stolen, and so someone else sent
the message.

Alice

“Hi” “Bye”

Key k Key k

MACk(“Hi”) tag ??
++

k = ??
MACk() = ??“Bye”

7

Defining MAC Security
n Following the `conservative design principle’:
n Consider most powerful attacker

n Let attacker receive tag for any message it wants (so it
has an oracle access to MACk).

n And `easiest’ attacker-success criteria
n Attacker wins if it can produce a valid tag for any

message
n Except for these that the attacker asked to authenticate

8

MAC Security Definition

3.3. MESSAGE AUTHENTICATION CODE (MAC): DEFINITIONS 131

Figure 3.1: Message Authentication Code (MAC).

to the input to the MAC, in addition to the message itself, ensures correct
identification of the sender, if all the parties are trusted to add their identity.

Repudiation/deniability To validate that a given tag T correctly validates
a message m, i.e., T = MACk(m), requires the ability to compute MACk(·),
i.e., knowledge of the secret key k. However, this implies the ability to compute
(valid) tags from any other message. This allows the entity that computed the
tag to later deny having done it, since it could have been computed also by
other entities. We later discuss digital signature schemes, which use a secret
key to compute the signature (tag), and a public key to validate it, which can
be used to prevent senders from denying/repudiating messages.

3.3 Message Authentication Code (MAC): Definitions

A MAC scheme is a function F , with the following unforgeability property: an
attacker, which does not know the key k and is not given Fk(m) for any given
message m, is unable to find the value of Fk(m), with better chance than a
random guess. The definition has a lot in common with the definition of signature
schemes and their existential-unforgeability requirement, see subsection 1.3.2;
in particular, we allow the adversary to obtain the MAC values for any other
message. The definition follows. For concreteness, we will focus on MAC whose
output is an l-bit binary string.

Definition 3.1 (MAC). An l-bit Message Authentication Code (MAC) over
domain D, is a function F : {0, 1}⇤ ⇥ D ! {0, 1}l, such that for all PPT
algorithms A, the advantage "MAC

F,A (n) is negligible in n, i.e., smaller than any
positive polynomial for su�ciently large n (as n!1), where:

"MAC
F,A (n) ⌘ Pr

k
$ {0,1}n

h
(m,Fk(m)) AFk(·|except m)(1n)

i
� 1

2l
(3.1)

Foundations of Cybersecurity: Applied Introduction to Cryptography

132
CHAPTER 3. MESSAGE AUTHENTICATION CODE (MAC) AND SIGNATURE

SCHEMES

Where the probability is taken over the random choice of an n bit key, k
$

{0, 1}n, as well as over the coin tosses of A.

Oracle. The expression AFk(·|except m) refers to the output of the adversary
A, where during its run, the adversary can give arbitrary inputs x 6= m and
receive the corresponding values of the function, Fk(x). We say that the
adversary A has an oracle to the MAC function FK(·) (excluding the message
m). See Definition 1.5.

The advantage function "MAC
F,A (n) and key length n. The definition is

for l-bit MAC, i.e., the output is always a binary string of length l. Hence,
a random guess at the MAC of any input message m would be correct with
probability 2�l. Therefore, we defined the advantage "MAC

F,A (n) as the probability
that the adversary finds a correct MAC value for a message m (not input to
the oracle), minus the ‘base success probability’ of 2�l. The function F is a
(secure) MAC, if this advantage "MAC

F,A (n) is negligible.
The key length is denoted n, and is not bounded. The ‘advantage’ of the

adversary over random guess, should be negligible in n, i.e., converge to zero as
n grows. In practice, MAC functions are used with specific key length, which
is believed to be ‘long enough’ to foil attacks (by attackers with reasonable
resources and time).

Output length - fixed (l) or as key length (n). In some other definitions
of MAC schemes, the output length is also n, i.e., same as the key. In this case,
the 1

2l
element becomes 1

2n
, which is negligible in n, and hence can be ignored.

(Readers are encouraged to prove this last statement, as an exercise.)

Input domain. Notice that the definition allows an arbitrary input domain
D to the MAC function. The two most commonly used domains are D = {0, 1}⇤,
i.e., the set of all binary string (of unbounded length), and D = {0, 1}lin , i.e.,
the set of all binary strings of some fixed length lin. Of course, lin may also
be the same as l. A MAC function whose input is the set of binary strings of
fixed length, is called FIL-MAC, i.e., Fixed Input Length MAC. In contrast, a
MAC function whose input is the set of all binary strings is called VIL-MAC,
i.e., Variable Input Length MAC.

