
CSE 3400/CSE 5850 - Introduction to Computer & Network
Security

/ Introduction to Cybersecurity

Lecture 11
Public Key Cryptography– Part II

Ghada Almashaqbeh
UConn

*Adapted from the textbook slides

Outline
q Public key encryption.
q Digital signatures.

2

Public Key Encryption

3

Encrypt E Decrypt D
Plaintext
 m

Plaintext
m=Dd(Ee(m))

Ciphertext
c=Ee(m)

Encryption Key e
(public)

KeyGen KG

(e,d)

Key length l

e d

Decryption Key d
(private)

Public Key Encryption

4

Public Key Encryption IND-CPA Security

5

n Same security game as before.
q The attacker chooses two messages of the same length,

and is challenged to correctly guess which of these
messages was encrypted by the challenger.

n The difference is that the attacker does not need an oracle
access to the encryption oracle!
q The public encryption key (but not the private decryption

key) is known to everyone, including the adversary, and
can use it to encrypt any message he wants.

n Can a deterministic public key encryption scheme be an IND-
CPA secure?

Discrete Log-based Encryption
n We will study two constructions:

q An adaptation of DH key exchange protocol to
perform encryption.

q ElGamal encryption scheme.

6

The DH Encryption Scheme

7

372 CHAPTER 6. PUBLIC KEY CRYPTOGRAPHY

Nurse

Alice
knows dA, g, p,

computes: eA = gdA mod p

Bob
knows eA, g, p

Input: message m

Select b
$→ {1, . . . , p ↑ 1}

eA
(
gb mod p, m→

[
(eA)

b mod p
])

Figure 6.15: The DH public key cryptosystem (DH PKC). Bob encrypts plaintext
message m, using Alice’s public key eA and the public parameters: a safe prime
p and generator g of the group Z→

p. The ciphertext consists of the pair of
strings

(
gb mod p, m→

[
(eA)

b mod p
])

. The value b is selected randomly
and known only to Bob; Bob should randomly select a new value b for each
encryption.

Equation 6.29:

EeA(m) =





b

$↑ {1, . . . , p↓ 1}
Return

(
gb mod p , m→ (eA)

b mod p
)




 (6.29)

Notice that the ciphertext is the pair
(
gb mod p , m→ (eA)

b mod p
)
.

Upon receiving such a ciphertext, which we denote (cb, cm), Alice can decrypt
it by computing:

DdA
(cb, cm) = cm →

[
(cb)

dA mod p
]

(6.30)

To see that the DH PKC ensures correctness, i.e., that decryption recovers
the plaintext, we observe that:

DdA
(EeA(m)) = DdA

(
gb mod p, m→ (eA)

b mod p
)

= DdA

(
gb mod p, m→

(
gdA mod p

)b
mod p

)

=
(
m→

(
gdA mod p

)b
mod p

)
→
[(
gb mod p

)dA

mod p
]

= m→
(
gdA·b mod p

)
→
(
gb·dA mod p

)

= m

The security of DH PKC and the Hashed DH PKC. Intuitively, the
security of DH PKC seems to follow from the CDH assumption (Definition 6.5).

Applied Introduction to Cryptography and Cybersecurity

372 CHAPTER 6. PUBLIC KEY CRYPTOGRAPHY

Nurse

Alice
knows dA, g, p,

computes: eA = gdA mod p

Bob
knows eA, g, p

Input: message m

Select b
$→ {1, . . . , p ↑ 1}

eA
(
gb mod p, m→

[
(eA)

b mod p
])

Figure 6.15: The DH public key cryptosystem (DH PKC). Bob encrypts plaintext
message m, using Alice’s public key eA and the public parameters: a safe prime
p and generator g of the group Z→

p. The ciphertext consists of the pair of
strings

(
gb mod p, m→

[
(eA)

b mod p
])

. The value b is selected randomly
and known only to Bob; Bob should randomly select a new value b for each
encryption.

