CSE 2550: Blockchain Technology I

Lecture 11 Wallets and Key Management

Ghada Almashaqbeh

UConn - Fall 2023

Outline

- Key management in cryptocurrencies.
 - Hot and cold storage.
 - Hierarchical wallets.
 - Cold info storage.
 - Splitting and sharing keys.
 - Online wallets.

Spending Coins

- Recall that coins in any cryptocurrency are virtual.
 - Strings of bits.
- Spending any amount of coins requires:
 - Some public information from the blockchain.
 - The secret key associated with the address (or public key) that owns the coins.
 - Needed to provide digital signatures.
- Losing the secret keys means losing these coins; no one will be able to spend them.

Key Management

- Storage and retrieval of secret keys.
 - Involves also when and how to generate new keys for future transactions.

Goals:

- Security; only the legitimate owner gets to spend a given coin.
- Availability; coins owners can spend them whenever they wish.
- Usability; it is relatively easy for the average user to store/retrieve/use secret keys.
- We will focus on Bitcoin in the slides.
 - The concepts we will study can be applied to any other cryptocurrency.

Wallet Software

- User (or client) software that keeps track of coins that a client owns.
- Provides a convenient user interface to simplify operations.
 - Issuing transactions.
 - Tracking total balance.
 - Generate keys when needed.
 - Bookkeeping of these keys.
- Encode addresses as text strings (Base 58) or in the form of QR codes.
 - Simplifies sharing addresses with others.
- A large number of wallets is available.
 - Different flavors; desktop, mobile, web applications, etc.
 - Different vendors; metamask, jaxx, coinbase, etc.
 - Security is a driving factor of which one to choose.

Naive Solution

- Store the keys in a file on your laptop or smartphone.
 - Security is tied to your device; breaking into the device allows an attacker to steal your keys (and so your coins).
- This is called hot storage.
 - Easy to use but risky.

Hot vs. Cold Storage I

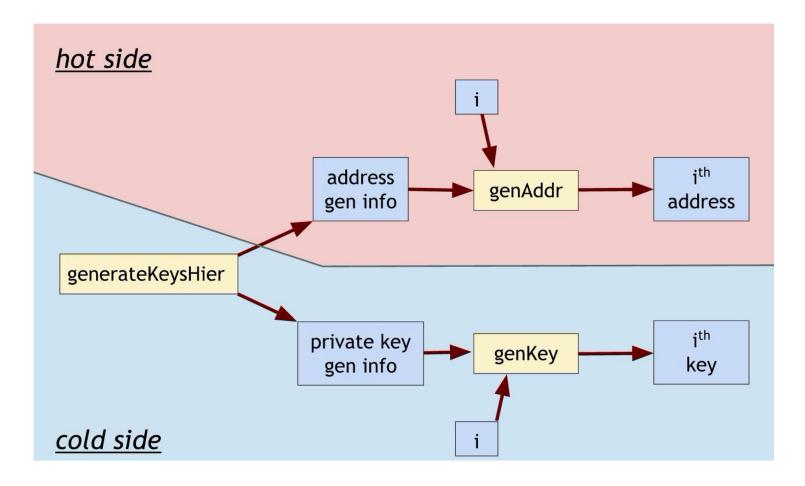
- Hot storage.
 - Storing secret keys on a device that is connected to the Internet and used frequently for variety of applications.
 - Usable/coventient.
- Cold storage.
 - Offline storage, like on a machine or memory device that is stored in some safe location.
 - Less convenient.
- Good practice: The majority of the coins are in the cold storage with a few in the hot storage.

Hot vs. Cold Storage II

- Seperate keys are needed for each.
 - Otherwise, compromising hot storage will compromise cold storage.
- But both should be aware of their addresses to allow transferring currency.
 - Cold storage stores its cold secret keys, cold addresses, and hot public addresses.
 - Hot storage stores hot secret keys and public addresses, as well as cold public addresses.

New Addresses for Cold Storage?

- A good practice in Bitcoin in order to break transaction linkability is to create a new address for each new transactions.
- How can a hot wallet learn the addresses of a cold wallet?
 - Remember cold wallet is offline, no internet connectivity.
- Even generating a large chunk of addresses at the beginning will not work.
 - Cold storage needs to connect whenever a new batch of addresses is generated.


Hierarchical Key Generation I

- Allows cold storage to generate an infinite number of key pairs (or addresses).
- Usual keyGen algorithms generate a single key pair; public and private.
- Hierarchical keyGen instead generates some info that allows generating all future keys in a deterministic way.
 - Usually called master public key and master secret key.
- The master public key does not reveal any info about the master secret key or all future generated secret keys.