Example 3.2. Let Ek be a (secure) block cipher, with block of n bits. Consider
keyed function f whose domain is 2n-bit long strings, fk(m) = Ek(m[1 : n])�
Ek(m[n+ 1 : 2n]), i.e., the exclusive-or of results of applying E to the first n
bits of the 2n-bit input, and of applying E to the remaining n bits. To show this
is not a secure MAC we simply observe that:

fk(m) = Ek(m[1 : n])� Ek(m[n+ 1 : 2n])

= Ek(m[n+ 1 : 2n])� Ek(m[1 : n])

= fk(m[n+ 1 : 2n] ++ Ek(m[1 : n])

Foundations of Cybersecurity: Applied Introduction to Cryptography

9

On the Use of MACs
n MACk(m) may expose information about m!

q Example: Let MAC be any secure MAC. Define
MAC’k(m)=MACk(m)||Lsb(m), where Lsb is least significant bit.

n MAC shows a key-holder computed it
n Could be any key holder (even recipient)…

n Replay attacks: an old message (and its tag) is being resent.
n Need to Ensure freshness (more about this later).

Key k Key k

m=“Hi”, MACk(m)

Key k

Cat, Sponge
(or I) sent m.

10

Constructing MAC: Three Approaches
1. Design `from scratch`, validate security by failure

to cryptanalyze
q Huge effort, risk à do only for few `building blocks`
q Maybe from EDC (Error Detection Code), but it is not

secure for every EDC.
2. Robust combiner of (two) MAC candidates:

q MACk,k’(m)=fk(m)||f’k’(m), MACk,k’(m)=fk(m)Åf’k’(m) are

secure MAC, if either f or f’ is a secure MAC.

3. Provable-secure constructions from:
q PRF/PRP/Block ciphers (next)

q First: PRF/PRP à Fixed-Input-Length (FIL) MAC
q Hash functions (later) – even more efficient.

11

Theorem: every PRF is also a MAC
Let F be a PRF from domain D to range 0,1 !.
Then F is also an 𝑙-bit MAC for D.

q Proof sketch: construct an attacker against PRF using
the attacker against the MAC.
q For a random function, the outcome of any `new’

value is random.
q So, probability of guessing is 2!".

q If a `new’ outcome of a PRF can be guessed with
significantly higher probability (which is the MAC
over a new message), then we can distinguish
between it and a random function! █

12

Every PRF is also a MAC
n A PRF is a MAC for l-bit messages.
n (l.n)-bit FIL MAC from n-bit PRP (block cipher):

use CBC-MAC – a variant of CBC
n What standard crypto function can we use as a PRF?
n A block cipher ? But …

13

Using a Block Cipher for MAC
n Problem 1: block cipher is PRP, not PRF

n Solution: the switching lemma says that a
PRP is also a PRF !

n Note: PRPàPRF reduction involves loss in
concrete security (larger advantage):

n Some other constructions reduce this loss but
we will not discuss them

84 CHAPTER 2. ENCRYPTION AND PSEUDO-RANDOMNESS

Lemma 2.3 (The PRP/PRF Switching Lemma). Let E be a polynomial-time
computable function Ek(x) : {0, 1}⇤ ⇥ D ! D 2 PPT , and let A be a PPT
adversary, which is limited to at most q oracle queries. Then:

��"PRF
A,E (n)� "PRP

A,E (n)
�� < q2

2 · |D| (2.30)

Where the advantage functions are as defined in Equation 2.29 and Equa-
tion 2.17.

In particular, if the size of the domain D is exponential in the security
parameter n (the length of key and of the input to A), e.g., D = {0, 1}n, then
"PRF
A,E (n)� "PRP

A,E (n) 2 NEGL(n). In this case, E is a PRP over D, if and only
if it is a PRF over D.

Proof idea: In a polynomial set of queries of a random function, there is
negligible probability of having two values which will map to the same value.
Hence, it is impossible to e�ciently distinguish between a random function and a
random permutation. The proof follows since a PRF (PRP) is indistinguishable
from a random function (resp., permutation).

The PRP/PRF switching lemma is somewhat counter-intuitive, since, for
large D, there are many more functions than permutations. Focusing on
D = {0, 1}n for convenience, there are (2n)2 = 22n functions over D, and ‘only’
2n! permutations.