Equation 6.29:

EeA(m) =





b

$↑ {1, . . . , p↓ 1}
Return

(
gb mod p , m→ (eA)

b mod p
)




 (6.29)

Notice that the ciphertext is the pair
(
gb mod p , m→ (eA)

b mod p
)
.

Upon receiving such a ciphertext, which we denote (cb, cm), Alice can decrypt
it by computing:

DdA
(cb, cm) = cm →

[
(cb)

dA mod p
]

(6.30)

To see that the DH PKC ensures correctness, i.e., that decryption recovers
the plaintext, we observe that:

DdA
(EeA(m)) = DdA

(
gb mod p, m→ (eA)

b mod p
)

= DdA

(
gb mod p, m→

(
gdA mod p

)b
mod p

)

=
(
m→

(
gdA mod p

)b
mod p

)
→
[(
gb mod p

)dA

mod p
]

= m→
(
gdA·b mod p

)
→
(
gb·dA mod p

)

= m

The security of DH PKC and the Hashed DH PKC. Intuitively, the
security of DH PKC seems to follow from the CDH assumption (Definition 6.5).

Applied Introduction to Cryptography and Cybersecurity

372 CHAPTER 6. PUBLIC KEY CRYPTOGRAPHY

Nurse

Alice
knows dA, g, p,

computes: eA = gdA mod p

Bob
knows eA, g, p

Input: message m

Select b
$→ {1, . . . , p ↑ 1}

eA
(
gb mod p, m→

[
(eA)

b mod p
])

Figure 6.15: The DH public key cryptosystem (DH PKC). Bob encrypts plaintext
message m, using Alice’s public key eA and the public parameters: a safe prime
p and generator g of the group Z→

p. The ciphertext consists of the pair of
strings

(
gb mod p, m→

[
(eA)

b mod p
])

. The value b is selected randomly
and known only to Bob; Bob should randomly select a new value b for each
encryption.

Equation 6.29:

EeA(m) =





b

$↑ {1, . . . , p↓ 1}
Return

(
gb mod p , m→ (eA)

b mod p
)




 (6.29)

Notice that the ciphertext is the pair
(
gb mod p , m→ (eA)

b mod p
)
.

Upon receiving such a ciphertext, which we denote (cb, cm), Alice can decrypt
it by computing:

DdA
(cb, cm) = cm →

[
(cb)

dA mod p
]

(6.30)

To see that the DH PKC ensures correctness, i.e., that decryption recovers
the plaintext, we observe that:

DdA
(EeA(m)) = DdA

(
gb mod p, m→ (eA)

b mod p
)

= DdA

(
gb mod p, m→

(
gdA mod p

)b
mod p

)

=
(
m→

(
gdA mod p

)b
mod p

)
→
[(
gb mod p

)dA

mod p
]

= m→
(
gdA·b mod p

)
→
(
gb·dA mod p

)

= m

The security of DH PKC and the Hashed DH PKC. Intuitively, the
security of DH PKC seems to follow from the CDH assumption (Definition 6.5).

Applied Introduction to Cryptography and Cybersecurity

Encryption:

Decryption:

The DH Encryption Scheme---Correctness
and Security

n May not be secure!
q Believed to be secure under the CDH assumption, however, it is not

always true! gab may leak some information (or bits) as we studied
before.

n Solution?
q The hashed DH encryption scheme.

8

372 CHAPTER 6. PUBLIC KEY CRYPTOGRAPHY

Nurse

Alice
knows dA, g, p,

computes: eA = gdA mod p

Bob
knows eA, g, p

Input: message m

Select b
$→ {1, . . . , p ↑ 1}

eA
(
gb mod p, m→

[
(eA)

b mod p
])

Figure 6.15: The DH public key cryptosystem (DH PKC). Bob encrypts plaintext
message m, using Alice’s public key eA and the public parameters: a safe prime
p and generator g of the group Z→

p. The ciphertext consists of the pair of
strings

(
gb mod p, m→

[
(eA)

b mod p
])

. The value b is selected randomly
and known only to Bob; Bob should randomly select a new value b for each
encryption.

