
Zero-Knowledge Proofs

CS 601.641/441

Spring 2018

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 1 / 16

Ghada Almashaqbeh
Abhishek Jain, JHU

What is a Proof?

An argument (or sufficient evidence) that can convince a reader of
the truth of some statement

Mathematical proof: Deductive argument for a statement, by
reducing the validity of the statement to a set of axioms or
assumptions
Desirable features in a proof:

The verifier should accept the proof if the statement is true
The verifier should reject any proof if the statement is false
Proof must be finite (or succinct) and efficiently verifiable

E.g., Proof that there are infinitely many primes should not simply
be a list of all the primes. Not only would it take forever to
generate that proof, it would also take forever to verify it

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 2 / 16

What is a Proof?

An argument (or sufficient evidence) that can convince a reader of
the truth of some statement

Mathematical proof: Deductive argument for a statement, by
reducing the validity of the statement to a set of axioms or
assumptions

Desirable features in a proof:

The verifier should accept the proof if the statement is true
The verifier should reject any proof if the statement is false
Proof must be finite (or succinct) and efficiently verifiable

E.g., Proof that there are infinitely many primes should not simply
be a list of all the primes. Not only would it take forever to
generate that proof, it would also take forever to verify it

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 2 / 16

What is a Proof?

An argument (or sufficient evidence) that can convince a reader of
the truth of some statement

Mathematical proof: Deductive argument for a statement, by
reducing the validity of the statement to a set of axioms or
assumptions
Desirable features in a proof:

The verifier should accept the proof if the statement is true
The verifier should reject any proof if the statement is false
Proof must be finite (or succinct) and efficiently verifiable

E.g., Proof that there are infinitely many primes should not simply
be a list of all the primes. Not only would it take forever to
generate that proof, it would also take forever to verify it

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 2 / 16

What is a Proof?

An argument (or sufficient evidence) that can convince a reader of
the truth of some statement

Mathematical proof: Deductive argument for a statement, by
reducing the validity of the statement to a set of axioms or
assumptions
Desirable features in a proof:

The verifier should accept the proof if the statement is true

The verifier should reject any proof if the statement is false
Proof must be finite (or succinct) and efficiently verifiable

E.g., Proof that there are infinitely many primes should not simply
be a list of all the primes. Not only would it take forever to
generate that proof, it would also take forever to verify it

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 2 / 16

What is a Proof?

An argument (or sufficient evidence) that can convince a reader of
the truth of some statement

Mathematical proof: Deductive argument for a statement, by
reducing the validity of the statement to a set of axioms or
assumptions
Desirable features in a proof:

The verifier should accept the proof if the statement is true
The verifier should reject any proof if the statement is false

Proof must be finite (or succinct) and efficiently verifiable

E.g., Proof that there are infinitely many primes should not simply
be a list of all the primes. Not only would it take forever to
generate that proof, it would also take forever to verify it

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 2 / 16

What is a Proof?

An argument (or sufficient evidence) that can convince a reader of
the truth of some statement

Mathematical proof: Deductive argument for a statement, by
reducing the validity of the statement to a set of axioms or
assumptions
Desirable features in a proof:

The verifier should accept the proof if the statement is true
The verifier should reject any proof if the statement is false
Proof must be finite (or succinct) and efficiently verifiable

E.g., Proof that there are infinitely many primes should not simply
be a list of all the primes. Not only would it take forever to
generate that proof, it would also take forever to verify it

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 2 / 16

What is a Proof?

