CSE 3400/CSE 5850 - Introduction to Computer & Network
Security
/ Introduction to Cybersecurity

Lecture 10
Public Key Cryptography— Part I

Ghada Almashaqgbeh
UConn

*Adapted from the textbook slides

Outline

Introduction to public key cryptography and
motivation.

Number theory review.
The discrete log assumption.
The Diffie-Hellman key exchange protocol.

Intro to Public Key Cryptography

Public Key Cryptography

Kerckhoff’s principle: the cryptosystem (algorithm) is
public

What we learned until now: symmetric or shared key
setting

o Only the key is secret (unknown to attacker)

o Same key for encryption and decryption = if you can
encrypt, you can also decrypt!

o Shared keys for MACs and PRFs, etc.

But can we give asymmetfric cryptographic capability,
e.g., encryption capability without a decryption
capability?

o Yes, using public key cryptography!

‘ Public Key Cryptosystem (PKC)

= Kerckhoff: cryptosystem (algorithm) is public.

= [DH76]: can encryption key be public, to0??
o Decryption key will be different (and private).
o Everybody can send me emails, only | can read them.

Key length [‘_

Encryption Key e (e.d) Decryption Key d

(pubM \p\m“zal‘e)

e d

Plaintext Ciphertext
m c=E (m)

Plaintext
m :Dd(Ee(m))

st Only About Encryption?

= Also: Digital signatures for integrity and non-
repudiation.

o Sign with private key s, verify with public key v

0 (Recall MACs; a shared key cryptosystem for message
authentication).

Key length [‘

(s,v)

Private signing key s \Pch validation key v
v

S

=S

Anyone can verify the signature!

m if 'V, (m, 0)=0OK
Error otherwise

More: Key-Exchange Protocol

= Key Exchange Protocols.

o Establish shared key between Alice and Bob without assuming
an existing shared (‘master’) key !!

0 Use public information from Alice and Bob to setup shared secret
key k.

o Eavesdroppers cannot learn the key k.

Pais é What’s k 7777

-

Alice

Public keys solve more problems ...

Signatures provide evidence
o Everyone can validate, only ‘owner’ can sign
Establish shared secret keys
o Use authenticated public keys
Signed by trusted certificate authority (CA)
o Or: use DH (Diffie Hellman) key exchange
Stronger resiliency to key exposure
o Perfect forward secrecy and recover security
o Threshold security
Resilient to key exposure of t out of n parties

Public keys are easter...

To distribute:

o From directory or from incoming message (still need to
be authenticated)

0 Less keys to distribute (same public key to all)
To maintain:

o Can keep in non-secure storage as long as being
validated (e.g. using MAC) before using

o Less keys: O(|parties|), not O(|parties|?)
So: why not always use public key crypto?

The Price of PKC

Assumptions

o Applied PKC algorithms are based on a small number
of specific computational assumptions

Mainly: hardness of factoring and discrete-log
Both may fail against quantum computers
Overhead
o Computational
o Key length
o Output length (e.g., ciphertext or signature)

10

Public key crypto is harder...

Requires related public, private keys

Commercial-grade security from [LV02]

o Usually we say a keypair (pk, sk)

o Public key does not expose private key
Substantial overhead

0 Successful cryptanalytic shortcuts -

need long keys

o Elliptic Curves (EC) may allow shorter

key (almost no shortcuts found)

o Complex computations, e.g., complex

[LVO2] Required key size

Year AES RSA, | ECIES
DH

2010 78 | 1369 160

2020 86 | 1881 161

2030 93 | 2493 176

2040 101 | 3214 191

(slow) key generation

For the table:

The year indicates until when confidentiality to be preserved.
AES: A symmetric encryption scheme

RSA and DH: encryption schemes based on factoring and discrete log hardness problems

ECIES: Elliptic Curve Integrated Encryption Scheme

11

In Sum

Minimize the use of PKC
In particular: as possible, apply PKC only to short inputs
How??
o For signatures:
Hash-then-sign
o For public-key encryption:
Hybrid encryption

12

Hybrid Encryption

Challenge: public key cryptosystems are slow
Hybrid encryption:
Use a shared key encryption scheme to encrypt all messages.
But use a public key encryption system to exchange the shared

key.
Alice generates k, encrypts it under Bob’s public key and sends

the ciphertext ¢, to Bob.
Bob can decrypt and recover k, and then use k to decrypt cy,.