Equation 6.29:

EeA(m) =





b

$↑ {1, . . . , p↓ 1}
Return

(
gb mod p , m→ (eA)

b mod p
)




 (6.29)

Notice that the ciphertext is the pair
(
gb mod p , m→ (eA)

b mod p
)
.

Upon receiving such a ciphertext, which we denote (cb, cm), Alice can decrypt
it by computing:

DdA
(cb, cm) = cm →

[
(cb)

dA mod p
]

(6.30)

To see that the DH PKC ensures correctness, i.e., that decryption recovers
the plaintext, we observe that:

DdA
(EeA(m)) = DdA

(
gb mod p, m→ (eA)

b mod p
)

= DdA

(
gb mod p, m→

(
gdA mod p

)b
mod p

)

=
(
m→

(
gdA mod p

)b
mod p

)
→
[(
gb mod p

)dA

mod p
]

= m→
(
gdA·b mod p

)
→
(
gb·dA mod p

)

= m

The security of DH PKC and the Hashed DH PKC. Intuitively, the
security of DH PKC seems to follow from the CDH assumption (Definition 6.5).

Applied Introduction to Cryptography and Cybersecurity

The Hashed DH Encryption Scheme
n Secure if h(𝑔!"#! mod p) is pseudorandom (so the hash

function must be a randomness-extractor hash function).

9

374 CHAPTER 6. PUBLIC KEY CRYPTOGRAPHY

Nurse

Alice
knows dA, g, p,

computes: eA = gdA mod p

Bob
knows eA, g, p

Input: message m

Select b
$→ {1, . . . , p ↑ 1}

eA
(
gb mod p, m→ h

(
(eA)

b mod p
))

Figure 6.16: The Hashed Di!e-Hellman cryptosystem: same as the DH PKC
(Figure 6.15, except for hashing the ‘one-time key’ ebA mod p.

The original design of the El-Gamal PKC, in [178], uses multiplications
mod p where p is a safe prime, like the DH PKC. Key generation is also done as
in DH PKC, i.e., Alice’s selects her private key randomly as dA

$↑ {2, . . . , p↓1}
and computes her public key eA as: eA ↔ gdA mod p. Even the encryption
process is similar to DH PKC: Bob selects a random value b ↗ [2, p↓ 1], and
computes and sends to Alice a pair of values (cb, cm), where cb ↔ gb mod p
and cm ↔ m · ebA mod p, as in Equation 6.31.

EeA(m) = (cb, cm) ↔
(
gb mod p , m · ebA mod p

)
(6.31)

The di"erence between the original El-Gamal PKC and the DH PKC is in how
Bob uses the ebA value to encrypt the message m. In the original El-Gamal
PKC, Bob multiples m, i.e., computes cm ↑ m · ebA mod p, while in DH PKC,
Bob uses exclusive-or, i.e., computes cm ↑ m→ ebA. Decryption is also modified
accordingly, by using (modular) division instead of exclusive-or, i.e.:

DdA
(cb, cm) =

cm

cdA

b

mod p = cm · c→dA

b mod p (6.32)

Correctness follows similarly to DH PKC.
Unfortunately, similarly to DH PKC, the original El-Gamal PKC may expose

partial information about the plaintext message m. And, like for DH PKC, there
are two solutions, both similar to the corresponding DH-PKC solution: Hashed
El-Gamal cryptosystem or using El-Gamal with a DDH group (Definition 6.6).

The first solution, the Hashed El-Gamal cryptosystem, is similar to Hashed
Di!e-Hellman cryptosystem. Namely, in the encryption process, we hash the
‘one-time pad’ ebA before using it to hide the message m. Namely, encryption
is, as usual, a pair (cb, cm), except that cm is computed as: cm ↑ mcdoth(ebA).