An argument (or sufficient evidence) that can convince a reader of
the truth of some statement

Mathematical proof: Deductive argument for a statement, by
reducing the validity of the statement to a set of axioms or
assumptions
Desirable features in a proof:

The verifier should accept the proof if the statement is true
The verifier should reject any proof if the statement is false
Proof must be finite (or succinct) and efficiently verifiable

E.g., Proof that there are infinitely many primes should not simply
be a list of all the primes. Not only would it take forever to
generate that proof, it would also take forever to verify it

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 2 / 16

Interactive Proofs

1 Typically, proofs are non-interactive: a prover can write down the
proof and send it to a verifier who can then verify it for correctness

2 Interestingly, interactive proofs (i.e., a back-and-forth conversation
between a prover and verifier) can be very powerful

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 3 / 16

Interactive Proofs

1 Typically, proofs are non-interactive: a prover can write down the
proof and send it to a verifier who can then verify it for correctness

2 Interestingly, interactive proofs (i.e., a back-and-forth conversation
between a prover and verifier) can be very powerful

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 3 / 16

Interactive Proofs

Definition (Interactive Proofs)
A pair of PPT algorithms (P, V) is an interactive proof system for a
language L if the following properties hold:

Completeness: For every x ∈ L,

Pr
[
OutV [P (x)↔ V (x)] = 1

]
= 1

Soundness: There exists a negligible function ν(·) s.t. ∀x /∈ L and
for all adversarial provers P ∗,

Pr
[
OutV [P

∗(x)↔ V (x)] = 1
]
6 ν(|x|)

Remark: If the soundness property only holds against PPT
adversarial provers, then we refer to it as an argument

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 4 / 16

Interactive Proofs

Definition (Interactive Proofs)
A pair of PPT algorithms (P, V) is an interactive proof system for a
language L if the following properties hold:

Completeness: For every x ∈ L,

Pr
[
OutV [P (x)↔ V (x)] = 1

]
= 1

Soundness: There exists a negligible function ν(·) s.t. ∀x /∈ L and
for all adversarial provers P ∗,

Pr
[
OutV [P

∗(x)↔ V (x)] = 1
]
6 ν(|x|)

Remark: If the soundness property only holds against PPT
adversarial provers, then we refer to it as an argument

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 4 / 16

Interactive Proofs

Definition (Interactive Proofs)
A pair of PPT algorithms (P, V) is an interactive proof system for a
language L if the following properties hold:

Completeness: For every x ∈ L,

Pr
[
OutV [P (x)↔ V (x)] = 1

]
= 1

Soundness: There exists a negligible function ν(·) s.t. ∀x /∈ L and
for all adversarial provers P ∗,

Pr
[
OutV [P

∗(x)↔ V (x)] = 1
]
6 ν(|x|)

Remark: If the soundness property only holds against PPT
adversarial provers, then we refer to it as an argument

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 4 / 16

Interactive Proofs

Definition (Interactive Proofs)
A pair of PPT algorithms (P, V) is an interactive proof system for a
language L if the following properties hold:

Completeness: For every x ∈ L,

Pr
[
OutV [P (x)↔ V (x)] = 1

]
= 1

Soundness: There exists a negligible function ν(·) s.t. ∀x /∈ L and
for all adversarial provers P ∗,

Pr
[
OutV [P

∗(x)↔ V (x)] = 1
]
6 ν(|x|)

Remark: If the soundness property only holds against PPT
adversarial provers, then we refer to it as an argument

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 4 / 16

Zero Knowledge: Intuition

An interactive proof is zero knowledge if the verifier does not gain
any knowledge from its interaction with the prover beyond the fact
that the statement is true

We do not gain any knowledge from an interaction if we could have
carried it out on our own

Intuition for ZK: V can generate a protocol transcript on its own,
without talking to P . If this transcript is indistinguishable from a
real execution, then clearly V does not learn anything by talking
to P

Formalized via notion of Simulator

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 5 / 16

Zero Knowledge: Intuition

An interactive proof is zero knowledge if the verifier does not gain
any knowledge from its interaction with the prover beyond the fact
that the statement is true

We do not gain any knowledge from an interaction if we could have
carried it out on our own

Intuition for ZK: V can generate a protocol transcript on its own,
without talking to P . If this transcript is indistinguishable from a
real execution, then clearly V does not learn anything by talking
to P

Formalized via notion of Simulator

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 5 / 16

Zero Knowledge: Intuition

An interactive proof is zero knowledge if the verifier does not gain
any knowledge from its interaction with the prover beyond the fact
that the statement is true