Encryption Decryption
C
k €{0,1}" ™| ¢, € PKE,k) “—— k€ PKD(C})
Plaintext) Cy | -
- > Cm éSKEk(m) > SKDk(CM) > m

Note: the figure above only focuses on confidentiality, additional modules are needed to ensure integrity.
13

Going Forward

First, introduce the mathematical concepts (mainly
number theory) that we need for a particular
primitive/protocol.

o This would involve hardness problems/assumptions.

Then, study the primitive/protocol itself.
Lastly, and as before, show correctness and reason

about security.

o In general, security will be based on mathematical hardness
problems.

14

Number Theory Review
--Modular Arithmetic--

15

Notation

Z . The set of all integers{..., -3,-2,-1,0,1, 2, 3, ...}.
Z.,. The set of integers modulo n, i.e., {0, 1, ..., n- 1}

N : The set of natural numbers {1, 2, 3, ...}.

Prime number: p is prime if its only factors are 1 and p.
Composite number: not prime.

Co-prime numbers: m and n are co-prime if their
greatest common divisor is 1.

L,: For a prime p, it is the set of integers modulo p
excluding zero, i.e., {1, ..., p- 1}

Z,. For a composite n, it is the set of positive integers
that are less than n (excluding zero) and co-prime to n.

16

The Modulo Operation

Definition 1.2 (The modulo operation). Let a,m € Z be integers such that
m > 0. We say that an integer r is a residue of a modulo m if 0 < r < m
and (i € Z)(a =r+1i-m). For any given a, m € Z, there is exactly one such
residue of a modulo m; we denote it by a mod m.

Properties (make it easier to compute complex modular arithmetic
expressions):

(a+b) modm = [(a modm)+ (b modm)] modm (1.2)
(a—b) modm = [(a modm)— (b modm)] modm (1.3)
a-b modm = [(@ modm)-(b modm)] modm (1.4)
> modm = (¢ modm)’ modm (1.5)

17

Examples

7/ mod9="7

13 mod 8 =7

Omod 11 =7

4 mod4 ="

(30 + 66) mod 11 =7

How about: 445 - (81 -34'3 +83-33%%%) mod 4

Denote 445 - (81 - 3413 4+ 83 - 33345) mod 4 by . Then we find x as
follows:
x = 445.(81-34" +83-33%") mod 4
= (445 mod 4)- ((81 mod 4)- (34 mod 4)"*+
+(83 mod 4) - (33 mod 4)**°) mod 4

= 1-(1-2%+3-1°*) mod4

= (2-4°+3) mod4

= 3 mod4=3

18

Multiplicative Inverse

Needed to support division in modular arithmetic.
o Division does not always produce integers.
o Modular arithmetic requires integers to work with!!

To compute a/c mod m, multiply a by the multiplicative
inverse of c.

o That is compute a/c mod m = ac’’ mod m.

o Where ¢! is the multiplicative inverse such that cc™’
modm=1

Not all integers have multiplicative inverses with respect
to a specific modulus m.

19

Multiplicative Inverse

Fact A.2. Let a € Z be an integer. We say that integer b is the multiplicative
inverse modulo m of a, if a-b = 1 (mod m); if it exists, we denote the
multiplicative inverse by b = a1 mod m (or, when m is clear from context,
simply a™1).

An integer a has multiplicative inverse modulo integer m > 0, if and only if
a and m are coprime, namely, they do not have a common divisor (except 1).

d Examples:
Q 3/5mod4=3.5"mod4 ="
d 3/5mod6=3.5"mod6 ="

The algorithm used to compute the inverse is called the
Extended Euclidean algorithm (out of scope for this course).

20

Modular Exponentiation

Will be encountered a lot; discrete log-based scheme,
RSA, etc.

We have seen a property to reduce the base, but how
about the exponent?

o Its reduction will be with respect to a different modulus
than the one in the original operation.

Fermat’s Little Theorem:

Theorem 1.1. For any integers a,b,p € Z, if p is a prime and p > 0, then

b

a® mod p=qa® mod (p—1)

mod p

b mod (p—1) (19)

= (a mod p) mod p

21

Modular Exponentiation

Examples; Use Fermat’s Little theorem (if applicable) to
solve the following:

1332 mod 31 =7
19930 mod 4 = ?
190 mod 7 = ?

Can we reduce the exponent for non-prime (composite)
modulus?

o We can use Euler’s Theorem.