Applied Introduction to Cryptography and Cybersecurity

ElGamal Public Key Encryption
n To encrypt message m to Alice, whose public key is

eA=𝑔!! 	𝑚𝑜𝑑	𝑝:
q Bob selects random b
q Sends: gb mod p , m.(eA)b=m.𝑔"#!! mod p

10

BobAlice eA=𝑔!! 	𝑚𝑜𝑑	𝑝

(gb mod p , (m. 𝑒$") mod p)
Select
random b

ElGamal Public Key Encryption
n Encryption:

n Decryption:

n Correctness:

11

326 CHAPTER 6. PUBLIC KEY CRYPTOLOGY

Figure 6.15: The El-Gamal Public-Key Encryption. The value b is randomly
chosen from the set {2, . . . , p} for each encryption, while dA is a randomly-chosen
(fixed) public key of Alice.

EEG
eA (m)

n�
gb mod p , m · ebA mod p

�
|b $ [2, p� 1]

o
(6.11)

Note that this assumes m < p.
El-Gamal decryption is:

DdA
(x, y) = x�dA · y mod p (6.12)

The correctness property holds since:

DdA
(gb mod p , m· ebA mod p) =

=
h�
gb mod p

��dA ·
⇣
m ·

�
gdA

�b
mod p

⌘i
mod p

=
⇥
g�b·dA ·m · gb·dA

⇤
mod p

= m

Exercise 6.9. Let p = 5.

1. Find a generator for Z⇤
p. (There are only three candidates to try!)

2. Let’s select the private key dA = 2. Compute the public key eA = gdA

mod p.

3. Compute El-Gamal encryption of 4 and of 3: c4 ⌘ EeA(4), c3 ⌘ EeA(3).
Comment: this is a randomized encryption, so another encyrption may
result in a di↵erent output!

4. Compute the decryptions of c4 and of c3.

6.5.3 Homomorphic encryption, Voting and Re-encryption.

The El-Gamal encryption is homomorphic with respect to multiplication.
Namely, there is a ‘ciphertext multiplication’ operation, such that the multi-
plication of two ciphertexts is an encryption of the multiplication of the two

Foundations of Cybersecurity: Applied Introduction to Cryptography

326 CHAPTER 6. PUBLIC KEY CRYPTOLOGY

Figure 6.15: The El-Gamal Public-Key Encryption. The value b is randomly
chosen from the set {2, . . . , p} for each encryption, while dA is a randomly-chosen
(fixed) public key of Alice.

EEG
eA (m)

n�
gb mod p , m · ebA mod p

�
|b $ [2, p� 1]

o
(6.11)

Note that this assumes m < p.
El-Gamal decryption is:

DdA
(x, y) = x�dA · y mod p (6.12)

The correctness property holds since:

DdA
(gb mod p , m· ebA mod p) =

=
h�
gb mod p

��dA ·
⇣
m ·

�
gdA

�b
mod p

⌘i
mod p

=
⇥
g�b·dA ·m · gb·dA

⇤
mod p

= m

Exercise 6.9. Let p = 5.

1. Find a generator for Z⇤
p. (There are only three candidates to try!)

2. Let’s select the private key dA = 2. Compute the public key eA = gdA

mod p.

3. Compute El-Gamal encryption of 4 and of 3: c4 ⌘ EeA(4), c3 ⌘ EeA(3).
Comment: this is a randomized encryption, so another encyrption may
result in a di↵erent output!

4. Compute the decryptions of c4 and of c3.

6.5.3 Homomorphic encryption, Voting and Re-encryption.

The El-Gamal encryption is homomorphic with respect to multiplication.
Namely, there is a ‘ciphertext multiplication’ operation, such that the multi-
plication of two ciphertexts is an encryption of the multiplication of the two

Foundations of Cybersecurity: Applied Introduction to Cryptography

326 CHAPTER 6. PUBLIC KEY CRYPTOLOGY

Figure 6.15: The El-Gamal Public-Key Encryption. The value b is randomly
chosen from the set {2, . . . , p} for each encryption, while dA is a randomly-chosen
(fixed) public key of Alice.

