CSE 3400/CSE 5850 - Introduction to Computer & Network
Security
/ Introduction to Cybersecurity

Lecture 11
Public Key Cryptography— Part 11

Ghada Almashaqgbeh
UConn

*Adapted from the textbook slides



Outline

Public key encryption.
Digital signatures.



Public Key Encryption



Public Key Encryption

Key length [

e

Encryption Key e (e.d) Decryption Key d

(pubM \@‘:al‘e)

e d

Plaintext Ciphertext
m c=E,(m)

Plaintext
m=D ,(E (m))




Public Key Encryption IND-CPA Security

Same security game as before.

o The attacker chooses two messages of the same length,
and is challenged to correctly guess which of these
messages was encrypted by the challenger.

The difference is that the attacker does not need an oracle
access to the encryption oracle!

o The public encryption key (but not the private decryption
key) is known to everyone, including the adversary, and
can use it to encrypt any message he wants.

Can a deterministic public key encryption scheme be an IND-
CPA secure?



Discrete Log-based Encryption

We will study two constructions:

o An adaptation of DH key exchange protocol to
perform encryption.

o ElGamal encryption scheme.



The DH Encryption Scheme
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knows d4, g, p, knows e, g, p
computes: ey = gdA mod p Input: message m
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Notice that the ciphertext is the pair (gb mod p, m & (eA)b mod p).

Decryption: Da, (Cba Cm) — ¢, D [(Cb)dA mod p}




The DH Encryption Scheme---Correctness
and Security

Day(Be,(m)) = Da, (g" modp, me (ea)’ mod p)
= Dy, (gb mod p, m P (gdA mod p)b mod p)

= (m ® (gdA mod p)b mod p) D [(gb mod p)dA mod p]

= mo (gdA'b mod p) D (gb'dA mod p)

= m

May not be secure!

o Believed to be secure under the CDH assumption, however, it is not
always true! g?* may leak some information (or bits) as we studied
before.

Solution?
o The hashed DH encryption scheme.



The Hashed DH Encryption Scheme

Secure if 1(g? % mod p) is pseudorandom (so the hash
function must be a randomness-extractor hash function).
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FElGamal Public Key Encryption

To encrypt message m to Alice, whose public key is
e,=g% mod p:
o Bob selects random b

a0 Sends: g® mod p , m.(e)?=m.g" %A mod p

Alice
ol

>

(¢? mod p , (m. eff) mod p)

Select
random b
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ElGamal Public Key Encryption

Encryption:
EEC (m) {(gb mod p, m-efy mod p) b & [2,p— 1]}
Decryption:
Da,(x,y) =2~ -y mod p
Correctness:

Da,(9" modp, m- e}y modp) =

_ _(gb modp)_dA.(m.(gdA)b modp)} mod p

— :g—b-dA Cm - gb'dA]

= m

mod p
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FElGamal Public Key Cryptosystem

Problem: g?%4 mod p may leak bit(s)...
"Classical’ DH solution: securely derive a key:
h(g®Pimod p)

El-Gamal’s solution: use a group where DDH
believed to hold

Note: message must be encoded as member of
the group!

What is special about ElIGamal Encryption?
2 Homomorphism!
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ElGamal PKC: homomorphism

Multiplying two ciphertexts produces a ciphertext of
the multiplication of the two plaintexts.

Given two ciphertexts:
E,,(my) = (x1,y1) = (9%t mod p,my . g"%4 mod p)
E.,(m3) = (x2,¥2) = (g"2mod p,m, . "% mod p)
MUlt((x1»3’1)» (xz»YZ)) = (x1X2,Y1Y2)
Homomorphism:

= (gbl"'b2 mod p, mq - M. g(bl”’z)'dA mod p) =
= EeA(ml ' mZ)

= compute E, ,(m, - m;) from E, , (m,), E,, (m;)
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RSA Public Key Encryption

First proposed — and still widely used
Select two large primes p,q ; let n=pq
Select prime ¢ (public key: <n,e>)
o Or co-prime with @) =(p-1)(g-1)
Let private key be d=e¢’ mod ®(n) (i.e., ed=1 mod ®(n))
Encryption: RSA.E, ,(m)=m* mod n

Decryption: RSA4.D,,(c)=c? mod n
Correctness: D, (E, ,(m))= (m®)? = m* = m mod n

o Intuitively: ed=1 mod ®@(n) = m® = m mod n

But why? Remember Euler’'s theorem.
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RSA Public Key Cryptosystem

Correctness: D, ,(E, ,(m))=m® mod n

0 med=med= I G0 =y gl OO =y (@0 )l

a0 m®mod n =m (m®™ mod n )’ mod n

o Euler's Theorem: m®" mod n=1 mod n

a 2D, (E, (m)=m mod n=m 1'mod n =m

Comments:

a m<n = m=mmodn
o Euler’'s Theorem holds (only) if m, n are co-primes

o If not co-primes? Use Chinese Reminder Theorem
A nice, not very complex argument
But: beyond our scope — take Crypto!

o Number of messages co-prime to 77 ?!
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The RSA Problem and Assumption

RSA problem: Find m:, given (n,e) and ‘ciphertext’ value c=m¢
mod n

RSA assumption: if (n,e) are chosen “correctly’, then the RSA
problem is "hard’

o l.e., no efficient algorithm can find » with non-negligible
probability

$
o For 'large’ n and m < {1, ...,n}

Relation between RSA and factoring:

o Factoring algorithm = algorithm to ‘break’ RSA

Simply use that to find the factors of n, then @), then compute the
decryption key so you can reveal m.

o But: RSA-breaking may not allow factoring
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RSA PKC Security

= Itis a deterministic encryption scheme - cannot be IND-
CPA secure.

