CSE 3400/CSE 5850 - Introduction to Computer & Network **Security** / Introduction to Cybersecurity

Lecture 11 Public Key Cryptography– Part II

Ghada Almashaqbeh **UConn**

*Adapted from the textbook slides

Outline

- **Q** Public key encryption.
- **Digital signatures.**

Public Key Encryption

Public Key Encryption

Public Key Encryption IND-CPA Security

- Same security game as before.
	- □ The attacker chooses two messages of the same length, and is challenged to correctly guess which of these messages was encrypted by the challenger.
- **n** The difference is that the attacker does not need an oracle access to the encryption oracle!
	- ^q The public encryption key (but not the private decryption key) is known to everyone, including the adversary, and can use it to encrypt any message he wants.
- Can a deterministic public key encryption scheme be an IND-CPA secure?

Discrete Log-based Encryption

- We will study two constructions:
	- □ An adaptation of DH key exchange protocol to perform encryption.
	- □ ElGamal encryption scheme.

The DH Encryption Scheme computes: *^e^A* ⁼ *^gdA* mod *^p* !
| 1 ncrypt **CN** ϵ **heme**

knows *dA, g, p*,

knows *eA, g, p* Input: message *m*

The DH Encryption Scheme---Correctness and Security and Security *D^d^A* (*cb, cm*) = *c^m* → " (*I*)^{*d*}---- $\overline{}$ the plaintext, we observe that:

$$
D_{d_A}(E_{e_A}(m)) = D_{d_A}(g^b \mod p, m \oplus (e_A)^b \mod p)
$$

=
$$
D_{d_A}(g^b \mod p, m \oplus (g^{d_A} \mod p)^b \mod p)
$$

=
$$
(m \oplus (g^{d_A} \mod p)^b \mod p) \oplus [(g^b \mod p)^{d_A} \mod p]
$$

=
$$
m \oplus (g^{d_A \cdot b} \mod p) \oplus (g^{b \cdot d_A} \mod p)
$$

=
$$
m
$$

- n May not be secure!
	- □ Believed to be secure under the CDH assumption, however, it is not always true! g^{ab} may leak some information (or bits) as we studied before. security of DH PKC seems to follow from the *CDH* assumption (Definition 6.5).
- **n** Solution?
	- □ The hashed DH encryption scheme.

The Hashed DH Encryption Scheme

n Secure if $h(g^{b\cdot d_A} \mod p)$ is pseudorandom (so the hash function must be a randomness-extractor hash function).

ElGamal Public Key Encryption

- To encrypt message *m* to Alice, whose public key is $e_{A}=g^{d_{A}}$ mod p:
	- ^q Bob selects random *b*
	- **g** Sends: $g^b \mod p$, $m.(e_A)^b = m.g^{b \cdot d_A} \mod p$

E condition, ase a group where *D*₁¹ r believed to hold

^g^b mod *p, m · ^e^b*

Figure 6.15: The Electronic Public-Key Encryption. The value *b* is respected to the value *b* is reported to the value *b* is reported to the value of the value *b* is reported to the value of the value $\frac{1}{2}$ chosen from the set α for each encoded the monitor of the group. \blacksquare Note: message n

El antico de la construction de la
Electric Key Encryption de la construction de la construction de la construction de la construction de la cons

EEG ^e^A (*m*)

ⁿ Encryption: *EEG ^e^A* (*m*)

$$
\text{Spec}_A^{\text{E}}(m) \leftarrow \left\{ \left(g^b \mod p \text{ , } m \cdot e_A^b \mod p \right) | b \stackrel{\$}{\leftarrow} [2, p-1] \right\}
$$

÷

[|]^b \$

[2*, p* 1]^o

^A mod *p*

n Decryption: $\sum_{i=1}^{n}$ Decryption is:

<u>n</u>

$$
D_{d_A}(x,y) = x^{-d_A} \cdot y \mod p
$$

n Correctness: \blacksquare correctified. **Correctness:**

Exercise 6.9. *Let p* = 5*.*

$$
D_{d_A}(g^b \mod p, \quad m \cdot e_A^b \mod p) =
$$

=
$$
\left[(g^b \mod p)^{-d_A} \cdot \left(m \cdot (g^{d_A})^b \mod p \right) \right] \mod p
$$

=
$$
\left[g^{-b \cdot d_A} \cdot m \cdot g^{b \cdot d_A} \right] \mod p
$$

=
$$
m
$$

 $\overline{1}$

 $\overline{7}$

 $\mathcal{F}_{\mathcal{A}}$

ElGamal Public Key Cryptosystem

- **Problem:** $g^{b \cdot d_A} \mod p$ may leak bit(s)...
- Classical' DH solution: securely derive a key: $h(g^{a_i b_i} \mod p)$
- El-Gamal's solution: use a group where DDH believed to hold
	- Note: message must be encoded as member of the group!
- What is special about ElGamal Encryption?
	- ^q Homomorphism!