EEG
eA (m)

n�
gb mod p , m · ebA mod p

�
|b $ [2, p� 1]

o
(6.11)

Note that this assumes m < p.
El-Gamal decryption is:

DdA
(x, y) = x�dA · y mod p (6.12)

The correctness property holds since:

DdA
(gb mod p , m· ebA mod p) =

=
h�
gb mod p

��dA ·
⇣
m ·

�
gdA

�b
mod p

⌘i
mod p

=
⇥
g�b·dA ·m · gb·dA

⇤
mod p

= m

Exercise 6.9. Let p = 5.

1. Find a generator for Z⇤
p. (There are only three candidates to try!)

2. Let’s select the private key dA = 2. Compute the public key eA = gdA

mod p.

3. Compute El-Gamal encryption of 4 and of 3: c4 ⌘ EeA(4), c3 ⌘ EeA(3).
Comment: this is a randomized encryption, so another encyrption may
result in a di↵erent output!

4. Compute the decryptions of c4 and of c3.

6.5.3 Homomorphic encryption, Voting and Re-encryption.

The El-Gamal encryption is homomorphic with respect to multiplication.
Namely, there is a ‘ciphertext multiplication’ operation, such that the multi-
plication of two ciphertexts is an encryption of the multiplication of the two

Foundations of Cybersecurity: Applied Introduction to Cryptography

ElGamal Public Key Cryptosystem
n Problem: 𝑔!"#$ mod p may leak bit(s)…
n `Classical’ DH solution: securely derive a key:
ℎ 𝑔$%!%𝑚𝑜𝑑	𝑝

n El-Gamal’s solution: use a group where DDH
believed to hold

n Note: message must be encoded as member of
the group!

n What is special about ElGamal Encryption?
q Homomorphism!

12

ElGamal PKC: homomorphism
n Multiplying two ciphertexts produces a ciphertext of

the multiplication of the two plaintexts.
n Given two ciphertexts:

n 𝐸&! 𝑚' = 	𝑥', 𝑦' = (𝑔!" mod p, 𝑚' . 𝑔"!#$" mod p)
n 𝐸&! 𝑚(= 	𝑥(, 𝑦(= (𝑔!# mod p, 𝑚(. 𝑔!!"#" mod p)

n 𝑀𝑢𝑙𝑡 𝑥%, 𝑦% , 𝑥&, 𝑦& ≡ 	𝑥%𝑥&, 𝑦%𝑦&
n Homomorphism:
n =	(𝑔!"*!# mod p, 𝑚' + 𝑚(. 𝑔 "!%"# #$" mod p) =

 = 𝐸&" 𝑚' $ 𝑚(

n è compute 𝐸'! 𝑚% 1 𝑚& 	from 𝐸'! 𝑚% , 𝐸'! 𝑚%

13

14

RSA Public Key Encryption

n First proposed – and still widely used
n Select two large primes p,q ; let n=pq
n Select prime e (public key: <n,e>)

q Or co-prime with Φ(n) =(p-1)(q-1)
n Let private key be d=e-1 mod Φ(n) (i.e., ed=1 mod Φ(n))
n Encryption: RSA.Ee,n(m)=me mod n
n Decryption: RSA.Dd,n(c)=cd mod n
n Correctness: Dd,n(Ee,n(m))= (me)d = med = m mod n

q Intuitively: ed=1 mod Φ(n) è med = m mod n
n But why? Remember Euler’s theorem.

15

RSA Public Key Cryptosystem
n Correctness: Dd,n(Ee,n(m))= med mod n

q med=med= m1+l Φ(n) =m ml Φ(n) =m (mΦ(n))l

q med mod n =m (mΦ(n) mod n)l mod n
q Euler’s Theorem: mΦ(n) mod n=1 mod n
q è Dd,n(Ee,n(m))= med mod n=m 1l mod n =m

n Comments:
q m<n è m= m mod n
q Euler’s Theorem holds (only) if m, n are co-primes
q If not co-primes? Use Chinese Reminder Theorem

n A nice, not very complex argument
n But: beyond our scope – take Crypto!

q Number of messages co-prime to n ?!