Hierarchical Key Generation II

- By having the operation indexed with some integer i, the master key allows generating the ith future key.
 - Works for both public and secret keys.
- Hot storage has a copy of the master public key, while the master secret key is known only to the cold storage.
- Not all digital signature schemes support this hierarchical approach.
 - ECDSA supports that, details come later.

Hierarchical KeyGen - Pictorially

^{*}From Chapter 5, Bitcoin and Cryptocurrency Technologies book.

Hierarchical KeyGen in ECDSA (BIP32)

- A group G, in which DDH is believed to be hard, of order p (where p is some large prime number) and a group generator g.
- KeyGen is extended into 3 algorithms:
 - \circ keyGenHer(1ⁿ): msk = x, mpk = g^x , Hash function H.
 - n is the security parameter.
 - \blacksquare x is some integer selected at random from Z_p .
 - o addrGen(mpk, i): $r = H(i \mid | mpk)$, $pk_i = mpk*g^r = g^{x+r}$, addr_i= $H(pk_i)$
 - \circ keyGen(msk, i): r = H(i | mpk), sk_i = msk + r = x+r
- A hot wallet will be able to generate the ith address (or public key) and a cold storage will be able to generate the ith private key.
- The scheme as is above is insecure (problems with forward security).
 Many modifications were proposed to fix these problems.
 - Out of scope.

Cold Info Storage

- On a device, and lock that device in a safe.
- Brain wallets:
 - Encrypt under a password that the user memorizes.
 - Security issue: offline password cracking.
- Paper wallet:
 - Print the key material and store the paper in a safe.
- Tamper resistant hardware device.
 - Either the device generates the secret key and stores it, or just use it to store the private key.
 - The device signs the transactions; it does not allow retrieving the secret key at all.

Splitting and Sharing Keys

- Distribute the trust of storing a key among multiple devices/locations instead of one.
- Works by creating several shares of the key and store each share at a different place.
 - Usually a threshold is used, meaning that having t out of n shares allows constructing the secret key, and hence, use it to sign transactions.
- Good for both availability and security.
 - Any t shares can be used.
 - As long as less than t shares are revealed, no information will be leaked about the secret key.
 - Much better than having a single key stored at a single location.

Example - (2, 2) Secret Sharing

- Additive secret sharing:
 - Generate the first share: random value r, so s1 = r
 - \circ The second share is s2 = s-r.
- The above is a full threshold scheme,
 - Both shares are needed to reconstruct s
- You can have threshold secret sharing (t-out-of-n secret sharing) using, e.g.,
 Shamir.
 - Useful for robustness.

Mulitsig and Threshold Signatures

Multisig:

- No need to reconstruct the key, keep the random shares apart.
 - Or simply generate multiple keys instead of one.
- To authorize a transaction, all devices (or t of them) need to sign.
- If collective signing is used, one signature will be produced.
- Threshold signatures:
 - A signing key is divided among several parties such that any t subset of them can jointly produce a signature.
 - Produce a single signature instead of many.
 - More efficient, signature verification algorithm will be executed once.
 - There is an increasing interest of threshold signatures these days across a large number of cryptocurrency systems.
 - Among them, the BLS scheme is a popular one (check https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html).

Online Wallets

- A wallet in the form of a web app.
 - The site stores keys.
 - The site issues transactions when the users asks for that.
 - The user logs in using some credentials.
- Great usability; log in using any device connected to the Internet.
- Site compromised, wallet is compromised.
- Usually used when trading on exchanges.

Cryptocurrency Exchanges

- Pretty much a centrally managed bank system.
 - Accept deposits in cryptocurrency or fiat currency.
 - With a promise to pay back when a client ask for any withdrawal.
 - Allow customers to pay in cryptocurrency, receive payments, and trade cryptocurrencies.
 - Mainly match buyers with sellers at the exchange rate along with charging fees.
 - Nothing goes to the network, it is just that the exchange makes a different promise to the customers.
 - Everything is local.

Cryptocurrency Exchanges - Issues

- Highly convenient.
 - Several services at the same place.
 - Very close to the traditional banking systems already in use.
 - Gives a direct value for cryptocurrency in terms of fiat currency.
- High risk.
 - Requires pre-identification know your customer policy.
 - Any anonymity aspect promised by a cryptocurrency is taken away!
 - Security risks a target for attackers.
 - Exchanges accumulate currency of all customers.
- Regulation issues.
 - Traditional banks has to prove holding a specific fraction of money in reserve.

References

 [Guteso et al., 2015] Gutoski, Gus, and Douglas Stebila. "Hierarchical deterministic bitcoin wallets that tolerate key leakage." In International Conference on Financial Cryptography and Data Security, pp. 497-504.
 Springer, Berlin, Heidelberg, 2015.