ElGamal PKC: homomorphism

- Multiplying two ciphertexts produces a ciphertext of the multiplication of the two plaintexts.
- **n** Given two ciphertexts:
	- $E_{e_{A}}(m_{1}) = (x_{1}, y_{1}) = (g^{b_{1}} \mod p, m_{1} \mod p)$
	- $E_{e_A}(m_2) = (x_2, y_2) = (g^{b_2} \mod p, m_2 \cdot g^{b_2 \cdot d_A} \mod p)$
- *Mult*($(x_1, y_1), (x_2, y_2)$) $\equiv (x_1 x_2, y_1 y_2)$
- Homomorphism:

$$
= (g^{b_1+b_2} \mod p, m_1 \cdot m_2 \cdot g^{(b_1+b_2)\cdot d_A} \mod p) =
$$

= $E_{e_A}(m_1 \cdot m_2)$

a \rightarrow compute $E_{e_{A}}(m_1 \cdot m_2)$ from $E_{e_{A}}(m_1)$, $E_{e_{A}}(m_1)$

RSA Public Key Encryption

- **First proposed and still widely used**
- **n** Select two large primes p,q ; let $n=pq$
- Select prime *e* (public key: $\leq n,e>$)
	- **q** Or co-prime with $\Phi(n) = (p-1)(q-1)$
- **n** Let private key be $d=e^{-1} \mod \Phi(n)$ (i.e., $ed=1 \mod \Phi(n)$)
- Encryption: $RSA.E_{e,n}(m)=m^e \mod n$
- Decryption: *RSA.D_{dn}*(*c*)= c^d *mod n*
- **n** Correctness: $D_{d,n}(E_{e,n}(m)) = (m^e)^d = m^{ed} = m \mod n$ \Box **Intuitively:** *ed=1 mod* $\Phi(n) \rightarrow m^{ed} = m \mod n$
	- But why? Remember Euler's theorem.

RSA Public Key Cryptosystem

- **n** Correctness: $D_{dn}(E_{en}(m))=m^{ed} \mod n$
	- $m^{ed}=m^{ed}=m^{1+l}\Phi(n)=m m^{l}\Phi(n)=m (m^{\Phi(n)})^{l}$
	- \Box *m^{ed}* mod n =m (m^{Φ (n)} mod n)^l mod n
	- ^q Euler's Theorem: *mΦ(n) mod n=1 mod n*
	- \Box \rightarrow $D_{d,n}(E_{e,n}(m))=$ m^{ed} mod $n=$ m 1^l mod $n=m$

ⁿ Comments:

- $m \leq n$ $\rightarrow m=m \mod n$
- ^q Euler's Theorem holds (only) if *m, n* are co-primes
- □ If not co-primes? Use Chinese Reminder Theorem
	- A nice, not very complex argument
	- But: beyond our scope take Crypto!
- \Box Number of messages co-prime to n ?!

The RSA Problem and Assumption

- RSA problem: Find *m*, given (*n,e*) and 'ciphertext' value $c=me$ *mod n*
- RSA assumption: if (n,e) are chosen `correctly', then the RSA problem is `hard'
	- ^q I.e., no efficient algorithm can find *m* with non-negligible probability
	- **□** For `large' *n* and $m \leftarrow$ \$ $\{1, ..., n\}$
- **Relation between RSA and factoring:**
	- \Box Factoring algorithm \rightarrow algorithm to 'break' RSA
		- Simply use that to find the factors of n, then $\Phi(n)$, then compute the decryption key so you can reveal m.
	- ^q But: RSA-breaking may *not* allow factoring

RSA PKC Security

- It is a deterministic encryption scheme \rightarrow cannot be IND-CPA secure.
- **RSA** assumption does not rule out exposure of partial information about the plaintext.

A solution: apply a random padding to the plaintext then encrypt using RSA.

Padded RSA

- **Pad and Unpad functions:** $m = Unpad(Pad(m;r))$
	- ^q Encryption with padding:
	- ^q Decryption with unpad:

$$
c = [Pad(m, r)]e mod n,
$$

$$
m = Unpad(cd mod n)
$$

- So it adds randomization to Prevent detection of repeating plaintext
- Padding must be done carefully; certain padding algorithms still do not guarantee CPA security.

Digital Signature

Public Key Digital Signatures

- Sign using a private, secret signing key (A.s for Alice)
- Validate using a public verification key (*A.v* for Alice)
- Everybody can validate signatures at any time
	- ^q Provides authentication, integrity **and** evidence / non-repudiation
	- ^q MAC: 'just' authentication + integrity, no evidence, can repudiate

Digital Signatures Security: Unforgeability

- Unforgeability: given v, attacker should be unable to find any 'valid' (m, σ) , i.e., $V_v(m, \sigma) = OK$
	- Even when attacker can select messages m' , receive *σ'=Ss(m') – so it has access to the signing oracle*
	- And the forgery is for a new message (that was not asked to the oracle).