The RSA Problem and Assumption
n RSA problem: Find m , given (n,e) and ‘ciphertext’ value c=me

mod n
n RSA assumption: if (n,e) are chosen `correctly’, then the RSA

problem is `hard’
q I.e., no efficient algorithm can find m with non-negligible

probability

q For `large’ n and 𝑚←
$
{1, … , 𝑛}

n Relation between RSA and factoring:
q Factoring algorithm è algorithm to ‘break’ RSA

n Simply use that to find the factors of n, then Φ(n) , then compute the
decryption key so you can reveal m.

q But: RSA-breaking may not allow factoring

16

RSA PKC Security
n It is a deterministic encryption scheme à cannot be IND-

CPA secure.
n RSA assumption does not rule out exposure of partial

information about the plaintext.

A solution: apply a random padding to the plaintext then
encrypt using RSA.

17

18

Padded RSA
n Pad and Unpad functions:

q Encryption with padding:
q Decryption with unpad:

n So it adds randomization to Prevent detection of repeating
plaintext

n Padding must be done carefully; certain padding algorithms
still do not guarantee CPA security.

!"#$%
&"#$!'&%(

!"#!$%&'
!(')%&"

&

*

=

=

!!"## !"#$%&'($%" =

Digital Signature

19

20

Public Key Digital Signatures

n Sign using a private, secret signing key (A.s for Alice)
n Validate using a public verification key (A.v for Alice)
n Everybody can validate signatures at any time

q Provides authentication, integrity and evidence / non-repudiation
q MAC: ‘just’ authentication + integrity, no evidence, can repudiate

Sign 𝜎 =	SA.s(m) Verify VA.v(m, σ)
Message
 m

Alice’s private
signing key A.s

Key Generation

(A.s,A.v) ←
$
	KG 1%

A.s A.v

Alice’s public
verification key A.v

Key length n

𝜎 (m, 𝜎)

21

Digital Signatures Security: Unforgeability

n Unforgeability: given 𝑣, attacker should be unable to find any
‘valid’ (𝑚, σ), i.e., Vv(m, σ)=OK
n Even when attacker can select messages 𝑚’, receive

σ’=Ss(m’) – so it has access to the signing oracle
n And the forgery is for a new message (that was not asked

to the oracle).

Sign 𝜎←	SA.s(m) Verify VA.v(m, σ)
Message
 m

Alice’s private
signing key A.s

Key Generation

(A.s,A.v) ←
$
	KG 1%

A.s A.v

Alice’s public
verification key A.v

Key length n

𝜎 (m, 𝜎)

Digital Signature Scheme Definition

22

32 CHAPTER 1. INTRODUCTION

1.3.4 Defining correctness requirements

Correctness requirements verify that the scheme operates as expected under
benign operating conditions. For a signature scheme, this simply means that
verification and signing interact as expected. Namely, if (s, v) is a pair of signing
key and corresponding validation key, then validation, using v, of a signature
produced using s would always return ‘Ok’. Let us define more formally a
signature scheme and its correctness requirement. Note that the definition uses
the dot notation introduced above.

Definition 1.4 (Signature scheme and its correctness). A signature scheme is
defined by a tuple of three e�cient (PPT) algorithms, S = (KG,Sign,Verify),
and a set M of messages, such that:

KG is a randomized algorithm that maps a unary string (security parameter
1l) to a pair of binary strings (KG.s(1l),KG.v(1l)).

Sign is an algorithm8 that receives two binary strings as input, a signing key
s 2 {0, 1}⇤ and a message m 2 M , and outputs another binary string
� 2 {0, 1}⇤. We call � the signature of m using signing key s.

