CSE 2550: Blockchain Technology |

Lecture 4
Bitcoin - Part I

Ghada Almashaqgbeh
UConn - Fall 2023

Outline

e More about Bitcoin:

- Consensus.
- Blockchain forking.

- Bitcoin scripting language and transaction processing.

Consensus

Miners hold, hopefully, consistent copies of the blockchain.
o Only differ in the most recent unconfirmed blocks.
A miner votes for a block implicitly:
o Accept it by including it in the chain and start mining on top of it.
o Reject it by ignoring the new block and continue mining based on
the older blockchain or another newly announced block.
Remember: Bitcoin network is not perfect!
o propagation delays, not all nodes hear all announced transactions,
nodes may crash at any point of time, etc.

Result: the blockchain may have multiple branches, i.e., forks.

Blockchain Forking

® Miners work on different branches

e Resolved by adopting the longest branch.
o Since it means more work effort and larger history record.

£ 3

[Block 53 H Block 55]4-[Block 56

-3¢

Block 59 [« Block 60 <—[Block 61 J

. J

Source: http://www.ybrikman.com/writing/2014/04/24/bitcoin-by-analogy/

http://www.ybrikman.com/writing/2014/04/24/bitcoin-by-analogy/

Forking Types - Soft Fork

e Temporary fork in the blockchain due to updating the consensus
protocol to include additional rules on validating the blocks.

o Generally, soft forks are related to adopting stricter rules to
validate blocks/transactions.
e Why is it called soft?
o Blocks considered valid by an old version of the protocol are
not all valid by the new version.
o But blocks considered valid by the new version are all valid
based on the old version.
o Soitis still one blockchain!
e If the majority of the nodes switch to the new version of the
protocol the old nodes will switch eventually since many of their

mined blocks will be dropped.

Soft Fork - Pictorially

Follows
Old Rules

Blocks From Follows Follows Follows Old Rules
Non-Upgraded > [RSFEHIR old Rules But Violates
Nodes New Rules
Blocks From Follows Follows
Upgraded Old & New Emmdl Old & New
Nodes Rules Rules

A Soft Fork: blocks violating new rules are made stale by the upgraded mining majority

From https://www.investopedia.com/terms/s/soft-fork.asp

https://www.investopedia.com/terms/s/soft-fork.asp

Forking Types - Hard Fork

e Permanent fork in the blockchain due to updating the consensus
protocol.

e Why is it called hard?
o All blocks that are valid according to the new version are
considered invalid by the old protocol version.

o Thus, the two branches will not have any blocks/transactions
in common.

o Results in two different blockchains.

® So, a miner can be on one branch (or basically a blockchain) but
not both.

Hard Fork - Pictorially

Blocks
From Non-
Upgraded

Nodes

Follows Follows Follows Follows
old D) old D Old eses Old
Rules Rules Rules Rules

Blocks
From
Upgraded
Nodes

A Hard Fork: Non-Upgraded Nodes Reject The New Rules, Diverging The Chain

From https://www.investopedia.com/terms/h/hard-fork.asp

https://www.investopedia.com/terms/h/hard-fork.asp

Forking Types - Velvet Fork

e A conditional soft fork.

o More strict validity rules of transactions and blocks that are
applied when certain conditions are met.
o If such conditions are not met, then the new rules are

ignored.

Bitcoin Scripting Language

Validating Transactions

e Involves validating/checking:

o The format of a transaction (including that total value of output
does not exceed total input value),
o and that the inputs can be spent to the outputs.
® The latter is done in a programmable way using Bitcoin scripting
language.
o This allows for greater flexibility and introduces the notion of

programmable money.

11

Bitcoin Scripting Language

e Non Turing-complete, does not support loops.
o Limited complexity and it has a predictable execution time.
o Stack based.

e Kept simple for security reasons.

o More complex scripting languages, or better saying
Turing-complete, provide greater flexibility for the programmer
to build complicated functionalities.

o Itis hard to get it right!! Writing fully secure scripts or programs
is not easy.

