CSE 3400 / CSE 5850 Introduction to Computer & Network Security / Introduction to Cybersecurity

> Lecture 4 Encryption – Part III (and Pseudo-randomness)

> > Ghada Almashaqbeh UConn

Adapted from textbook slides by Prof. Amir Herzberg UConn

Outline

- Block ciphers.
- Pseudorandom permutations (PRPs).
- Defining security of encryption.
- Encryption modes.

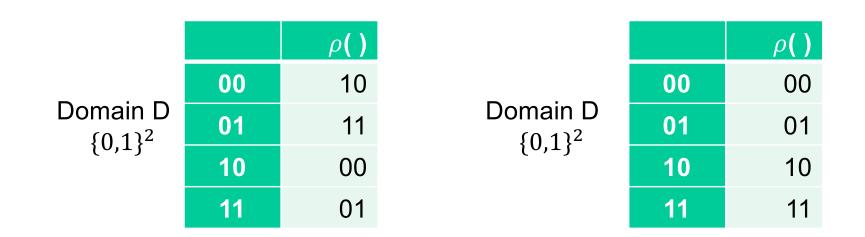
Block Ciphers

- A pair of algorithms E_k and D_k (encrypt and decrypt with key k) with domain and range of {0,1}ⁿ
 - Encrypt and decrypt data in blocks each of which is of size n bits.
- Conventional correctness requirement: m = Dk(Ek(m))
- Several schemes used in practice including DES and AES.
 - No security proofs, just resistance to cryptanalysis.
 - DES is insecure for short keys, replaced by AES.
- Security requirement of block ciphers is to be a pair of Pseudorandom Permutations (PRP).

So what is a Random Permutation? And what is a PRP?

What is a random **permutation** ρ ?

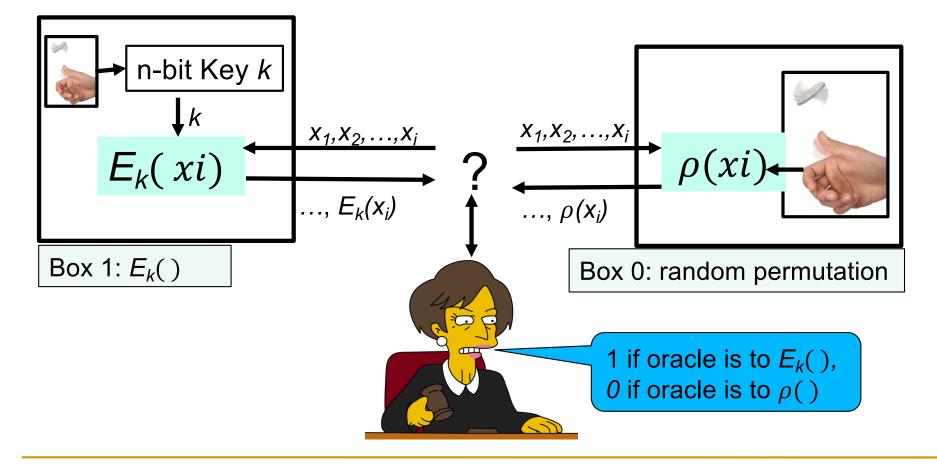
- Random permutation ρ over finite domain D, usually: $\{0,1\}^m$
- How can we select a random permutation p?
- Let $D = \{x_1, x_2, \dots, x_n\}$
- For i = 1, ..., n: • $\rho(x_i) \stackrel{\$}{\leftarrow} D - \{\rho(x_1), \rho(x_2), ..., \rho(x_{i-1})\}$ • Examples:



Pseudo-Random Permutation (PRP)

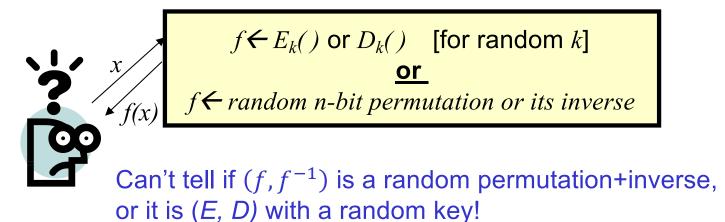
and their Indistinguishability Test

□ *E* is a PRP over domain D, if no distinguisher D can distinguish E from a random permutation with non-negligible probability.



