
CSE 5095-007: Blockchain Technology

Lecture 8
Ethereum - Part III

Ghada Almashaqbeh
UConn - Fall 2022

Outline
● Security issues in Ethereum (or smart contract

platforms in general).

○ Veirifer Dilemma.

○ Transaction ordering dependency.

○ Block timestamp dependency.

○ Mishandeld exceptions.

○ Reentrancy attack.

2

Writing Secure Smart Contracts
● Writing secure code is hard.

○ It needs extensive testing to cover all paths an attacker may

utilize while interacting with the code.

○ Attackers are financially motivated to hack smart contracts.

■ Bugs literally cost money.

○ Lack of understanding how the underlying network or

cryptocurrency system works may lead to writing buggy code.

● And remember, you cannot patch a buggy smart contract code.

○ So it is like recovering from a code security vulnerability is

almost impossible.

3

Is It All About Code?
● Ethereum is an ecosystem that allows deploying smart contracts as a

way to build new applications and services.

○ It has security issues Like any other large-scale blockchain-based

system.

■ DoS, tendency towards centralization, 51% attack,

Eclipse/Goldfinger attacks, etc.

● Securing these services requires:

○ Extensive threat modeling.

○ Understanding how Ethereum/blockchain-based systems work.

○ Security by design; integrating countermeasures into the application

design.

4

Security Issues
● In this lecture, we will study the following security issues:

○ Verifier Dilemma.

○ Transaction ordering dependency.

○ Timestamp dependency.

○ Mishandled exceptions.

○ Reentrancy vulnerability.

5

Verifier Dilemma I
● A potential security threat that may arise due to complexity of

computation a smart contract implements.

● Upon receiving a newly mined block, a miner is supposed to verify

the validity of each transaction in this block before accepting it.

○ In Ethereum, this means re-executing all transactions that call

functions from smart contracts and check the new EVM state.

○ Sometimes the contract code is complex and requires

significant amount of resources to execute.

● However, malicious miners may not verify the correctness of the

transactions.

○ Done to save time/computing resources so they can start

working on the proof-of-work race before honest miners.

6

Verifier Dilemma II
● This leaves honest miners with dilemma of whether to validate

blocks received from others or not.

○ Validate -- malicious miners may win the mining race faster,

hence, risk losing the mining rewards.

○ Not validate -- may lead to adopting an invalid blocks in the

blockchain.

● This dilemma applies also to other cryptocurrencies.

○ Risk is higher when non-trivial computation is needed to verify

transactions.

7

Verifier Dilemma - Potential Solutions
● Simplify the scripting language, so make it simpler and faster to

verify scripts.

○ This limits the flexibility and supported functionality of the

systems.

● Design correctness proofs with fast verification time.

○ Verifying the computation does not require re-executing the

whole computation.

○ Non-trivial to come up with such proof systems.

○ Also, they may introduce additional assumptions like a trusted

setup, and may degrade prover’s efficiency.

● Ethereum switched to proof of stake, will this help with the verifier

dilemma problem?

8

Transaction Ordering Dependency I
● Also called race condition or front running.

● The state of the blockchain, and hence, the state of the deployed

smart contracts depends on the order of executing the transactions.

○ Two transactions issued at the same time, or in close time

intervals, from different accounts can be executed in an

arbitrary order.

■ Recall that for transactions tied to the same account, the

transaction nonce is used to resolve order issues.

● An attacker may utilize this dependency to gain monetary profits.

○ Observe transactions from others and act accordingly by issuing

competing transactions.

○ Network propagation delays, and other factors like transaction

fees, may result in executing the attacker's transaction first.
9

Transaction Ordering Dependency II
● For example, consider a puzzle solving contract where Alice posts a

contract rewarding for solving a puzzle.

○ Bob has solved the puzzle and issued a transaction containing

the solution.

○ Alice monitors the network, once it hears about Bob’s

transaction, she issues another transaction to withdraw the

bounty.

○ There is a chance that Alice’s transaction will be executed first,

hence, Alice obtains the puzzle solution for free.

10

Timestamp Dependency
● Also called block timestamp manipulation.

● Some smart contracts may use the timestamps of the blocks on the

blockchain.

○ For example, use the hash of a future block and its timestamp

to determine the outcome of a lottery draw.

● A miner sets the timestamp based on its local machine.

○ It can vary by up to 900 seconds and still accepted by other

miners.

● Hence, a miner can set this timestamp in a way that influences the

contract in the way it desires.

○ Tying this to the above example, a miner can change the

timestamp in a way that produces a favorable lottery draw

outcome.

11

Mishandled Exceptions
● This occurs in contracts with code that does not check whether a

function call has succeeded or not.

○ Usually happens when invoking functions from external

contracts.

● For example, let’s modify our Market smart contract to allow the

owner to sell the market to someone else. So the owner address will

be changed.

○ Once the original owner receives the money from the new

owner, which is also using a function inside the contract, change

the owner’s address

○ If the money sending function fails, and the contract does not

check for such failure and act accordingly, the new owner will

get the market for free.
12

Reentrancy Vulnerability I
● The vulnerability behind The DAO incident.

● Happens when a contract calls a function from another contract.

○ The state of the caller contract is not updated until the

execution of invoked function is completed.

○ An attacker may exploit the intermediate state (these produced

before the final update) to attack the smart contract.

● Usually exploits a fallback function defined in an external contract (a

function that is called if no funcion match is found).

○ This function will be invoked by the attacked contract.

○ The body of this function is the code that exploits the

intermediate state of the attacked contract.

● At least in the DAO incident, it was used to drain the currency in the

DAO contract account.

13

Reentrancy Vulnerability II
● For example, assume we have a contract that allows a party to

withdraw her own balance and then zeros the balance.

○ This contract allows the caller to specify an address to send the

withdrawn currency to.

○ An attacker, may craft a contract and ask to send the money to

this contract’s address instead of an EOA address.

○ The fallback function in the crafted contract calls the withdraw

balance function several times. Will go through since zeroing

the balance comes after finishing the call.

○ This allows the attacker to withdraw all the attacked contract’s

money instead of her balance only.

● This exactly what happened in The DAO attack.

14

Reentrancy Example I

15
*From Mastering Ethereum book, Chapter 9

Reentrancy Example II

16
*From Mastering Ethereum book, Chapter 9

How to fix it?

Other Vulnerabilities
● As in conventional coding:

○ Buffer overflow.

○ Input/output sanity checking.

○ The use of external services/contracts that could be insecure.

○ Buggy built-in helper functions.

○ Uninitialized pointers.

○ etc.

17

References
● Luu et al., "Demystifying incentives in the consensus computer." In Proceedings of

the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pp. 706-719. ACM, 2015.

● Luu, Loi, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
"Making smart contracts smarter." In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 254-269. ACM, 2016.

18

19