Verify is a predicate that receives three binary strings as input: a verification
key v, a message m, and �, a purported signature over m. Verify should
output True if � is the signature of m using s, where s is the signature
key corresponding to v (generated with v).

Usually, M is a set of binary strings of some length. If M is not defined, then
this means that any binary string may be input, i.e., the same as M = {0, 1}⇤.

We say that a signature scheme (KG,Sign,Verify) is correct, if for every
security parameter 1l holds:

⇣
8(s, v) $ KG(1l), m 2M

⌘
Verifyv(m,Signs(m)) = ‘Ok’ (1.31)

Why signing and verifying are deterministic? Note that, for simplicity,
Definition 1.4 requires the signing and verifying algorithms (Sign,Verify, resp.)
to be deterministic, i.e., they cannot use randomness. Extending the definitions
to allow randomized signing and verifying algorithms is not very di�cult - but
a bit hairy - and we will not do that in this textbook.

Now that we have defined signature schemes and their correctness require-
ments, it is time to define also their security requirements, and indeed we do
this in Definition 1.8. However, before we do that, we must introduce some
further notions, used in most definitions of security of cryptographic schemes;
we do this in the following three subsections.

In subsection 1.3.5, we discuss general challenges to defining security of
cryptographic schemes, and how to deal with them. Then, in subsection 1.3.6 we

8In this textbook we only discuss deterministic signing algorithms. However, there are
also randomized signing algorithms, most notably, using the PSS encoding ([21,152]).

Foundations of Cybersecurity: Applied Introduction to Cryptography

n

n

n

n n(s, v), the signing and verification keys, respectively.

Digital Signature Scheme Security

23

1.5. DEFINING SECURITY FOR CRYPTOGRAPHIC SCHEMES:
SIGNATURES AS A CASE STUDY 33

scheme and the adversary as subroutines; formally, we show this by providing
the attacker A and the signature scheme S as inputs to the game. The game
defines the interactions between the attacker and the scheme, which is basically
the attack model. The game also defines the ‘winning conditions’, i.e., what we
consider as a successful attack (forgery, for signature schemes).

This may all be quite abstract, so let us focus on a concrete example: a
game that defines when do we say that a signature scheme S is existentially-
unforgeability under the chosen-message attack (CMA) model. Algorithm 1
presents the pseudocode of the algorithm for the existential unforgeability
adaptive chosen-message attack (CMA) game, EUFA,S(1n). The game returns
True if the adversary ‘wins’, i.e., is able to output some message m and a
valid signature for it ω; otherwise, i.e., if the attack fails, then the game returns
False.

Algorithm 1 The existentially unforgeable game EUFA,S(1n) between signa-
ture scheme S = (KG,Sign,Verify) and adversary A.

(s, v)
$→ S.KG(1n)

(m,ω)
$→ AS.Sign

s
(·)(v, 1n)

return (S.Verifyv(m,ω) ↑ (A didn’t give m as input to S.Signs(·)))

Explanation of the existential unforgeability game EUFA,S(1n) (Algo-
rithm 1). The game receives only one input, the security parameters 1n, and
has only three steps:

1. The same uses the key-generation algorithm of the signature scheme, to
generate the signing and verification keys: (s, v)

$→ S.KG(1n). We use
the $→ symbol to emphasize that S.KG is a randomized algorithm, i.e., it
returns a randomly-chosen key pair.

2. Then, the game computes (m,ω)
$→ AS.Sign

s
(·)(1n), i.e., the adversary

outputs a message m and a purported forged signature for it, ω. The
adversary has oracle access to the signing algorithm, i.e., can receive the
values S.Signs(x) for any input x chosen by the adversary. Note that
this step is also randomized, since both the attacker A and the signature
scheme may be probabilistic.

3. Finally, the game returns True, i.e., the adversary ‘wins’, if ω is a valid
signature on m (using the verification key v), provided that m is not one
of the inputs x whose signature S.Signs(x) was received by A from the
oracle in the previous step.