Block Cipher: Invertible PRP (E, D)

- Common definition for <u>block cipher</u>
- Invertible Pseudo-Random Permutation (PRP):
 - A pair of PRPs (E,D), such that m=D_k(E_k(m))
 - And (E,D) is indistinguishable from (ρ, ρ^{-1})
 - where is ρ a random permutation (sometimes it is called π)
 - Note: it is deterministic, stateless \rightarrow not secure encryption!
 - But used to construct encryption (soon)



Example of a Block Cipher Security and Correctness

- $\Box E_k(m) = m + k \mod 2^n$
- In class.
 - $\Box \quad D_k(c) ?$
 - Correctness.
 - □ Is it secure?

Constructing block-cipher, PRP

 \Box Focus: constructions from a PRF $f_k()$

PRFs seem easier to design (less restrictions)

G First: 'plain' PRP $E_k()$ (not a block cipher)

□ What is the simplest construction to try? $E_k(x) = \frac{f_k(x)}{f_k(x)}$

Lemma 2.4 (The PRP/PRF Switching Lemma). Let E be a polynomial-time computable function $E_k(x) : \{0,1\}^* \times D \to D \in PPT$, and let \mathcal{A} be a PPT adversary, which is limited to at most q oracle queries. Then:

$$\left|\varepsilon_{\mathcal{A},E}^{PRF}(n) - \varepsilon_{\mathcal{A},E}^{PRP}(n)\right| < \frac{q^2}{2 \cdot |D|}$$

$$(2.17)$$

Where the advantage functions are as defined in Equation 2.16 and Equation 2.13.

In particular, if the size of the domain D is exponential in the security parameter n (the length of key and of the input to \mathcal{A}), e.g., $D = \{0,1\}^n$, then $\varepsilon_{\mathcal{A},E}^{PRF}(n) - \varepsilon_{\mathcal{A},E}^{PRP}(n) \in NEGL(n)$. In this case, E is a PRP over D, if and only if it is a PRF over D.

Constructing block-cipher, PRP

- □ Focus: constructions from a PRF $f_k(\cdot)$
 - PRFs seem easier to design (less restrictions)
- **D** Before: 'plain' PRP $E_k()$ (not a block cipher)
- **D** Now: construct block cipher (invertible PRP) E_k , D_k
- Challenge: making it invertible...
- □ Solution: The Feistel Construction

The Feistel Block-cipher Construction

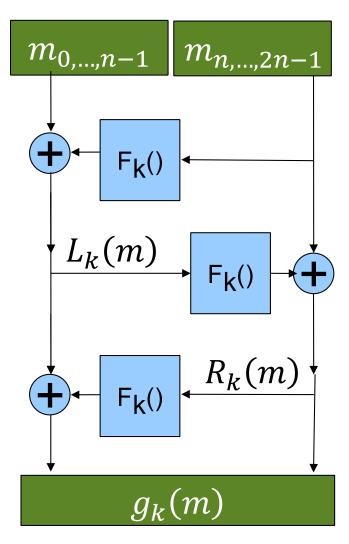
- Turn PRF F_k into a block cipher
 - Three 'rounds' suffice for security [LR88]

$$L_k(m) = m_{0,\dots,n-1} \oplus F_k(m_{n,\dots,2n-1})$$

$$R_k(m) = F_k(L_k(m)) \oplus m_{n,\dots,2n-1}$$

$$g_k(m) = L_k(m) \oplus F_k(R_k(m)) \oplus R_k(m)$$

- Used in DES (but not in AES)
 - With 16 'rounds'



Crypto Building Blocks Principle

- Design and focus cryptanalysis efforts on few basic functions: simple, easy to test, replaceable
- Construct schemes from basic functions
 - Provably secure constructions: attack on scheme → attack on function
 - Allows replacing broken functions
 - Allows upgrading to more secure/efficient functions
- E.g., encryption from block cipher (or PRG/PRF/PRP)
 - Block-cipher, PRG,PRF,PRP: deterministic, stateless, FIL (Fixed-Input-Length)
 - Encryption: randomized/stateful, VIL (Variable-Input-Length)

We defined security for PRG, PRF and PRP (Block cipher) too (informally).

But...

how about security of encryption?? A bit tricky, in fact.