® Attackers are financially motivated to dig into these programs and
find security bugs.

12

Script Construction

® Two parts: unlocking and locking scripts.

o Locking: specify conditions that when met a given input (aka
coins) can be spent.

o Unlocking: a proof that the conditions have been met (i.e.,
provide inputs for the locking script to unlock it).

® Thus, a transaction has an unlocking script for each of its inputs that

is processed alongside a locking script for the output of the

referenced input transaction.

o Recall that an input for a (new) transaction is an unspent output
from a previous transaction.

o The concatenated unlocking and locking scripts have to

evaluate to TRUE in order to allow spending the coins.

13

Stack-based
Scripting

e A clarifying example
from “Mastering Bitcoin”
book, Chapter 6.

® Locking and Unlocking
scripts will be written
similarly.

STACK

STACK

STACK

STACK

STACK

TRUE

SCRIPT

2 3 ADD 5 EQUAL

EXECUTION
POINTER

Execution starts from the left
Constant value “2” is pushed to the top of the stack

SCRIPT

3 ADD 5 EQUAL

EXECUTION
POINTER

Execution continues, moving to the right with each step
Constant value “3” is pushed to the top of the stack

SCRIPT

ADD 5 EQUAL

EXECUTION
POINTER
Operator ADD pops the top two items out of the stack and adds them together (3 add 2);
then Operator ADD pushes the result (5) to the top of the stack

SCRIPT
5 EQUAL
EXECUTION
POINTER

Constant value “5” is pushed to the top of the stack

SCRIPT

EQUAL

EXECUTION

POINTER
Operator EQUAL pops the top two items out of the stack and compares the values (5 and 5)
and if they are equal, EQUAL pushes TRUE (TRUE = 1) to the top of the stack

Script Construction - P2PKH

® Most popular transaction type in Bitcoin is pay to public key hash.
o It means sending coins to some public key.

Unlocking Script Locking Script
(scriptSig) + (scriptPubKey)
<sig> <Pubk> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
Unlock Script Lock Script (scriptPubKey) is found in a transaction output and is the
(scriptSig) is provided encumbrance that must be fulfilled to spend the output
by the user to resolve
the encumbrance

Figure from “Mastering Bitcoin” book, Chapter 6.

15

4
= <sig>
— g
v
<PubK>
S
=< <sig>
=
(Ve
<PubK>
<PubK>
>
=2 <sig>
—
v

P2PKH Script Evaluation |

SCRIPT

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

EXECUTION
POINTER

Execution starts
Value <sig> is pushed to the top of the stack

SCRIPT

<PubK> DUP HASH16@ <PubKHash> EQUALVERIFY CHECKSIG

EXECUTION
POINTER
Execution continues, moving to the ri?ht with each step
Value <PubK> is pushed to the top of the stack, on top of <sig>

SCRIPT

DUP aASH160 <PubKHash> EQUALVERIFY CHECKSIG

EXECUTION
POINTER
DUP operator duplicates the top item in the stack,
the resulting value is pushed to the top of the stack

Figure from “Mastering Bitcoin” book, Chapter 5.

16

P2PKH Script Evaluation I

STACK

STACK

STACK

STACK

<PubKHash>
<PubKk>
<sig>

<PubKHash>

<PubKHash>
<PubK>
<sig>

<PubK>
<sig>

TRUE

SCRIPT

HASH160 <PubKHash> EQUALVERIFY CHECKSIG

|

EXECUTION
POINTER

HASH160 operator hashes the top item in the stack with RIPEMD160(SHA256(PubK))
the resulting value (PubKHash) is pushed to the top of the stack

SCRIPT

<PubKHash> EQUALVERIFY CHECKSIG

1

EXECUTION
POINTER
The value PubKHash from the script is pushed on top of the value PubKHash calculated previously
from the HASH160 of the PubK

SCRIPT

EQUALVERIFYCHECKSIG

| |

EXECUTION
POINTER
The EQUALVERIFY operator compares the PubKHash encumbering the transaction with the PubKHash
calculated from the user’s PubK. If they match, both are removed and execution continues

SCRIPT

CHECKSIG

| |

EXECUTION
POINTER
The CHECKSIG operator checks that the signature <sig> matches the public key <PubK> and pushes
TRUE to the top of the stack if true.