We do not gain any knowledge from an interaction if we could have
carried it out on our own

Intuition for ZK: V can generate a protocol transcript on its own,
without talking to P . If this transcript is indistinguishable from a
real execution, then clearly V does not learn anything by talking
to P

Formalized via notion of Simulator

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 5 / 16

Zero Knowledge: Intuition

An interactive proof is zero knowledge if the verifier does not gain
any knowledge from its interaction with the prover beyond the fact
that the statement is true

We do not gain any knowledge from an interaction if we could have
carried it out on our own

Intuition for ZK: V can generate a protocol transcript on its own,
without talking to P . If this transcript is indistinguishable from a
real execution, then clearly V does not learn anything by talking
to P

Formalized via notion of Simulator

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 5 / 16

Zero Knowledge: Definition I

We first define Honest Verifier Zero Knowledge, i.e., ZK property
against verifiers who behave honestly during the protocol but may try
to learn extra information from the transcript.

Definition (Honest Verifier Zero Knowledge)
An interactive proof (P, V) for a language L with witness relation R is
said to be honest verifier zero knowledge if there exists a PPT simulator
S s.t. for every non-uniform PPT distinguisher D, there exists a
negligible function ν(·) s.t. for every x ∈ L, w ∈ R(x), z ∈ {0, 1}∗, D
distinguishes between the following distributions with probability at
most ν(n):{

ViewV [P (x,w)↔ V (x, z)]
}

{
S(1n, x, z)

}
CS 601.641/441 Zero-Knowledge Proofs Spring 2018 6 / 16

Zero Knowledge: Definition II

We now define ZK against malicious verifiers, who may use arbitrary
PPT malicious strategy during the protocol

Definition (Zero Knowledge)
An interactive proof (P, V) for a language L with witness relation R is
said to be zero knowledge if for every non-uniform PPT adversary V ∗,
there exists an expected PPT simulator S s.t. for every non-uniform
PPT distinguisher D, there exists a negligible function ν(·) s.t. for
every x ∈ L, w ∈ R(x), z ∈ {0, 1}∗, D distinguishes between the
following distributions with probability at most ν(n):{

View∗V [P (x,w)↔ V ∗(x, z)]
}

{
S(1n, x, z)

}

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 7 / 16

Notation for Graphs

Graph G = (V,E) where V is set of vertices and E is set of edges

|V | = n, |E| = m

Graph 3-Coloring: Language of all graphs whose vertices can be
colored using only three colors s.t. no two connected vertices have
the same color

Graph 3-Coloring is NP-Complete (so any NP instance can be
efficiently transformed into a graph 3-coloring instance)

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 8 / 16

ZK Proof for Graph 3-Coloring

Common Input: G = (V,E), where |V | = n

P ’s witness: Colors color1, . . . , colorn ∈ {1, 2, 3}
Protocol (P, V): Repeat the following procedure n|E| times using
fresh randomness

P → V : P chooses a random permutation π over {1, 2, 3}. For
every i ∈ [n], it computes Ci = Com(c̃olori) where
c̃olori = π(colori). It sends (C1, . . . , Cn) to V

V → P : V chooses a random edge (i, j) ∈ E and sends it to P

P → V : Prover opens Ci and Cj to reveal (c̃olori, c̃olorj)

V : If the openings of Ci, Cj are valid and c̃olori 6= c̃olorj , then
V accepts the proof. Otherwise, it rejects.