Defining Secure Encryption

- Attacker capabilities:

 - Ciphertext only (CTO), Known / chosen plaintext attack (KPA/CPA), Chosen ciphertext (CCA)?
- What's a successful attack?
 - Key recovery ?
 - May be impossible yet weak cipher...
 - (Full) Message recovery?
 - What of partial exposure, e.g., m∈{"Advance", "Retreat"}
 - <u>Prudent</u>: attacker 'wins' for <u>any</u> info on plaintext

Conservative Design Principle

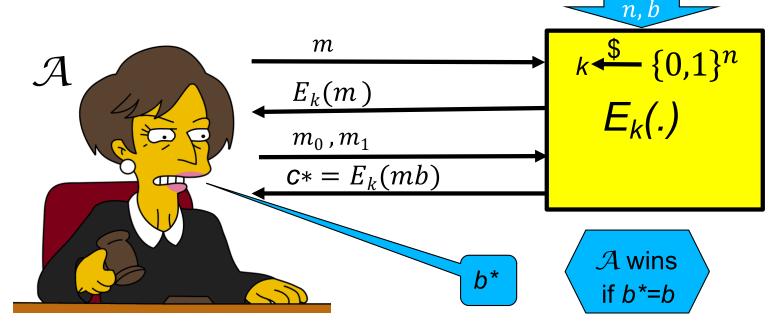
- When designing, evaluating a cryptosystem...
 - Consider most powerful attacker (CTO< KPA< CPA < CCA)
 - Be as general as possible cover many applications
 - And `easiest' attacker-success criteria
 - Not full message/key recovery!
 - Make it easy to use securely, hard to use insecurely!
- When designing, deploying a system (that uses some cryptographic primitives)
 - Restrict attacker's capabilities (e.g., avoid known/chosen plaintext)

Cryptanalysis Success Criteria for Encryption

- Learn anything at all about plaintext how to define? Can we achieve it ?
 - Well-defined notion: 'semantic security' [crypto course]
- So an encryption scheme is secure if the attacker cannot learn anything about the plaintext that he did not know in advance.
- Indistinguishability: Eve 'wins' if she <u>distinguishes</u> between encryptions of (any) two messages
 - The attacker chooses these two messages.
 - We focus on indistinguishability for CPA attacker. In crypto course: equivalent to semantic security

IND-CPA-Encryption Test (1st try)

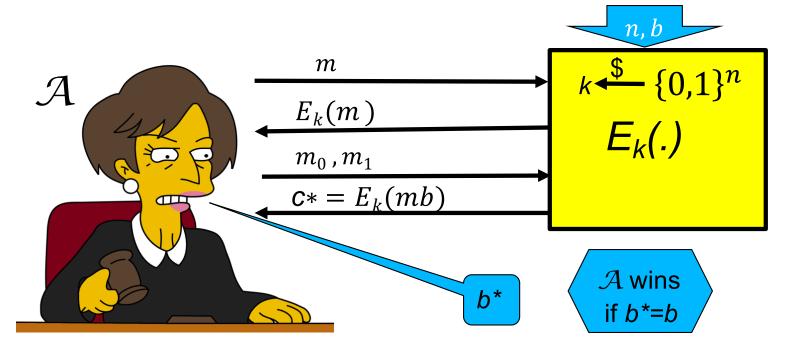
- □ Flip coins to select random bit *b* and key *k*
- □ \mathcal{A} (adversary) gives message *m*, receives $E_k(m)$
 - □ Repeat if desired (with different messages *m*)
 - Chosen Plaintext Attack
- □ A gives two messages (m_0, m_1), receives $c^* = E_k(m_b)$
- \mathcal{A} output b^* , and 'wins' if $b^*=b$



IND-CPA-Encryption Test (1st try): too easy

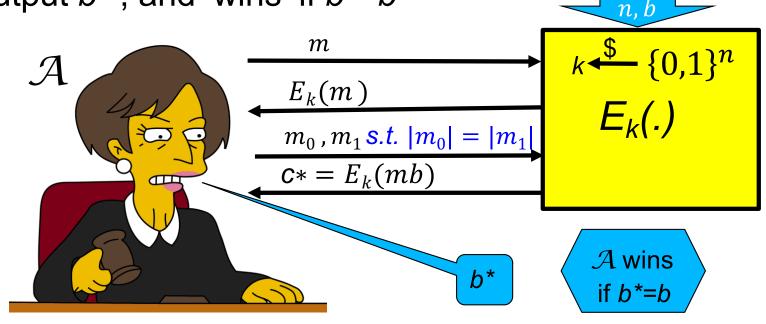
- □ This test is too easy!! The adversary can easily win!!
- How?
- Hint: messages can be arbitrary binary strings
 - □ Namely, $m, m_0, m_1 \in \{0, 1\}^{*}$