22

Euler’s Function

Called also Euler’s Totient function. For every integer n >
1, this function computes the number of positive integers
that are less than n and co-prime to n.

a0 gcd below is the greatest common devisor.

d(n)=|{i eN:i<n Agcd(i,n) =1}

Examples:
n 1 2 3 4 5 6 7 8 9 10
o(n) 1 1 2 2 4 2 6 4 6 4
factors? | none | none | none | 2-2 | none | 2-3 | none | 23 | 3-3|2-5

23

FEuler’s Function Properties

Lemma 1.1. For any prime p > 1 holds ¢(p) = p — 1. For prime ¢ > 1 s.t.
q # p holds ¢(p-q) = (p —1)(g — 1).

Lemma 1.2 (Euler function multiplicative property). If a and b are co-prime
positive integers, then ¢(a-b) = ¢(a) - ¢(b).

Lemma 1.3. For any prime p and integer | > 0 holds ¢(p') = p' — p'~1.

Theorem 1.3 (The fundamental theorem of arithmetic). Fvery number n > 1
has a unique representation as a product of powers of distinct primes.

Lemma 1.4. Let n = I}, (p,lb), where {p;} is a set of distinct primes (all

different), and l; is a set of positive integers (exponents of the different primes).

Then:
d(n) = ¢ (H?:i (p?)) =17, (p? - pﬁi_l) (1.12)

24

Euler’s Theorem

Theorem 1.2 (Euler’s theorem). For any co-prime integers m,n holds m®n) =
1 mod n. Furthermore, for any integer | holds:

l

m! mod n =m! mede(n)

mod n (1.19)

Examples:
a0 133" mod 31 ="
a 27% mod10="

25

Key Exchange

26

The Key Exchange Problem

Alice and Bob want to agree on secret (key)
0 Secure against eavesdropper adversary
o Assume no prior shared secrets (key)

Aka key agreement

“

27

Detining a Key Exchange Protocol

ST,

a ' “Shared key: KC(a, Pg) = KC(b, Py)

*KG: Key Generate, KC: Key Compute, a and b are secret, while P, and Pg are public

Must satisfy:

« Correctness; both parties compute the same shared key,

« and key indistinguishability; the key that the two parties establish is
indistinguishable from random.

28

Discrete Log (DL) Assumption

29

--Group Theory Review--

A group is a pair of (G, op) is composed of a set of elements ¢
and an operation op such that ¢ is closed under the operation

op, i.e., for any two elements a,b € G we haveaopb =c € G,
and it satisfies the following requirements:

Associativity: for every a,b,c € G holds (a-b)-c=a-(b-c).

Identity element: there exists a (unique) element in G, which we call the

identity element and usually denote by 1 € G, such that for every element
a € G holds: a=a-1=1"-a.

Inverse: For each a € G, there is an element a=' € G such that a -a~ ! =
a~'-a =1, where 1 is the identity element. For each a, there is only one

such element, which we call the inverse of a and denote a=!. (From the

identity element property, it follows that the identity element is always its
own inverse.)

A commutative group is a group that also satisfies:

Commutativity: for every a,b € G holdsa-b=10-a.

Although the properties are for multiplication operations, same applies for addition. The only different is
that the identity element is 0.

30

--Group Theory Review--

We focus on finite commutative groups.
We will consider Finite Additive Groups:

o Example: (Z,, +) where Z,, = {0,1, 2, ..., (n — 1)} and the operation is
addition modulo n

o Exercise: show the group above satisfies all properties listed in the
previous slide.

We will consider Finite Multiplicative Groups, mostly, modulo a prime p:

o Example: (Z,,.) where Z;, = {1,2, ...,(p — 1)} and the operation is
multiplication modulo p

o Exercise: show the group above satisfies all properties listed in the
previous slide.

We use the exponentiation notation to denote the repeated application
of the group operation.

o Thatis, a' = aand a‘ = a*~ ! op a and so on.

31

--Cyclic Groups--

Definition A.4 (Cyclic group, generator and order). A group G is cyclic, if
there 1s an element g € G such that for every element a € G, there is an integer
i such that a = g*. Such an element g is called a generator of G. The order of
G s the integer ¢ > 0 such that g? = 1, where g 1s a generator of G and 1 is
the unit element of G.

Note that G = {g*,...,99} = {1,9,9°,...,99" 1}, hence, the order q of a
cyclic group G, s also the number of element in G. We also define the order of
an element a € G, this is the smallest possible integer ¢ > 0 such that a? = 1.
In particular, the order of a is the same as the order of G if, and only if, a is a
generator of g.

