
CSE 3550/5000: Blockchain Technology

Lecture 4
Bitcoin - Part II

Ghada Almashaqbeh
UConn - Spring 2026

Outline
● More about Bitcoin:

○ Consensus.

○ Blockchain forking.

○ Properties like transparency, public verifiability,

immutability, etc.

○ Bitcoin scripting language and transaction processing.

2

Consensus
● Miners hold, hopefully, consistent copies of the blockchain.

○ Only differ in the most recent unconfirmed blocks.

○ A block is confirmed when it is buried under at least 6 blocks.

● A miner votes for a block implicitly:

○ Accept it by including it in the chain and start mining on top of it.

○ Reject it by ignoring the new block and continue mining based on

the older blockchain or another newly announced block.

● Remember: Bitcoin network is not perfect!

○ propagation delays, not all nodes hear all announced transactions,

nodes may crash at any point of time, etc.

● Result: the blockchain may have multiple branches, i.e., forks.

3

Blockchain Forking
● Miners work on different branches.

● Resolved by adopting the longest branch since it means more work

effort and larger history record.

○ That is, when a miner hears about another branch that longer that

the current one it has, it will switch to the new branch.

● Older history is consistent; all honest miners will agree on a common

prefix of the blockchain. They may differ in recent (unconfirmed)

history.

Source: http://www.ybrikman.com/writing/2014/04/24/bitcoin-by-analogy/
4

http://www.ybrikman.com/writing/2014/04/24/bitcoin-by-analogy/

Forking Types - Soft Fork
● Temporary fork in the blockchain due to updating the consensus

protocol to include additional rules on validating the blocks.

○ Generally, soft forks are related to adopting stricter rules to

validate blocks/transactions.

● Why is it called soft?

○ Blocks considered valid by an old version of the protocol are

not all valid by the new version.

○ But blocks considered valid by the new version are all valid

based on the old version.

● If the majority of the nodes switch to the new version of the

protocol, the old nodes will switch eventually since many of their

mined blocks will be dropped.

○ Remember we assume honest majority.
5

Soft Fork - Pictorially

From https://www.investopedia.com/terms/s/soft-fork.asp

6

https://www.investopedia.com/terms/s/soft-fork.asp

Forking Types - Hard Fork
● Permanent fork in the blockchain due to core changes in the

consensus protocol.

● Why is it called hard?

○ All blocks that are valid according to the new version are

considered invalid by the old protocol version.

○ Thus, the two branches will not have any blocks/transactions

in common.

○ Results in two different blockchains.

● So, a miner can be on one branch (or basically a blockchain) but

not on both.

● Historically, Bitcoin experienced several hard forks, e.g., Bitcoin

Cash, Bitcoin Gold, Bitcoin Satoshi Version (SV).

7

Hard Fork - Pictorially

8

From https://www.investopedia.com/terms/h/hard-fork.asp

https://www.investopedia.com/terms/h/hard-fork.asp

Forking Types - Velvet Fork
● A conditional soft fork.

○ More strict validity rules for transactions and blocks that are

applied when certain conditions are met.

○ If such conditions are not met, then the new rules are

ignored.

● Usually used for improving protocol design but without producing

two different blockchains or forcing miners to upgrade their

versions of the network protocol.

○ Called backward-compatible since again blocks/transactions

under the new version are also valid under the old version.

9

Blockchain (Bitcoin)
Attractive Properties

Apart from decentralization and the open-access work
model that we already covered

Take notes ;)

Transparency
● What does that mean?

● How does Bitcoin achieve it?

11

Public Verifiability
● What does that mean?

● How does Bitcoin achieve it?

● Can public verifiability and transparency achieve a sense of

accountability in distributed systems?

12

Immutability
● What does that mean?

● How does Bitcoin achieve it?

13

Sybil-attack Resistance
● What are Sybil attacks?

● Why do they matter in Bitcoin?

● How is Bitcoin resistant to Sybil attacks?

14

Asynchronous Broadcast Channel
● What does that mean?

● How does Bitcoin achieve it?

15

Bitcoin Scripting Language

Validating Transactions
● Involves validating/checking:

○ The format of a transaction (including that total value of output

does not exceed total input value),

○ and that the inputs can be spent to the outputs.

● The latter is done in a programmable way using Bitcoin scripting

language.

○ This allows for greater flexibility and introduces the notion of

programmable money.

