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Outline
● Mining and consensus algorithms/protocols.

○ Proof-of-stake.

○ Proof-of-space/storage.

○ Proof-of-elapsed time.

○ Byzantine fault tolerant.

○ Hybrid mining algorithms.
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Why Proof-of-Work?
● Defending against Sybil attacks.

○ Creating fake identities is expensive; fake miners with no 

resources (computation, bandwidth, etc.) cannot participate in 

adding blocks to the blockchain.

● Securing the blockchain.

○ Expensive to rewrite or alter the history.

● Providing a natural way of distributing block generation among 

miners in a random way.

○ I.e., selecting the round leader in a randomized way.

● Implicitly synchronizing network operation.

○ The difficulty of the mining puzzle controls the average block 

generation rate.
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Proof-of-Work is Unuseful
● Miners perform a repeated hashing process that is not useful for 

anything beyond mining a new block.

● Is not this a computation waste (which is translated into resource 

waste)?

○ In 2014, researchers showed that electricity consumption of 

Bitcoin mining is comparable to some developed countries 

electricity consumption.

○ Mining is not for free: requires advanced hardware, cooling 

systems, huge electricity bills, maintenance cost, etc.

● Can we use other forms of resources (storage, bandwidth, etc.) to 

have a useful mining process?

● Can we reduce the electricity consumption of the mining process?
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Proof-of-Work - More Issues
● How about transaction throughput?

○ Can cryptocurrencies replace other, high throughput, payment 

systems anytime soon?

● How long does it take to confirm a transaction?

○ The recent history of the blockchain may have several, temporary 

versions. Several blocks could be mined at the same time.

○ How about applications that require instant settlement, can they 

afford waiting for an hour or so for a transaction to be 

confirmed?

● How about wealth distribution? Does the mining process make the 

wealthy wealthier?

● Not to mention the tendency toward centralization due to the 

concept of centralized mining pools.
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Potential Solutions
● Several mining algorithms were proposed to optimize the following:

○ Resource consumption, e.g., proof-of-stake.

○ Usefulness, e.g., proof-of-storage.

○ Throughput and confirmation time, e.g., Fault Tolerant 

Byzantine Agreement based protocols.

● Some systems adopted hybrid solutions that combine several 

protocols together.
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Proof-of-Stake
● Goal: reduce resources consumption.

○ Leader election is based on the amount of currency, or stake, a 

miner owns.

○ The leader is elected first, then mining takes place (opposite 

order compared to proof-of-work).

● Mining a block requires only validating transactions and add them to 

a block, then sign this block.

○ No extensive computations are needed, which saves both 

hardware cost and electricity.
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PoS - General Mechanism
● At the beginning of each round (i.e., period during which a new 

block will be mined):

○ Define the set of miners and the stake share of each one of 

them. 

○ Randomly select a miner to be the round leader.

■ Each miner will be selected with a probability proportional 

to the amount of currency it stakes in the system. 

○ Mine a block by forming a candidate block (containing a set of 

valid transactions), signing this block, and then announcing it to 

the network.

● Other miners accept the block if it is valid and created by an elected 

leader (requires a proof of leader election).
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PoS - Leader Election I
● Through a randomized, unpredictable process, which requires a 

cryptographic lottery.

● The ith miner will be selected with a probability pi = si /∑si for all i.

● Several lottery implementations, examples:

○ MPC based coin flipping protocol, used in Ouroboros [Kiayias et al., 

2017], a simplified version works as follows:

■ A subset of stakeholders (miners) run this protocol to generate 

a random seed.

■ Feed this seed to a PRF that will sample a biased coin for each 

miner (with probability pi sample 1, with probability 1-pi 

sample 0). Stop when 1 is sampled.

■ The random seed is also used to sample the subset of 

stakeholders for the next round.
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PoS - Leader Election II
● Several lottery implementations, examples:

○ Verifiable random function (VRF)-based, used in Algorand [Gilad 

et al., 2017].

■ A random public seed is selected per round.