Examples:

o For prime p , the additive group Z,, = {0, 1, ..., p — 1} is a cyclic group of
order p and every element in this group (except 0) is a generator (because
the order of this group is prime). Exercise: verify that!

o For prime p , the group Z; = {1,...p-1} is a cyclic multiplicative group. E.g.,

- =1{1,2,...,6} is a cyclic group of order 6, a generator for this group is 3
(2, for example, is not a generator. Exercise: verify that!).

32

The Discrete LLog Problem

A computational hard problem is one that is:
o Hard to solve
o But easy to verify

Discrete log problem: given a generator g and an element a € G, find
i such thata = g*

o Verification: exponentiation (efficient algorithm)

Computing logarithm is quite efficient over the reals. But is discrete-log
hard?

o Some ‘weak’ groups, i.e., where discrete log is not hard:
L, for prime p, where (p — 1) has only ‘small’ prime factors
0 Using the Pohlig-Hellman algorithm

Mistakes/trapdoors found, e.g., in OpenSSL’16, so always
check!

o Other groups studied, considered Ok (‘hard’)
o Safe-prime groups: Z,for safe prime: p = 2q + 1 for prime ¢

33

Discrete Log Assumption

q-1

Definition 6.2 (The discrete logarithm problem). Leﬁen be a PPT algorithm
that, on input 1™, outputs (g,q) such that {1,g,...,9%} is a cyclic group (using
a given group operation). We say that the discrete logarithm problem is hard

for groups generated by Gen, if for every PPT algorithm A holds:

Pr [(g,q) CGen(1™) s y & (1, g}y = ﬂ(gy)} e NEGL(1") (6.6)

And remember, discrete-log is hard with respect to a particular group!

34

The Diffie-Hellman (DH) Key Exchange Protocol
and

The Computational/Decisional Diffie-Hellman
Assumptions (CDH/DDH)

35

Dittie-Hellman [DH]| Key Exchange

Using cyclic multiplicative group Z,,
Setup: Agree on a random safe prime p and generator g for the cyclic
multiplicative group Z,

Alice: pick at random secret integer a from Z, , then compute P,= g“ mod p, and
send P, to Bob.

Bob: pick at random secret integer b from Z;, , then compute Pz= g’ mod p, and
send Py to Alice.

Both parties: compute the shared key k = g% mod p , do you see how?

Alice Bob
Select a b= g*modp Select b
:;, Pz= g’ mod p Y

(g?) =g =(g*)? mod p

36

Caution: Authenticate Public Keys!

= Diffie-Hellman key exchange is only secure against
eavesdroppers but not MitM attackers.

= So the public messages being sent must be authenticated,
e.g., using digital signatures.
o Still each party must have a certificate for her public (verification) key.

al {1,....p} e {1,....p} bE {1,...,p}
P g* mod p
g¢ mod p
Alice MitM Adversary Bob

(ge)a — ga-e mod P

(ga)ee: g‘;'e mod p, (ge)b = ¢*¢ mod p
(9")" =g"° mod p

N~—

37

Security ot [DH| Key Exchange

Assume authenticated communication
DH key exchange requires stronger assumption than Discrete Log:

o Maybe from g” mod p and g“ mod p, adversary can compute
g’ mod p (without knowing/learning a,b or ab)?

The Computational Diffie-Hellman (CDH) Assumption is what we
need.

o In simple terms, it states that given g’ mod p and g mod p, an
efficient adversary cannot compute g*” mod p with non-negligible
probability.

So DH key exchange protocol is secure for groups in which the CDH
assumption holds.

Assume CDH holds. Can we use g%’as key?
a Not necessarily; maybe finding some bits of g° is easy?

38

Using DH securely?

Can g4, g” expose something about g% mod p ?

o Bad news: Finding (at least) one bit about g*” mod p is easy!
(details in textbook if interested)

So, how to use DH ‘securely’? Two options:
o Option 1: Use DH but with a “stronger’ group (other than
L) for which the stronger DDH assumption holds.

The Decisional DH (DDH) Assumption: adversary can’t
distinguish between [g%, g°, g?*] and [g%, g, g€] for random a, b, c.

o Option 2: use DH with Z;, and safe prime p... (where only

CDH holds) but use a key derivation function (KDF) to
derive a secure shared key.

Example, use an unkeyed hash function to obtain k = h(g*mod p),
where h is randomness-extracting hash function.

39

Covered Material From the Textbook

J Appendix A.2

1 Chapter 6:
1 Sections 6.1 (except 6.1.8.3),

1 Section 6.2 (except 6.2.5, also 6.2.1 and 6.2.3 are
optional reading),

40

Thank Youl