 - If $c^*=E_k(m_b)$ is `short', output $b^*=0$; if 'long', output $b^*=1$



IND-CPA-Encryption Test (fixed)

- □ Flip coins to select random bit *b* and key *k*
- □ \mathcal{A} (adversary) gives message *m*, receives $E_k(m)$
 - Repeat if desired (with another message)
 - Chosen Plaintext Attack
- □ \mathcal{A} gives messages (m_0, m_1) s.t. $|m_0| = |m_1|$, receives $E_k(m_b)$
- \mathcal{A} output b^* , and 'wins' if $b^*=b$



Definition: IND-CPA Encryption

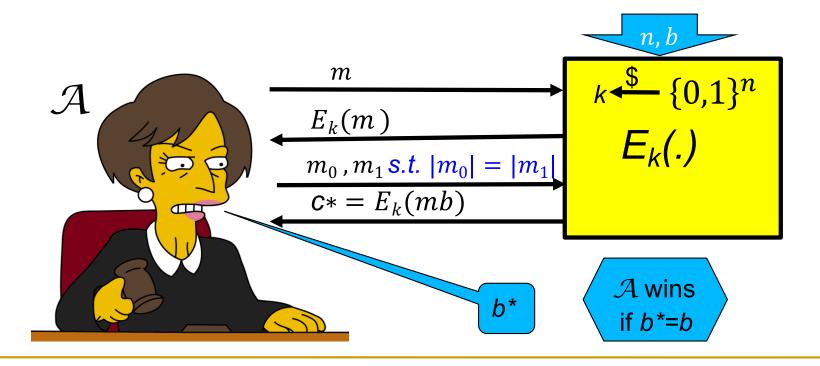
Shared key cryptosystem (E, D) is **IND-CPA**, if every efficient adversary A has negligible advantage:

$$\varepsilon_{\langle E,D\rangle,\mathcal{A}}^{IND-CPA}(n) \equiv \Pr\left[T_{\mathcal{A},\langle E,D\rangle}^{IND-CPA}(1,n) = 1\right] - \Pr\left[T_{\mathcal{A},\langle E,D\rangle}^{IND-CPA}(0,n) = 1\right]$$

$$T^{IND-CPA}_{\mathcal{A},\langle E,D\rangle}(b,n) \{ k \stackrel{\$}{\leftarrow} \{0,1\}^n \\ (m_0,m_1) \leftarrow \mathcal{A}^{E_k(\cdot)}(\text{`Choose'},1^n) \text{ s.t. } |m_0| = |m_1| \\ c^* \leftarrow E_k(m_b) \\ b^* = \mathcal{A}^{E_k(\cdot)}(\text{`Guess'},c^*) \\ \text{Return } b^* \}$$

Can IND-CPA encryption be deterministic?

- No!! But why? Suppose $E_k(m)$ is deterministic...
- □ \mathcal{A} can ask E_k to encrypt m_0 and m_1 and then check which one is equal to the challenge ciphertext \rightarrow always wins!
- Conclusion: IND-CPA Encryption must be randomized
 - Even if you encrypt the same m over and over again, a new ciphertext will be produced.



What's next?

Present a secure cryptosystem? ... provably secure without assumptions ? Unlikely: Proof of security $\rightarrow P \neq NP$ (similar argument to PRF)

Instead, let's build secure encryption from PRFs ! (I.e.: PRF is secure → encryption is IND-CPA)

Actually, we'll use <u>block cipher</u> (recall the PRF/PRP switching lemma) to build encryption schemes under what is called "Modes of operation."

Examples

Let F be a PRF.

- $\Box \ E_k(m) = F_k(0^n) \oplus m$
 - What is the decryption algorithm?
 - □ Is this scheme a secure encryption scheme? Why?
- □ $E_k(m) = (r, F_k(r) \oplus m)$ where *r* is a random string freshly generated for each message.
 - What is the decryption algorithm?
 - □ Is this scheme a secure encryption scheme? Why?