■ Used as input for the VRF which determines if a user has 

been selected as a leader based on his/her stake value.

■ The VRF requires a secret key; hence, can produce the 

output hash other than the key owner.

■ A proof is produced to verify in zero knowledge (without 

revealing the secret key) that the hash output is correct.

● Depending on the protocol, a set of block proposers (potential 

leaders) is selected, then a consensus protocol is run to select one 

block as winner (and a winner leader).
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PoS - Issues I
● Initial stake distribution.

○ How to distribute the currency among the miners to have stake and 

participate in mining?

■ Several options, starts with PoW and then switch to pure PoS. 

Or have a stake allocation phase during which miners can buy 

coins.

● DoS.

○ If leader election is public, attackers may attack the leader to 

prevent mining a new block.

■ Potential solutions: implement a private leader election process, 

leader is know after announcing a block. Or elect several leaders 

per round.
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PoS - Issues II
● Nothing-at-stake attack.

○ A miner, once selected as the round leader, may extend several forks 

at the same time.

■ Mining a block on each branch requires only a signature!

○ Even worse, the leaders of the past rounds may collude to rewrite 

the blocks they mined as they want.

○ Proposed solutions: 

■ Financial punishments (the miner who is detected doing this 

attack will lose its stake). 

■ Checkpoints to prevent rewriting the chain by colluding miners.

■ Eliminate forks in the systems (i.e., a fork is created with a 

negligible probability). 
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PoS - Issues III
● Wealth distribution.

○ The miner with the highest stake will be selected more 

frequently to mine new blocks, and hence, collect mining 

rewards.

■ The wealthy becomes wealthier!

○ This makes 51% attack easier.

○ Potential solutions: 

■ select an appropriate mining reward function to smooth 

out wealth distribution, 

■ develop leader election algorithms that exclude recently 

selected miners, etc.
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Useful Mining
● Many flavors, with the goal of building a mining process with useful 

outcome.

● Usually relies on utilizing the miners to provide a distributed service.

○ Such as storage service of archival data, content distribution, 

computation outsourcing, etc.

● The probability of selecting a miner as a round leader is tied to the 

amount of service a miner puts in the system.

● Several challenges:

○ How to prove that a miner provided a correct service?

■ Requires deploying additional protocols to produce such 

proofs.

○ How to use this knowledge to select the round leader? 

■ Similar approaches to proof-of-stake can be used. 
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Proof-of-Space/Storage
● Miners store files for others, prove periodically that they still hold 

the file.

○ Examples: Spacemint, Spacemesh, Filecoin, Storj, PermaCoin.

● The larger the dedicated storage space, the higher the probability of 

being selected as a leader.

● Usually create a storage market; beside collecting mining rewards, 

miners are paid for the storage by the customers.
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Proof-of-Storage Issues I
● Cryptographic proofs for storing files: 

○ proof-of-space [Dziembowski et al., 2015], 

○ proof-of-spacetime [Moran et al., 2016], 

○ proof-of-retrievability [Miller et al., 2014].

● Mainly take the form of a challenge/response approach, which 

needs to be implemented in a non-interactive way.

● Usually a miner will put some stake, like a penalty deposit, in order 

to participate.

○ If not proofs are submitted, part of this deposit is revoked, this 

besides not being paid by the customer (if such payments are 

involved).

■ How to determine the value of the financial punishment?
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Proof-of-Storage Issues II
● Several concerns:

○ Trade-off between computation/storage [Moran et al., 2016].

■ Either generate a file on the fly or have it already stored.

■ The construction is about a randomly generated file; is this 

particularly useful? 

○ Outsourcing; store files somewhere else and retrieve when 

needed.

■ Adding timing bound on a miner’s response could be useful in 

this case.

○ Claim to store several copies of a file.

■ For redundancy reasons, one may ask for storing several 

copies of a file.

■ Proof-of-replication (a modified version of proof-of-storage) is 

used to mitigate this issue, e.g., used in Filecoin. 17



Proof-of-Elapsed Time
● Relies on secure/trusted hardware 

○ Also called secure enclaves or Trusted Execution Environments 

(TEE), e.g., Intel SGX.