Note that the loss of (concrete) security bounded by the switching lemma,
is a disadvantage in using a block cipher directly as a PRF - it would be an
(asymptotically) secure PRF, but the advantage against the PRF definition
would be larger than the advantage against the PRP definition. Therefore,
we would prefer to use one of several constructions of a PRF from a block
cipher/PRP - that are e�cient and simple, yet avoid this loss in security;
see [17, 92].

See Table 2.4 for a summary and comparison of random function, random
permutation, PRG, PRF and Pseudo-random Permutation (PRP).

2.6.2 Security of block ciphers

In addition to being correct ((8m, k) m = Dk(Ek(m))), a block cipher should
also be secure. We say that a block cipher (E,D) is secure, if both E and D are
Pseudo-Random Permutations (PRP). We model the security requirements of a
block cipher to be that of a a pair of PRPs Ek, Dk over {0, 1}n, which satisfy
the correctness requirement, i.e.,:

(8m, k 2 {0, 1}n) m = Dk(Ek(m)) (2.31)

Let us given an example.

Example 2.3. Let Ek(m) = m � k and E0
k(m) = m + k mod 2n. Show

the corresponding D,D0 functions such that both (E,D) and (E0, D0) satisfy
the correctness requirement; and show neither of them satisfy the security
requirement, i.e., neither are pairs of invertible PRPs.

Foundations of Cybersecurity: Applied Introduction to Cryptography

14

Using a Block Cipher for MAC
n Problem 2: block ciphers are defined only

for (short) fixed input length (FIL)
n Ideally a MAC should work for any input string

(Variable Input Length – VIL)
n We already had a similar problem… where?

n Block ciphers.
n We solved by using various encryption modes of

operation.
n A solution for MACs: the CBC-MAC mode of

operation!

15

Cipher Block Chaining MAC: CBC-MAC

Split plaintext m into
blocks

Fixed, known (zero)
Initialization Vector (IV)

Recall: MACs are
deterministic functions

142
CHAPTER 3. MESSAGE AUTHENTICATION CODE (MAC) AND SIGNATURE

SCHEMES

Ek

m1

Ek

m2

Ek

m3

0n

CBC �MACE
k (m)

Figure 3.3: CBC-MAC: construction of l · n�bit PRF (and MAC), from n�bit
PRF.

We next present Lemma 3.2 which shows that CBC-MAC constructs a
secure PRF (and hence also MAC), provided that the underlying function E is
a PRF.

Lemma 3.2. If E is an n-bit PRF, then CBC �MACE
k (·) is a secure n · l-bit

PRF and MAC, for any constant integer l > 0.

Proof: see in [16].

CBC-MAC is not a VIL-MAC . The CBC-MAC construction is defined
for input which is an integral number of blocks, i.e., n · l bits. Would it work for
inputs of arbitrary length, or how can we extend it so it does support input of
arbitrary length, i.e., a variable input length (VIL) PRF (and MAC) - defined
for input domain domain {0, 1}⇤ ?

One obvious problem is that an arbitrary binary string, may not even consist
of an integral number of blocks, while CBC-MAC is defined only for inputs
which are of length n · l, i.e., integral number of blocks. However, let us ignore
that problem for now, and focus on inputs whose length is an integral number
of blocks, i.e., the inputs in the domain VIBC domain, defined as:

V IBC ⌘
�
m 2 {0, 1}n·l|l 2 mathbbZ+

(3.3)

Where VIBC stands for variable input block-count.
However, CBC-MAC is not a PRF - or even a MAC - even for input domain

VIBC. We show this in the following exercise.

Exercise 3.4 (CBC-MAC is not VIL MAC). Show that CBC-MAC is not a
MAC for the domain VIBC (Equation 3.3), and hence is definitely not a MAC
for {0, 1}⇤, or a PRF for either VIBC or {0, 1}⇤-.

Solution: Let fk(·) = CBC �MACE
k (·) be the CBC-MAC using an under-

lying n-bit block cipher Ek. Namely, for a single-block message a 2 {0, 1}n, we
have fk(a) = Ek(a); and for a two block message a ++ b, where a, b 2 {0, 1}n,
we have fk(a++ b) = Ek(b� Ek(a)).

Foundations of Cybersecurity: Applied Introduction to Cryptography

The tag is the cipher of the last block

CBC-MACE
k(m1||m2||..||ml) = Ek(mlÅEk(…Ek(m1))))

16

CBC-MAC
q Widely deployed standard
q More efficient ‘modes’ exist

q E.g., allow for parallel computation.
q It is also provably secure.

