#### CSE 5095-007: Blockchain Technology

#### Lecture 13 Threat Modeling For Blockchain-based Systems

**Ghada Almashaqbeh** UConn - Fall 2022

#### Outline

• Threat modeling for blockchain-based decentralized systems.

#### **Blockchain-based Distributed Services**

- Provide distributed services on top of the currency exchange medium.
  - E.g., computation outsourcing (Golem), File storage (Filecoin), video transcoding (Livepeer).
- Any party can join to serve others in order to collect cryptocurrency tokens.
- The mining itself could be tied to the amount of service put in the system.
- Several economic aspects:
  - Could provide lower cost than centralized service providers.
  - A step forward on the "useful mining" path.
  - Utility tokens vs. store of value tokens.

#### But ... Are They Secure?!

- Cryptocurrency/blockchain-based space experienced a huge number of attacks.
  - Financial incentives lead to more motivated attackers.
- Security is more challenging in cryptocurrency-based distributed services.
  - Complicated functionality.
  - Larger scale.
  - Usually open access model, anyone can join with no pre-identification/authentication.
  - Fair service-payment exchange is impossible between distrusted parties.
  - Performance issues may lead to sacrificing security for efficiency.

#### **Threat Modeling and Cryptocurrencies**

- Threat modeling is an essential step in secure systems design.
  - Explore the threat space to a system and identify the potential attack scenarios.
  - Helps in both guiding the system design, and evaluating the security level of developed systems.
- Traditional approaches do not fit cryptocurrency-based systems.
  - Do not scale.
  - Do not explicitly account for attacker financial motivations nor collusion between these attackers.
  - Do not consider the new threat types cryptocurrencies introduce.

## ABC: Asset-Based Cryptocurrency-focused Threat Modeling Framework\*

\*Ghada Almashaqbeh, Allison Bishop, and Justin Cappos. "ABC: A Cryptocurrency-Focused Threat Modeling Framework." in IEEE CryBlock (2019).

#### What is ABC?

- A systematic threat modeling framework geared toward cryptocurrency-based systems.
  - Its tools are useful for any distributed system.
- Helps designers to focus on:
  - Financial motivation of attackers.
  - New asset types in cryptocurrencies.
  - Deriving system-specific threat categories.
  - Spotting collusion and managing the complexity of the threat space.
    - Done using a new tool called a collusion matrix.
- Integrates with other steps of a system design; risk management and threat mitigation.

#### **ABC Steps**



#### Running Example: CompuCoin

- A cryptocurrency that provides a distributed computation outsourcing service.
- Parties with excessive CPU power may join as servers to perform computations for others in exchange for CompuCoin tokens.
- The mining process is tied to the amount of service these servers provide.

#### Step 1: System Model Characterization

- Identify the following:
  - Activities in the system.
  - Participant roles.
  - Assets.
  - Any external dependencies on other services.
  - System assumptions.
- Draw a network diagram(s) of the system modules.

#### Step 1: Running Example Application

**Functionality description.** Outlined in CompuCoin description introduced earlier.

Participants. Clients and servers.

**Dependencies.** May rely on a verifiable computation outsourcing protocol.

**Assets.** Computation service, service rewards (or payments), blockchain, currency, transactions, and the communication network.



#### **Step 2: Threat Category Identification**

- Define broad threat classes that must be investigated.
- ABC defines these classes in an asset-focused way.
- For each asset, do the following:
  - Define what constitutes a secure behaviour for the asset.
  - Use that knowledge to derive the asset security requirements.
  - Define threat classes as violations of these requirements.

### Step 2: Running Example Application I

- Apply step 2 to each of the assets in CompuCoin:
  - Service (computation outsourcing).
  - Service rewards.
  - Blockchain.
  - Currency.
  - Transactions.
  - Communication network.
- Step 2 produces the threat category table found in the next slide.