Encryption: Modes of Operation

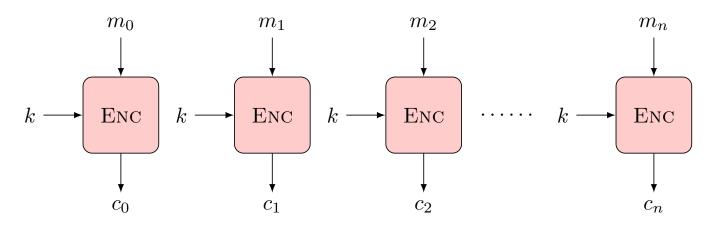
- `Modes of operation': use block cipher (PRP), to encrypt long (Variable Input Length, VIL) messages
- Randomize/add state for security
 - Often: use random or stateful *Initialization Vector (IV)*
- Use long keys
 - Better security (at least against exhaustive search)
- Assume plaintext message is in blocks: $m_0 ||m_1|| \dots$
 - An integer number of blocks, each block is n bits.

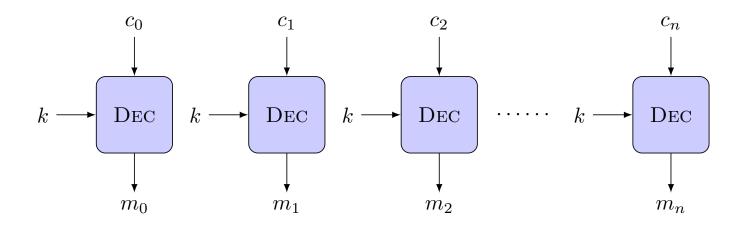
Encryption Modes of Operation

Mode	Encryption	Flip $c_i[j] \Rightarrow$	Properties
Electronic code	$c_i = E_k(m_i)$	Corrupt m_i	Deterministic
book (ECB)			(distinguishable)
Counter (CTR)	$c_i = m_i \oplus E_k(i)$	Flip $m_i[j]$	Fast online,
[simplified]			stateful (i)
Output Feed-	$r_0 \stackrel{\$}{\leftarrow} \{0,1\}^n, r_i = E_k(r_{i-1}),$	Flip $m_i[j]$	Fast online
back (OFB)	$c_0 \leftarrow r_0, \ c_i \leftarrow r_i \oplus m_i$		(precompute)
Cipher-Block	$c_0 \xleftarrow{\$} \{0,1\}^n,$	Flip $m_{i-1}[j]$,	Can decrypt
Chaining (CBC)	$c_i \leftarrow E_k(m_i \oplus c_{i-1})$	corrupt m_i	in parallel

Electronic Code Book mode (ECB) I Encryption $c_i = E_k(m_i)$, decryption $m_i = D_k(c_i)$

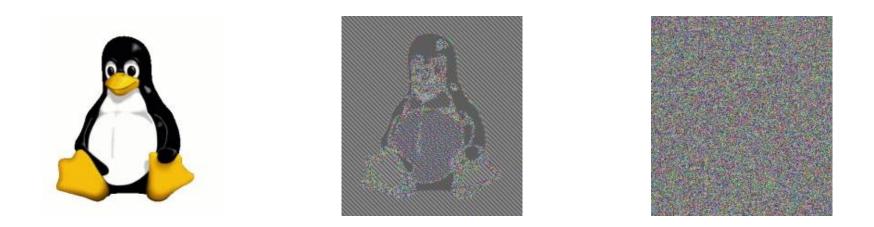
Each *m_i* is *n* bit block and same for ci





Electronic Code Book mode (ECB) II Encryption $c_i = E_k(m_i)$, decryption $m_i = D_k(c_i)$

Insecure!! (do not use it!) Which of these is ECB encryption? Why?



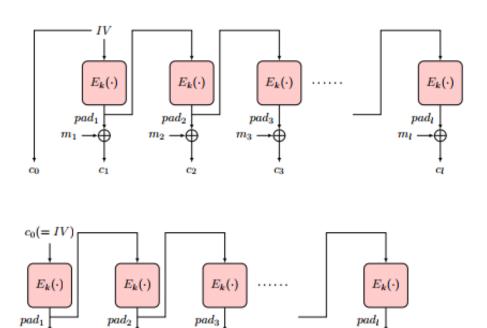
Output-Feedback (OFB) Mode

Goal: encrypt long (multi-block) messages, with less random bits

 m_1

 m_{2}

- How? Use random bits only for first block (`initialization vector')
 - To encrypt next blocks of message, use output of previous block
 - Namely, a block-by-block stream cipher
- Encryption: $pad_0 \leftarrow IV$, $pad_i \leftarrow E_k(pad_{i-1})$, $c_0 \leftarrow pad_{0,} c_i \leftarrow pad_i \oplus m_i$
- Decryption: $pad_0 \leftarrow c_{0,}$ $pad_i \leftarrow E_k(p_{i-1}),$ $m_i \leftarrow pad_i \oplus c_i$