= RSA assumption does not rule out exposure of partial
information about the plaintext.

A solution: apply a random padding to the plaintext then
encrypt using RSA.
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Padded RSA
Pad and Unpad functions: m = Unpad (Pad(m;r))

c =[Pad(m,r)] modn,
m = Unpad(c’ modn)

o Encryption with padding:
o Decryption with unpad:

So it adds randomization to Prevent detection of repeating
plaintext

Padding must be done carefully; certain padding algorithms
still do not guarantee CPA security.
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Digital Signature
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Public Key Digital Signatures

Key Generation
Key length n $
(A.s,A.v) « KG(1™)

Alices private Alice’s public
4 Signing key A.s verification key A.v
X vy

wd A.s Av L
Y J il ad
Message o (m,o)
—>

m Signo =S§,,(m) [~ "| Verify V, (m, 0)—‘

Sign using a private, secret signing key (4.s for Alice)
Validate using a public verification key (A4.v for Alice)

Everybody can validate signatures at any time
o Provides authentication, integrity and evidence / non-repudiation
o MAC: ‘just’ authentication + integrity, no evidence, can repudiate
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Digital Signatures Security: Unforgeability

Key Generation
Key length n $
(A.s,A.v) « KG(1™)
Alices private Alice’s public
5 S igning key A.s verification key A.v
“
ad A.s Ay &7
i . ho
Message o (m,o)
m | Sign o« Sm) [ Verify V, ,(m, o)

Unforgeability: given v, attacker should be unable to find any
valid’ (m, o), i.e., V (m, 06)=0OK

Even when attacker can select messages m’, receive
o’=S.(m’) — so it has access to the signing oracle

And the forgery is for a new message (that was not asked
to the oracle).
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Digital Signature Scheme Definition

Definition 1.4 (Signature scheme and its correctness). A signature scheme is
defined by a tuple of three efficient (PPT) algorithms, & = (KG,Sign,Verify),
and a set M of messages, such that:

KQG is a randomized algorithm that maps a unary string (security parameter
1”) to a pair of binary strings (s, v), the signing and verification keys, respectively.

Sign is an algorithm® that receives two binary strings as input, a signing key
s € {0,1}* and a message m € M, and outputs another binary string
o € {0,1}*. We call o the signature of m using signing key s.

Verify 1is a predicate that receives three binary strings as input: a verification
key v, a message m, and o, a purported signature over m. Verify should
output TRUE if o is the signature of m using s, where s is the signature
key corresponding to v (generated with v ).

Usually, M s a set of binary strings of some length. If M is not defined, then

this means that any binary string may be input, i.e., the same as M = {0, 1}*.

We say that a signature scheme (KG,Sign,Verify) is correct, if for every
security parameter 1" holds:

(V(s,v) & qe, me M) Verify, (m, Sign.(m)) = ‘Ok’ (1.31)
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Digital Signature Scheme Security

Algorithm 1 The existentially unforgeable game EUF 7 s(1™) between signa-
ture scheme & = (K@, Sign,Verify) and adversary A .

(s,v) & S.KG(1™)
(,]n7 O') ﬁ ﬂé’.é’igns(-)(vj 1n)
return (8.Verify,(m,o) A (A didn’t give m as input to §.8ign,(-)))

Definition 1.4. The existential unforgeability advantage function of adversary
A against signature scheme & s defined as:

es 4 (1") =Pr(EUFz,s(1") = TRUE) (1.3)

Where the probability is taken over the random coin tosses of A and of & during
the run of EUF 7z s(1™) with input (security parameter) 1™, and EUF 7z s(1™)
1s the game defined in|Algorithm 1
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RSA Signatures

= Secret signing key s, public verification key v
» 0 =RSA.S,(m)=m*mod n,

RSA.V,(m, 0)={ OK if m= 0 Y mod n; else, FAIL
= Long messages?

o Hint: use collision resistant hash function (CRHF)

0 o = RSA.S,(m)= h(m)* mod n,
RSA.V,(m, o)={ OK if h(m)= o ¥ mod n; else, FAIL }

Hash h

Sign S
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Discrete-Log Digital Signature?

Can we sign based on assuming
discrete log is hard?

Most well-known, popular scheme: DSA

o Digital Signature Algorithm, by NSA/NIST
o Details: crypto course
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Covered Material From the Textbook

Chapter 1: Section: 1.4

Chapter 6:

o Sections 6.4 (except 6.4.4)
o Section 6.5 (except 6.5.6, 6.5.7, and 6.5.8),

o And Section 6.6 (except RSA with message recovery and
appendix)
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Thank Youl