Digital Signature Scheme Definition oital signature scheme Definiti the dot notation introduced above.

key and corresponding validation key, then validation, using *v*, of a signature

Definition 1.4 (Signature scheme and its correctness). *A* signature scheme *is defined by a tuple of three efficient (PPT) algorithms,* $S = (\mathcal{K}G, \mathcal{S}ign, Verify)$, *and a set M of messages, such that:*

- KG *is a randomized algorithm that maps a unary string (security parameter* $1ⁿ$) to a pair of binary strings (s, v), the signing and verification keys, respectively.
- Sign *is an algorithm*⁸ *that receives two binary strings as input, a signing key* $s \in \{0,1\}^*$ and a message $m \in M$, and outputs another binary string $\sigma \in \{0,1\}^*$. We call σ the signature of *m* using signing key *s*.
- Verify *is a predicate that receives three binary strings as input: a verification key* v , a message m , and σ , a purported signature over m . Verify should *output* TRUE *if* σ *is the signature of* m *using* s *, where* s *is the signature key corresponding to v (generated with v).*

Usually, M is a set of binary strings of some length. If M is not defined, then this means that any binary string may be input, i.e., the same as $M = \{0, 1\}^*$.

We say that a signature scheme (KG*,*Sign*,*Verify) *is* correct*, if for every security parameter* 1*^l holds: n*

$$
(\forall (s,v) \stackrel{\$}{\leftarrow} \mathcal{KG}(1^n), \ m \in M) \ \mathcal{V}\text{e}\text{t} \text{f}\text{y}_v(m, \mathcal{S}ign_s(m)) = \text{'}Ok' \tag{1.31}
$$

Digital Signature Scheme Security adaptive chosen-message attack (*CMA*) game, *EUF*^A*,*S(1*n*). The game returns T gital orginature octherine occurre False.

Algorithm 1 The existentially unforgeable game $EUF_{\mathcal{A},\mathcal{S}}(1^n)$ between signature scheme $S = (\mathcal{K}\mathcal{G}, \mathcal{S}ign, Verify)$ and adversary \mathcal{A} .

presents the pseudocode of the algorithm for the *existential unforgeability*

 $(s, v) \overset{\$}{\leftarrow} \mathcal{S}.\mathcal{H} \mathcal{G}(1^n)$ $(m,\sigma) \stackrel{\$}{\leftarrow} \mathcal{A}^{\mathcal{S}.\mathcal{S}ign_s(\cdot)}(v,1^n)$ return $(S.\mathcal{V}\text{erify}_{v}(m, \sigma) \wedge (\mathcal{A} \text{ didn't give } m \text{ as input to } S.\mathcal{S}ign_s(\cdot)))$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $(m, o) \leftarrow \mathcal{A}$ as \mathcal{A} a **are that** $\left(\frac{\partial \mathcal{L}}{\partial y}(\mathbf{m}, \theta) \wedge (\mathcal{L} \text{ and } \mathbf{u} \text{ gives } \mathbf{m} \text{ as input to } \partial \mathcal{L} \text{ or } \mathbf{g}(\mathbf{v}))\right)$

Explanation of the existential unforgeability game *EUF*^A*,*S(1*n*) (Algo-**Definition 1.4.** The existential unforgeability advantage function of adversary $\mathcal A$ *against signature scheme* $\mathcal S$ *is defined as:*

$$
\varepsilon_{\mathcal{S},\mathcal{A}}^{EUF}(1^n) \equiv \Pr\left(EUF_{\mathcal{A},\mathcal{S}}(1^n) = \text{TRUE}\right) \tag{1.3}
$$

of the probability is taken over the random soin tosses of \mathcal{I} and of \mathcal{S} due μ and provavility is taken over the random coin tosses of A and of S aural in of $EUF_{\mathcal{A}}(1^n)$ with input (security parameter) 1^n , and $EUF_{\mathcal{A}}(s)$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$, $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ *Where the probability is taken over the random coin tosses of* A *and of* S *during the run of* $EUF_{A,\mathcal{S}}(1^n)$ *with input (security parameter)* 1^n *, and* $EUF_{A,\mathcal{S}}(1^n)$ *is the game defined in Algorithm 1.*

values S*.*Sign*s*(*x*) for any input *x* chosen by the adversary. Note that

fixed value of the security parameter 1*ⁿ*, there is an adversary A that *always*

RSA Signatures

- Secret signing key *s*, public verification key *v*
- $\sigma =$ RSA. $S_s(m) = m^s \mod n$, RSA. $V_v(m, \sigma) = \{ OK \text{ if } m = \sigma^v \text{ mod } n \text{; else, } FAIL \}$
- **Long messages?**
	- ^q Hint: use collision resistant hash function (CRHF)
	- $\sigma =$ RSA.*S_s(m)*= $h(m)^s \mod n$, RSA. $V_v(m, \sigma) = \{ OK \text{ if } h(m) = \sigma v \text{ mod } n \text{; else, } FAIL \}$

Discrete-Log Digital Signature?

- Can we sign based on assuming discrete log is hard?
- Most well-known, popular scheme: DSA
	- Digital Signature Algorithm, by NSA/NIST
	- □ Details: crypto course

Covered Material From the Textbook

- □ Chapter 1: Section: 1.4
- □ Chapter 6:
	- **Q** Sections 6.4 (except $6.4.4$)
	- □ Section 6.5 (except 6.5.6, 6.5.7, and 6.5.8),
	- □ And Section 6.6 (except RSA with message recovery and appendix)

Thank You!