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 9 / 16

Proof of Soundness

If G is not 3-colorable, then for any coloring color1, . . . , colorn,
there exists at least one edge which has the same colors on both
endpoints

From the binding property of Com, it follows that C1, . . . , Cn have
unique openings c̃olor1, . . . , c̃olorn

Combining the above, let (i∗, j∗) ∈ E be s.t. c̃olori∗ = c̃olorj∗

Then, with probability 1
|E| , V chooses i = i∗, j = j∗ and catches P

In n|E| independent repetitions, P successfully cheats in all
repetitions with probability at most(

1− 1

|E|

)n|E|
≈ e−n

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 10 / 16

Proof of Soundness

If G is not 3-colorable, then for any coloring color1, . . . , colorn,
there exists at least one edge which has the same colors on both
endpoints

From the binding property of Com, it follows that C1, . . . , Cn have
unique openings c̃olor1, . . . , c̃olorn

Combining the above, let (i∗, j∗) ∈ E be s.t. c̃olori∗ = c̃olorj∗

Then, with probability 1
|E| , V chooses i = i∗, j = j∗ and catches P

In n|E| independent repetitions, P successfully cheats in all
repetitions with probability at most(

1− 1

|E|

)n|E|
≈ e−n

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 10 / 16

Proof of Soundness

If G is not 3-colorable, then for any coloring color1, . . . , colorn,
there exists at least one edge which has the same colors on both
endpoints

From the binding property of Com, it follows that C1, . . . , Cn have
unique openings c̃olor1, . . . , c̃olorn

Combining the above, let (i∗, j∗) ∈ E be s.t. c̃olori∗ = c̃olorj∗

Then, with probability 1
|E| , V chooses i = i∗, j = j∗ and catches P

In n|E| independent repetitions, P successfully cheats in all
repetitions with probability at most(

1− 1

|E|

)n|E|
≈ e−n

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 10 / 16

Proof of Soundness

If G is not 3-colorable, then for any coloring color1, . . . , colorn,
there exists at least one edge which has the same colors on both
endpoints

From the binding property of Com, it follows that C1, . . . , Cn have
unique openings c̃olor1, . . . , c̃olorn

Combining the above, let (i∗, j∗) ∈ E be s.t. c̃olori∗ = c̃olorj∗

Then, with probability 1
|E| , V chooses i = i∗, j = j∗ and catches P

In n|E| independent repetitions, P successfully cheats in all
repetitions with probability at most(

1− 1

|E|

)n|E|
≈ e−n

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 10 / 16

Proof of Soundness

If G is not 3-colorable, then for any coloring color1, . . . , colorn,
there exists at least one edge which has the same colors on both
endpoints

From the binding property of Com, it follows that C1, . . . , Cn have
unique openings c̃olor1, . . . , c̃olorn

Combining the above, let (i∗, j∗) ∈ E be s.t. c̃olori∗ = c̃olorj∗

Then, with probability 1
|E| , V chooses i = i∗, j = j∗ and catches P

In n|E| independent repetitions, P successfully cheats in all
repetitions with probability at most(

1− 1

|E|

)n|E|
≈ e−n

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 10 / 16

Proving Zero Knowledge

Intuition:
In each iteration, V only sees two random colors

Hiding property of Com guarantees that everything else remains
hidden from V

We will prove zero knowledge for one iteration.
ZK for one iteration implies Honest-Verifier ZK for one iteration.
Honest-Verifier ZK is preserved under parallel repetition
(Malicious-verifier) ZK does not compose under parallel repetition.
But it composes under sequential repetition.

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 11 / 16

Proving Zero Knowledge

Intuition:
In each iteration, V only sees two random colors
Hiding property of Com guarantees that everything else remains
hidden from V

We will prove zero knowledge for one iteration.
ZK for one iteration implies Honest-Verifier ZK for one iteration.
Honest-Verifier ZK is preserved under parallel repetition
(Malicious-verifier) ZK does not compose under parallel repetition.
But it composes under sequential repetition.

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 11 / 16

Proving Zero Knowledge

Intuition:
In each iteration, V only sees two random colors
Hiding property of Com guarantees that everything else remains
hidden from V

We will prove zero knowledge for one iteration.

ZK for one iteration implies Honest-Verifier ZK for one iteration.
Honest-Verifier ZK is preserved under parallel repetition
(Malicious-verifier) ZK does not compose under parallel repetition.
But it composes under sequential repetition.