Theorem [BKR94]: if E is a FIL-PRF for domain {0,1}!, then
CBC-MACE is a PRF for domain {0,1}"#	(for	l>1).

n Corollary: … then CBC-MACE is a {0,1}"#-MAC

But what of VIL (variable-length input) MAC?

17

CBC-MAC-based VIL-MAC
n Is CBC-MACE a VIL-MAC?

n No!
n Ask for b=CBC-MACEk(a)=Ek(a) ;
n then output (ac, b) so m = ac with tag = b where c= aÅb.
n This is valid, since the attacker did not ask the oracle for a tag

for ac and b for ac is a valid tag since
CBC-MACEk(ac)=Ek(cÅEk(a))=Ek(cÅb)= Ek(aÅbÅb)= Ek(a)= b.

n Solution: prepend message length (called CMAC)
n Let CMACEk(m)=CBC-MACEk(L(m)||m)

n Where 𝐿 𝑚 is a 1-block encoding of 𝑚

n CMAC is a secure VIL MAC construction!

18

Examples of MAC Constructions
q Are the following constructions a secure MAC:
1. Let Ek be a block cipher that takes input of length n bits. For

a message m of length 2n bits, compute the tag as:
 MACk(m) = Ek(mL) xor Ek(mR)

2. Let G be a secure PRG. For a message m of length n bits,
compute the tag as:

 MACk(m) = k xor PRG(m)

19

Combining Authentication and Encryption

q For confidentiality, use encryption
q For authentication, use MAC
q For both confidentiality and authentication?

q Option 1: Combine MAC and encryption
q Possible pitfalls (vulnerabilities)

q Option 2: authenticated-encryption schemes (or
modes)

q Easier to deploy (securely)
q Generic combination of MAC and Encryption schemes
q Or direct combined constructions (can be more efficient)

q Might be ad-hoc or rely on complex or less-tested security
assumptions.

21

Generic MAC and Encryption Combinations

q Three standards, three ways…
q Authenticate and encrypt (A&E):

q c = Enc(m), tag = MAC(m), send (c, tag)

q Authenticate then encrypt (AtE):
q tag = MAC(m), c = Enc(m, tag), send c

q Encrypt then authenticate (EtA):
q c = Enc(m), tag = MAC(c), send (c, tag)

q Some of these may be vulnerable even when combining
some secure encryption and MAC schemes!

22

Security of Generic MAC/Enc Combinations

q A&E may be vulnerable!
q Example:

q Let MAC be any secure MAC scheme
q Let MAC’k’(m)=MACk’(m)|| lsb(m)
q MAC’ is a secure MAC.
q But A&E(m) leaks least significant bit of m (even if the encryption

scheme is secure!!!).
q Recall that the security guarantee of a MAC is about

integrity (or preventing forgery)!
q It has nothing to do with confidentiality!

q What about AtE, EtA ?
q AtE: also may be vulnerable (not IND-CPA)!

23

Security of Generic MAC/Enc Combinations

n How about EtA ? Provably CCA-Secure [CK01]!
n è Secure encryption; otherwise attack Enc(m) by

appending MAC
n è Secure authentication, since any change in (c,

MAC(c)) is detected
n Also: reject fake messages w/o decryption

è efficiency and foil Denial of Service (DoS), CCA
attacks

n Note: using separate keys for Enc and MAC; what if
we use same key?

24

Keys for MAC and Encryption?
Using same key for MAC+Encryption? Insecure
q Exercise: show (contrived) examples vulnerabilities:

q A&E: both vulnerable…
𝐸!",!"" 𝑚 = 𝐸!## 𝑚 ||𝑘′′
𝑀𝐴𝐶!",!"" 𝑚 = 𝑀𝐴𝐶!"" 𝑚 	||𝑘′

q (you can show other contrived examples for the other
combinations.)

q So: should we use two independent keys?
q Overhead: key generation, transmission, storage

q Exercise: secure enc+MAC – using a single key!

Solution: kmac:= PRFk(`MAC’), kenc:= PRFk(‘Encrypt’)

25

Covered Material From the Textbook
q Chapter 4

q Sections 4.1 – 4.6 except sections 4.6.1, 4.6.3.
q For section 4.7: only the topics that we covered

in class.

26