Intuitively, an existentially unforgeable signature scheme S ensures that every
e!cient (PPT) adversary A would ‘almost always’ lose, i.e., Pr(EUFA,S(1n) =
True) would be tiny or negligible, provided that the security parameter 1n is

Applied Introduction to Cryptography and Cybersecurity

1.5. DEFINING SECURITY FOR CRYPTOGRAPHIC SCHEMES:
SIGNATURES AS A CASE STUDY 35

The outcome of the game may depend on the (random) keys output by
the (probabilistic) KG algorithm, as well as the outputs of the (randomized)
adversary A. The probability that the adversary wins usually depends on the
security parameter 1n. This probability is called the existential unforgeability
advantage of A against S.

Definition 1.4. The existential unforgeability advantage function of adversary
A against signature scheme S is defined as:

ωEUF
S,A (1n) → Pr (EUFA,S(1

n) = True) (1.3)

Where the probability is taken over the random coin tosses of A and of S during
the run of EUFA,S(1n) with input (security parameter) 1n, and EUFA,S(1n)
is the game defined in Algorithm 1.

The advantage function gives us a measure of the security of the signature
scheme; in particular, clearly, a scheme is secure only if for any e!cient adversary
A, the advantage is small, or better yet, negligible5. Note, however, that for any
fixed value of the security parameter 1n, there is an adversary A that always
wins - i.e., such that ωEUF

S,A (1n) = 1 (Exercise 1.1). Therefore, our definition of
security cannot be bounded to a specific security parameter, and must consider
the advantage as a function.

Which advantage functions are su!ciently-small (or negligible)? There are
two main ways in which we can deal with this question: asymptotic security
and concrete security. In this textbook we will adopt the asymptotic security
approach, which we explain below, since it is a bit easier to use. However, let us
first briefly explain the alternative approach of concrete security, which allows
more detailed analysis of security - but is a bit harder to use.

1.5.7 Concrete security, asymptotic security and negligible
functions

Concrete security. The concrete security approach uses the advantage
function directly as the measure of security. Namely, in this approach, there
is no explicit definition of a ‘secure’ scheme; each scheme is only associated
with a specific advantage function. This allows the calculation of the advantage
as a specific probability value - for any given, concrete values of the security
parameter 1n; this is also the reason for the term, concrete security. In fact, in
this approach, often the advantage function is given additional parameters. For
example, the advantage function for a signature scheme may include the number
of messages signed during the execution. In general, inputs to the advantage
function often include the number of (di"erent kinds of) oracle calls.

Concrete security allows precise analysis of security for specific key lengths
and other parameters, and the security impacts of di"erent cryptographic con-
structions. This is a significant advantage of concrete security over asymptotic

5Unfortunately, no e!cient signature scheme can ensure zero advantage; see Exercise 1.6.

Applied Introduction to Cryptography and Cybersecurity

24

RSA Signatures
n Secret signing key s, public verification key v
n 𝜎 =	RSA.Ss(m)= ms mod n,

RSA.Vv(m, 𝜎)={ OK if m= 𝜎	v mod n; else, FAIL }
n Long messages?

q Hint: use collision resistant hash function (CRHF)
q 𝜎 =	RSA.Ss(m)= h(m)s mod n,

RSA.Vv(m, 𝜎)={ OK if h(m)= 𝜎	v mod n; else, FAIL }

Message 𝑚

Hash ℎ

ℎ(𝑚)

Sign 𝑆

𝑆() 𝑚

Discrete-Log Digital Signature?
n Can we sign based on assuming

discrete log is hard?
n Most well-known, popular scheme: DSA

q Digital Signature Algorithm, by NSA/NIST
q Details: crypto course

25

Covered Material From the Textbook
q Chapter 1: Section: 1.4
q Chapter 6:

q Sections 6.4 (except 6.4.4)
q Section 6.5 (except 6.5.6, 6.5.7, and 6.5.8),
q And Section 6.6 (except RSA with message recovery and

appendix)

26