17

Bitcoin Standard Transactions

e Pay to public key hash (P2PKH).
o Vast majority of Bitcoin transactions are of this type.

o X pays Y a Z value of Bitcoins.
e Pay to public key.
o Same as above but instead of using addresses (hashed public
keys), use the public key itself.
o Hashed public keys are more efficient as they are shorter.
e Data output.
o Use OP_RETURN to store up to 40 byte data on the blockchain
(e.g., document timestamping).
e Pay to script hash.
® Pay to multi-signature.

o More about the above two in the next slides.

18

Pay to Multi-signature (P2MS)

One of the very useful and widely implemented scripts in P2SH.
The script requires signatures from multiple users to unlock the
currency instead of one signature from one user.
Can be built also in a threshold based way, like 2 out of 3 signatures
are enough to spend the currency.
o Up to 3 signatories are allowed, however, if P2SH (will be studied
shortly) is used instead, then up to 15 signatories are allowed.

Mostly used to create escrows.

19

P2MS - An Example

® Locking, unlocking, and concatenated scripts for a 2 out of 3 multisig
transaction (from “Mastering Bitcoin”, Chapter 5).

2 <Public Key A> <Public Key B> <Public Key C> 3 CHECKMULTISIG

<Signature B> <Signature C>

<Signature B> <Signature C> 2 <Public Key A> <Public Key B> <Public Key C> 3 CHECKMULTISIG

Note: Due to a bug in the implementation of the CHECKMULTISIG opcode, an extra dummy input is
needed in front of the unlocking script. Usually the value 0 or OP_0 is placed there. We will ignore that
during the course. 20

Pay to Script Hash (P25H) |

Provides ways to implement advanced operations in Bitcoin beyond
the standard currency transfer transactions.
The address is the hash of some script, thus, these addresses start
with 3 to differentiate them from normal addresses.
To spend the currency locked under the script hash address you must
present an unlocking script that makes this locking script evaluate to
TRUE.

o If the result is indeed true the currency is transferred to the

destination address you specify.

The scripts that you can code are limited by the primitives/opcodes
supported in Bitcoin Scripting language (check
https://en.bitcoin.it/wiki/Script).

21

https://en.bitcoin.it/wiki/Script

Pay to Script Hash (P25H) - Example

Redeem Script 2 PubKey1 PubKey2 PubKey3 PubKey4 PubKey5 5 CHECKMULTISIG
Locking Script HASH160 <20-byte hash of redeem script> EQUAL
Unlocking Script = 0 Sig1 Sig2 <redeem script>

e To spend it, one presents:

<S1gl> <Sig2> <2 PK1 PK2 PK3 PK4 PK5 5 OP_CHECKMULTISIG>

® The transaction is executed in two stages: First the script hash is

<2 PK1 PK2 PK3 PK4 PK5 5 OP_CHECKMULTISIG> OP_HASH160 <redeem scriptHash>
OP_EQUAL

e Then, second, the script is checked to evaluate to TRUE (I am ignoring the O

<Sigl> <Sig2> 2 PK1 PK2 PK3 PK4 PK5 5 OP_CHECKMULTISIG 22

Pay to Script Hash (P25H) - Note

® Note that verifying the redeem script hash will remove the redeem
script itself from the stack.

o To allow evaluating the script on the input in the second phase,
the miner will create a copy of the script to be used for later.
o In particular, it will create a copy of the stack state, and if script

hash verification outputs 1, the stack is reloaded with the older
state containing the redeem script.

23