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 11 / 16

Proving Zero Knowledge

Intuition:
In each iteration, V only sees two random colors
Hiding property of Com guarantees that everything else remains
hidden from V

We will prove zero knowledge for one iteration.
ZK for one iteration implies Honest-Verifier ZK for one iteration.
Honest-Verifier ZK is preserved under parallel repetition

(Malicious-verifier) ZK does not compose under parallel repetition.
But it composes under sequential repetition.

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 11 / 16

Proving Zero Knowledge

Intuition:
In each iteration, V only sees two random colors
Hiding property of Com guarantees that everything else remains
hidden from V

We will prove zero knowledge for one iteration.
ZK for one iteration implies Honest-Verifier ZK for one iteration.
Honest-Verifier ZK is preserved under parallel repetition
(Malicious-verifier) ZK does not compose under parallel repetition.
But it composes under sequential repetition.

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 11 / 16

Proving Zero Knowledge: Simulator

Simulator S(x = G, z):

Choose a random edge (i′, j′)
$← E and pick random colors

color′i′ , color
′
j′

$←{1, 2, 3} s.t. color′i′ 6= color′j′ . For every other
k ∈ [n] \ {i′, j′}, set color′k = 1

For every ` ∈ [n], compute C` = Com(color′`)

Emulate execution of V ∗(x, z) by feeding it (C1, . . . , Cn). Let (i, j)
denote its response
If (i, j) = (i′, j′), then feed the openings of Ci, Cj to V ∗ and output
its view. Otherwise, restart the above procedure, at most n|E|
times
If simulation has not succeeded after n|E| attempts, then output
fail

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 12 / 16

Correctness of Simulation

Can be argued using the hiding property of commitments

Must also argue that Sim fails with negligible probability

Full proof using “Hybrid Arguments” (attend Modern
Cryptography for more details)

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 13 / 16

Non-Interactive Zero Knowledge

In the Random Oracle model, 3-round Honest Verifier ZK where
the verifier’s messages are “public coin,” can be transformed into a
non-interactive ZK proof

Main Idea [Fiat-Shamir]: Let (α, β, γ) denote the messages of
an HVZK protocol. Then, for any α computed by the prover, β
can be computed as H(α), where H is a Hash function (like
SHA-256). So now, prover can compute (α, β, γ) on its own and
send it as a non-interactive proof

Soundness and ZK property are argued in the programmable
Random Oracle model, where the Hash function is viewed as
Random Oracle.

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 14 / 16

Succinct Arguments

Typically, the total “size” of an argument depends upon the size of
the statement and the witness used to compute the proof

In some applications, the statement and witnesses may be very
large (Later: see such an example in ZeroCash)

Succinct argument: The size of an argument is independent (or
poly-logarithmic) in the size of the statement and the witness

Interactive succinct arguments were first constructed by Kilian
using Probabilistically-Checkable Proofs (PCPs)

Micali constructed non-interactive succinct arguments in Random
Oracle model by applying Fiat-Shamir heuristic on Kilian’s
protocol

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 15 / 16

Succinct Arguments

Typically, the total “size” of an argument depends upon the size of
the statement and the witness used to compute the proof

In some applications, the statement and witnesses may be very
large (Later: see such an example in ZeroCash)

Succinct argument: The size of an argument is independent (or
poly-logarithmic) in the size of the statement and the witness

Interactive succinct arguments were first constructed by Kilian
using Probabilistically-Checkable Proofs (PCPs)

Micali constructed non-interactive succinct arguments in Random
Oracle model by applying Fiat-Shamir heuristic on Kilian’s
protocol

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 15 / 16

Succinct Arguments

Typically, the total “size” of an argument depends upon the size of
the statement and the witness used to compute the proof

In some applications, the statement and witnesses may be very
large (Later: see such an example in ZeroCash)

Succinct argument: The size of an argument is independent (or
poly-logarithmic) in the size of the statement and the witness