● Two main flavors:

○ Each miner requests a wait time from its enclave, the miner 

with the shortest wait time will be the round leader.

○ A variant of useful proof-of-work. 

■ The enclaves execute some useful computation. 

■ Each instruction cycle is treated as a lottery ticket. If it wins, 

the enclave owner, i.e., the miner, is authorized to mine a 

new block.

● In both approaches an irrefutable proof must provided attesting that 

a miner has indeed won the round.
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Proof-of-Elapsed Time Issues
● Requires trusting the secure hadware manfuartcauer.

● Breaking one machine allows the attacker to always win the race 

and be the leader of every round.

● An attacker may purchase several chips and run the mining on all of 

them concurrently, use the results of the winning chip.

○ Called stale chip problem.
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Byzantine Agreement Based I
● Or Byzantine Fault Tolerant (BFT)-based consensus.

● Goal: “Agree faster.”

○ Speeds up transaction confirmation, increases throughput, and 

reduces the probability of forking the blockchain.

● Based on the classic Byzantine general problem in distributed 

systems.

○ The failure of one or more components prevents the system 

from reaching consensus.

● It was shown that a system of 3t+1 parties can tolerate up to t 

failures, and hence, reach consensus.

● The Practical Byzantine Fault Tolerance (PBFT) algorithm [Castro et 

al., 1999] was the first efficient solution that works in weakly 

synchronous environments such as the Internet. 
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Byzantine Agreement Based II
● For each round,  a committee will be elected to decide the next 

mined block through a PBFT protocol.

● Committee election could be based on the previous algorithms we 

studied:

○ Based on PoW, Byzcoin [Kogias et al., 2016].

■ Will explore it in details to get sense of how BFT-based 

consensus works.

○ Based on PoS and VRFs, Algorand [Gilad et al., 2017].

● Experimental results showed that transactions are confirmed in less 

than a minute in the above protocols.
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Byzcoin I
● Perform a dynamic committee election based on PoW.

○ Decouples transaction verification from mining.

■ Maintains two parallel blockchains; one contains 

microblocks (each contains a set of verified transactions), 

the other contains keyblocks (groups several microblocks 

together in the header and mined through PoW).

○ Once a transaction appears in a microblock, it is confirmed.

○ Keyblocks are used to elect the PBFT committee who will agree 

on the microblocks.

■ Needed to prevent Sybil attacks in open-committee PBFT.

■ A sliding window based approach, the miners of the last n 

keyblocks are the current committee members.
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Byzcoin II
● Once a committee is defined, the miner of the latest keyblock will be 

the new leader.

● Leader initiates a PBFT protocol to collectively agree (and sign) new 

blocks (assuming the committee of size 3t+1):

○ Leader proposes a new microblock and announces it to the rest 

of the committee. This is called a pre-prepare message.

○ Each committee member validates the block and broadcasts a 

prepare message indicating accepting the block.

○ Once each member receives at least 2t + 1 prepare messages, 

they acknowledge that by broadcasting a commit message.

● All responses are authenticated using collective signature, CoSi (or 

basically multi-signature that allows several parties to sign a 

message and produce a single signature instead of many).
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Byzcoin Pictorially

24
*From [Kogias et al., 2016]

Mining rewards are distributed in 

proportion to the number of shares.



BFT Consensus - Issues
● Network connectivity/synchrony assumptions.

● ⅓ of the mining power can be malicious.

○ Less than Bitcoin tolerance level.

● Scalability (i.e. number of miners). 
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Hybrid Mining Algorithms
● Combine several mining algorithms together to solve the limitations 

of using a single algorithm.

● Examples:

○ As mentioned before, usually proof-of-stake and proof-of-work 

are combined together. Proof-of-work is used to distribute the 

currency in the system initially, and then the network continues 

using proof-of-stake only. 

○ Or use PoW or PoS to elect the committee in Byzantine 

agreement based protocols.
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