### Step 2: Running Example Application

| Asset                 | Security Threat Category                                                                                           |
|-----------------------|--------------------------------------------------------------------------------------------------------------------|
|                       | Service corruption (provide corrupted service for clients).                                                        |
| Service               | Denial of service (make the service unavailable to legitimate users).                                              |
|                       | Information disclosure (service content/related data are public).                                                  |
|                       | Repudiation (the server can deny a service it delivered).                                                          |
| Service               | Service slacking (a server collects payments without performing all the promised work).                            |
| payments              | Service theft (a client obtains correct service for a lower payment than the agreed upon amount).                  |
| Blockchain            | Inconsistency (honest miners hold copies of the blockchain that may differ beyond the unconfirmed blocks).         |
|                       | Invalid blocks adoption (the blockchain contains invalid blocks that does not follow the system specifications).   |
|                       | Biased mining (a miner pretends to expend the needed resources for mining to be elected to extend the blockchain). |
| Transactions          | Repudiation (an attacker denies issuing transactions).                                                             |
|                       | Tampering (an attacker manipulates the transactions in the system).                                                |
|                       | Deanonymization (an attacker exploits transaction linkability and violates users' anonymity).                      |
| Currency              | Currency theft (an attacker steals currency from others in the system).                                            |
| Communication network | Denial of service (interrupt the operation of the underlying network).                                             |

### Step 2 - More

- Although it was produced for CompuCoin, this table is quite generic and can be applied to other systems as well.
- More categories could be added or removed depending on the system under design and the amount of information you have about the system.
  - Does Bitcoin need all the categories listed in the previous table?
  - What if a system provides more than one type of service? (e.g., Filecoin provides a file storage and retrieval services.)

# Step 3: Threat Scenario Enumeration and Reduction

- For each threat, define scenarios that attackers may follow to pursue their goals.
  - Be comprehensive, consider collusion and financial motivations.
- ABC devises collusion matrices to help with this step.
- Analyzing a collusion matrix involves:
  - Enumerating all possible attack scenarios.
  - Crossing out irrelevant cases and merge together those that have the same effect.
  - Documenting all distilled threat scenarios and the reasons behind deletion/merging.
    - This is the outcome of the threat modeling process.

#### **Collusion Matrix**



### Step 3: Running Example Application

#### **Service Theft Threat Collusion Matrix**

| Target<br>Attacker              | Client                                                               | Server                                                                                                                                              | Client and Server                                                                                           |
|---------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| External                        |                                                                      | Servers and external cannot attack because                                                                                                          |                                                                                                             |
| Server                          |                                                                      | they do not ask/pay for                                                                                                                             |                                                                                                             |
| Server and External             |                                                                      | Service.                                                                                                                                            |                                                                                                             |
| Client                          | Clients cannot be<br>targets because<br>they do not serve<br>others. | <ul><li>(1) Refuse to pay after receiving the service.</li><li>(2) Issue invalid payments.</li></ul>                                                | Reduced to the case of<br>attacking servers only,<br>clients do not serve<br>others (cannot be<br>targets). |
| Client and External             |                                                                      | Reduced to the case of an<br>attacker client. A client<br>does not become stronger<br>when colluding with other<br>servers or external<br>entities. |                                                                                                             |
| Server and Client               |                                                                      |                                                                                                                                                     |                                                                                                             |
| Client, Server, and<br>External |                                                                      |                                                                                                                                                     |                                                                                                             |

# Step 4: Risk Management and Threat Mitigation

- An independent task of threat modeling.
- However, financial incentives affect prioritizing threats and their mitigation techniques.
  - Use game theory-based analysis to quantify the pay-off an attacker may obtain.
  - Use detect-and-punish techniques to address certain threat types.
  - Devise algorithms/proofs/etc. that are more profitable (in terms of resources) when executed in an honest way than in a malicious way.
- For example, in CompuCoin:
  - Locking payments in an escrow neutralizes threat 1.
  - Having a penalty deposit that is fortified upon cheating addresses threat 2.
  - Both require careful design and economic analysis.

#### An Iterative Process

- Any alteration on the system design requires revisiting the threat modeling step.
  - Efficiency optimization, building blocks replacement, introducing extra dependencies in the system, etc.
- Assess the system security level in the after design stage.
  - A good practice before investing in some system out there.
- Care must be taken with respect to financial threats.
  - Attacker's incentives may change over time, which may impact the economic threat mitigation techniques or even change the risk level of a threat.