 m_{2}

Output-Feedback (OFB) Mode

• Offline pad computation: compute pad in advance

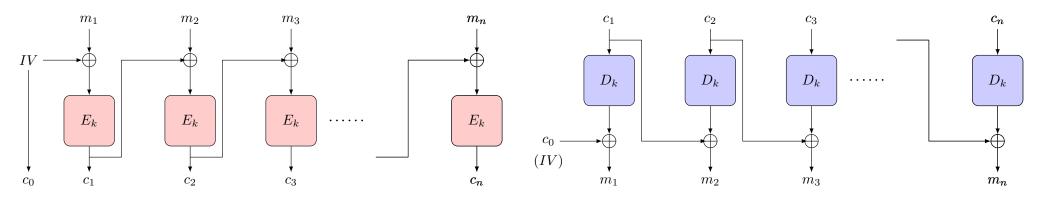
• Online computation: only (parallelizable) XOR !

Bit errors are bitwise localized

 Corrupting a one bit in the ciphertext corrupts only one bit in the plaintext.

Cipher Block Chaining (CBC) Mode

- Random first block c_0 (`initialization vector', *IV*)
- $i > 0: c_i = E_k(c_{i-1} \oplus m_i), m_i = c_{i-1} \oplus D_k(c_i)$



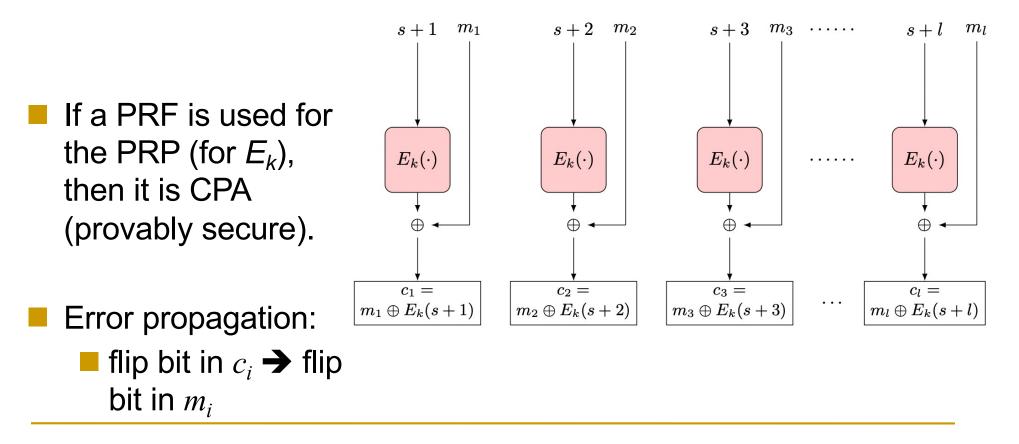
- Parallel decryption
 - But no offline precomputing
 - □ How about encryption? Sequential (it is a chain!)
- Error propagation:
 - flip bit in c[i] → flip bit in m[i+1] and corrupt m[i]

Security of CBC mode

- Theorem: If block-cipher E is a (strong) <u>pseudo-</u> <u>random permutation</u> → CBC is IND-CPA-secure encryption
- Proof: omitted (crypto course ③)
- Observation: CBC is Not IND-CCA-Secure
 - CCA (Chosen ciphertext attack), intuitively: attacker can choose ciphertext and get its decryption, except for the `challenge ciphertext'
 - Definition, details: crypto course
 - Exercise: show CBC is Not IND-CCA-Secure
 - Other variants of CBC exists that are CCA secure.

Counter (CTR) Mode

- Random counter (or `initialization vector', *IV, or s*)
 - $i > 0: c_i = E_k(s+i) \oplus m_i$
 - $\bullet \quad m_i = E_k(s+i) \ \oplus c_i$
- Parallel encryption and decryption with offline precomputing



Covered Material From the Textbook

- □ Sections 2.7, 2.8, and 2.9, excluding:
 - **2**.8.6
 - **D** 2.9.4,
 - **2**.9.9,
 - □ CCA security

Thank You!