17

Bitcoin Scripting Language
● Non Turing-complete, does not support loops.

○ Limited complexity and it has a predictable execution time.

○ Stack based.

● Kept simple for security reasons.

○ More complex scripting languages, or better saying

Turing-complete, provide greater flexibility for the programmer

to build complicated functionalities.

○ It is hard to get it right!! Writing fully secure scripts or programs

is not easy.

● Attackers are financially motivated to dig into these programs and

find security bugs.

.

18

Script Construction
● Two parts: unlocking and locking scripts.

○ Locking: specify conditions that when met a given input (aka

coins) can be spent.

○ Unlocking: a proof that the conditions have been met (i.e.,

provide inputs for the locking script to unlock it).

● Thus, a transaction has an unlocking script for each of its inputs that

is processed alongside a locking script for the output of the

referenced input transaction.

○ Recall that an input for a (new) transaction is an unspent output

from a previous transaction.

○ The concatenated unlocking and locking scripts have to

evaluate to TRUE in order to allow spending the coins.

19

Stack-based
Scripting

● A clarifying example

from “Mastering Bitcoin”

book, Chapter 6.

● Locking and Unlocking

scripts will be written

similarly.

20

Script Construction - P2PKH
● Most popular transaction type in Bitcoin is pay to public key hash.

○ It means sending coins to some public key.

21
Figure from “Mastering Bitcoin” book, Chapter 6.

P2PKH Script Evaluation I

22
Figure from “Mastering Bitcoin” book, Chapter 5.

P2PKH Script Evaluation II

23

Bitcoin Standard Transactions
● Pay to public key hash (P2PKH).

○ Vast majority of Bitcoin transactions are of this type.

○ X pays Y a Z value of Bitcoins.

● Pay to public key.

○ Same as above but instead of using addresses (hashed public

keys), use the public key itself.

○ Hashed public keys are more efficient as they are shorter.

● Data output.

○ Use OP_RETURN to store up to 40 byte data on the blockchain

(e.g., document timestamping).

● Pay to script hash.

● Pay to multi-signature.

○ More about the above two in the next slides.
24

Pay to Multi-signature (P2MS)
● One of the very useful and widely implemented scripts in P2SH.

● The script requires signatures from multiple users to unlock the

currency instead of one signature from one user.

● Can be built also in a threshold based way, like 2 out of 3 signatures

are enough to spend the currency.

○ Up to 3 signatories are allowed, however, if P2SH (will be studied

shortly) is used instead, then up to 15 signatories are allowed.

● Mostly used to create escrows.

25

P2MS - An Example
● Locking, unlocking, and concatenated scripts for a 2 out of 3 multisig

transaction (from “Mastering Bitcoin”, Chapter 5).

2 <Public Key A> <Public Key B> <Public Key C> 3 CHECKMULTISIG

<Signature B> <Signature C>

<Signature B> <Signature C> 2 <Public Key A> <Public Key B> <Public Key C> 3 CHECKMULTISIG

Note: Due to a bug in the implementation of the CHECKMULTISIG opcode, an extra dummy input is
needed in front of the unlocking script. Usually the value 0 or OP_0 is placed there. We will ignore that
during the course. 26

Pay to Script Hash (P2SH) I
● Provides ways to implement advanced operations in Bitcoin beyond

the standard currency transfer transactions.

● The address is the hash of some script, thus, these addresses start

with 3 to differentiate them from normal addresses.

● To spend the currency locked under the script hash address you must

present an unlocking script that makes this locking script evaluate to

TRUE.

○ If the result is indeed true the currency is transferred to the

destination address you specify.

● The scripts that you can code are limited by the primitives/opcodes

supported in Bitcoin Scripting language (check

https://en.bitcoin.it/wiki/Script).

27

https://en.bitcoin.it/wiki/Script

Pay to Script Hash (P2SH) - Example

● To spend it, one presents:

28

● The transaction is executed in two stages: First the script hash is

verified:

● Then, second, the script is checked to evaluate to TRUE (I am ignoring the 0

here):

Pay to Script Hash (P2SH) - Note

● Note that verifying the redeem script hash will remove the redeem

script itself from the stack.

○ To allow evaluating the script on the input in the second phase,

the miner will create a copy of the script to be used for later.

○ In particular, it will create a copy of the stack state, and if script

hash verification outputs 1, the stack is reloaded with the older

state containing the redeem script.

29

30 