Interactive succinct arguments were first constructed by Kilian
using Probabilistically-Checkable Proofs (PCPs)

Micali constructed non-interactive succinct arguments in Random
Oracle model by applying Fiat-Shamir heuristic on Kilian’s
protocol

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 15 / 16

Succinct Arguments

Typically, the total “size” of an argument depends upon the size of
the statement and the witness used to compute the proof

In some applications, the statement and witnesses may be very
large (Later: see such an example in ZeroCash)

Succinct argument: The size of an argument is independent (or
poly-logarithmic) in the size of the statement and the witness

Interactive succinct arguments were first constructed by Kilian
using Probabilistically-Checkable Proofs (PCPs)

Micali constructed non-interactive succinct arguments in Random
Oracle model by applying Fiat-Shamir heuristic on Kilian’s
protocol

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 15 / 16

Succinct Arguments

Typically, the total “size” of an argument depends upon the size of
the statement and the witness used to compute the proof

In some applications, the statement and witnesses may be very
large (Later: see such an example in ZeroCash)

Succinct argument: The size of an argument is independent (or
poly-logarithmic) in the size of the statement and the witness

Interactive succinct arguments were first constructed by Kilian
using Probabilistically-Checkable Proofs (PCPs)

Micali constructed non-interactive succinct arguments in Random
Oracle model by applying Fiat-Shamir heuristic on Kilian’s
protocol

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 15 / 16

Zero Knowledge SNARKS

Succinct Non-Interactive Argument of Knowledge
(SNARK): A succinct argument is called an argument of
knowledge if there exists a PPT extractor algorithm E who can
extract a valid witness w for any statement x proven by a prover
algorithm P ∗, given access to the code of P ∗

SNARKs are presently only known from knowledge assumptions,
which are considered “non-standard” in cryptography (in fact, in
certain restricted settings, some knowledge assumptions and
program obfuscation have been shown to be in contention)
Zero-Knowledge SNARK: A SNARK that also achieves zero
knowledge property. Most constructions of ZK-SNARKs require a
common random string (CRS) setup, namely, where some trusted
party is supposed to have computed the CRS and “destroyed” the
secret randomness used in its computation. This CRS is used by
the prover and the verifier to compute and verify the proof.

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 16 / 16

Zero Knowledge SNARKS

Succinct Non-Interactive Argument of Knowledge
(SNARK): A succinct argument is called an argument of
knowledge if there exists a PPT extractor algorithm E who can
extract a valid witness w for any statement x proven by a prover
algorithm P ∗, given access to the code of P ∗

SNARKs are presently only known from knowledge assumptions,
which are considered “non-standard” in cryptography (in fact, in
certain restricted settings, some knowledge assumptions and
program obfuscation have been shown to be in contention)

Zero-Knowledge SNARK: A SNARK that also achieves zero
knowledge property. Most constructions of ZK-SNARKs require a
common random string (CRS) setup, namely, where some trusted
party is supposed to have computed the CRS and “destroyed” the
secret randomness used in its computation. This CRS is used by
the prover and the verifier to compute and verify the proof.

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 16 / 16

Zero Knowledge SNARKS

Succinct Non-Interactive Argument of Knowledge
(SNARK): A succinct argument is called an argument of
knowledge if there exists a PPT extractor algorithm E who can
extract a valid witness w for any statement x proven by a prover
algorithm P ∗, given access to the code of P ∗

SNARKs are presently only known from knowledge assumptions,
which are considered “non-standard” in cryptography (in fact, in
certain restricted settings, some knowledge assumptions and
program obfuscation have been shown to be in contention)
Zero-Knowledge SNARK: A SNARK that also achieves zero
knowledge property. Most constructions of ZK-SNARKs require a
common random string (CRS) setup, namely, where some trusted
party is supposed to have computed the CRS and “destroyed” the
secret randomness used in its computation. This CRS is used by
the prover and the verifier to compute and verify the proof.

CS 601.641/441 Zero-Knowledge Proofs Spring 2018 16 / 16

