
CSE 5095-007: Blockchain Technology

Lecture 9
Mining and Consensus

Ghada Almashaqbeh
UConn - Fall 2021

Outline
● Mining and consensus algorithms/protocols.

○ Proof-of-stake.

○ Proof-of-space/storage.

○ Proof-of-elapsed time.

○ Byzantine fault tolerant.

○ Hybrid mining algorithms.

2

Why Proof-of-Work?
● Defending against Sybil attacks.

○ Creating fake identities is expensive; fake miners with no

resources (computation, bandwidth, etc.) cannot participate in

adding blocks to the blockchain.

● Securing the blockchain.

○ Expensive to rewrite or alter the history.

● Providing a natural way of distributing block generation among

miners in a random way.

○ I.e., selecting the round leader in a randomized way.

● Implicitly synchronizing network operation.

○ The difficulty of the mining puzzle controls the average block

generation rate.

3

Proof-of-Work is Unuseful
● Miners perform a repeated hashing process that is not useful for

anything beyond mining a new block.

● Is not this a computation waste (which is translated into resource

waste)?

○ In 2014, researchers showed that electricity consumption of

Bitcoin mining is comparable to some developed countries

electricity consumption.

○ Mining is not for free: requires advanced hardware, cooling

systems, huge electricity bills, maintenance cost, etc.

● Can we use other forms of resources (storage, bandwidth, etc.) to

have a useful mining process?

● Can we reduce the electricity consumption of the mining process?

4

Proof-of-Work - More Issues
● How about transaction throughput?

○ Can cryptocurrencies replace other, high throughput, payment

systems anytime soon?

● How long does it take to confirm a transaction?

○ The recent history of the blockchain may have several, temporary

versions. Several blocks could be mined at the same time.

○ How about applications that require instant settlement, can they

afford waiting for an hour or so for a transaction to be

confirmed?

● How about wealth distribution? Does the mining process make the

wealthy wealthier?

● Not to mention the tendency toward centralization due to the

concept of centralized mining pools.
5

Potential Solutions
● Several mining algorithms were proposed to optimize the following:

○ Resource consumption, e.g., proof-of-stake.

○ Usefulness, e.g., proof-of-storage.

○ Throughput and confirmation time, e.g., Fault Tolerant

Byzantine Agreement based protocols.

● Some systems adopted hybrid solutions that combine several

protocols together.

6

Proof-of-Stake
● Goal: reduce resources consumption.

○ Leader election is based on the amount of currency, or stake, a

miner owns.

○ The leader is elected first, then mining takes place (opposite

order compared to proof-of-work).

● Mining a block requires only validating transactions and add them to

a block, then sign this block.

○ No extensive computations are needed, which saves both

hardware cost and electricity.

7

PoS - General Mechanism
● At the beginning of each round (i.e., period during which a new

block will be mined):

○ Define the set of miners and the stake share of each one of

them.

○ Randomly select a miner to be the round leader.

■ Each miner will be selected with a probability proportional

to the amount of currency it stakes in the system.

○ Mine a block by forming a candidate block (containing a set of

valid transactions), signing this block, and then announcing it to

the network.

● Other miners accept the block if it is valid and created by an elected

leader (requires a proof of leader election).

8

PoS - Leader Election I
● Through a randomized, unpredictable process, which requires a

cryptographic lottery.

● The ith miner will be selected with a probability pi = si /∑si for all i.

● Several lottery implementations, examples:

○ MPC based coin flipping protocol, used in Ouroboros [Kiayias et al.,

2017], a simplified version works as follows:

■ A subset of stakeholders (miners) run this protocol to generate

a random seed.

■ Feed this seed to a PRF that will sample a biased coin for each

miner (with probability pi sample 1, with probability 1-pi

sample 0). Stop when 1 is sampled.

■ The random seed is also used to sample the subset of

stakeholders for the next round.
9

PoS - Leader Election II
● Several lottery implementations, examples:

○ Verifiable random function (VRF)-based, used in Algorand [Gilad

et al., 2017].

■ A random public seed is selected per round.

■ Used as input for the VRF which determines if a user has

been selected as a leader based on his/her stake value.

■ The VRF requires a secret key; hence, can produce the

output hash other than the key owner.

■ A proof is produced to verify in zero knowledge (without

revealing the secret key) that the hash output is correct.

● Depending on the protocol, a set of block proposers (potential

leaders) is selected, then a consensus protocol is run to select one

block as winner (and a winner leader).
10

PoS - Issues I
● Initial stake distribution.

○ How to distribute the currency among the miners to have stake and

participate in mining?

■ Several options, starts with PoW and then switch to pure PoS.

Or have a stake allocation phase during which miners can buy

coins.

● DoS.

○ If leader election is public, attackers may attack the leader to

prevent mining a new block.

■ Potential solutions: implement a private leader election process,

leader is know after announcing a block. Or elect several leaders

per round.

11

PoS - Issues II
● Nothing-at-stake attack.

○ A miner, once selected as the round leader, may extend several forks

at the same time.

■ Mining a block on each branch requires only a signature!

○ Even worse, the leaders of the past rounds may collude to rewrite

the blocks they mined as they want.

○ Proposed solutions:

■ Financial punishments (the miner who is detected doing this

attack will lose its stake).

■ Checkpoints to prevent rewriting the chain by colluding miners.

■ Eliminate forks in the systems (i.e., a fork is created with a

negligible probability).

12

PoS - Issues III
● Wealth distribution.

○ The miner with the highest stake will be selected more

frequently to mine new blocks, and hence, collect mining

rewards.

■ The wealthy becomes wealthier!

○ This makes 51% attack easier.

○ Potential solutions:

■ select an appropriate mining reward function to smooth

out wealth distribution,

■ develop leader election algorithms that exclude recently

selected miners, etc.

13

Useful Mining
● Many flavors, with the goal of building a mining process with useful

outcome.

● Usually relies on utilizing the miners to provide a distributed service.

○ Such as storage service of archival data, content distribution,

computation outsourcing, etc.

● The probability of selecting a miner as a round leader is tied to the

amount of service a miner puts in the system.

● Several challenges:

○ How to prove that a miner provided a correct service?

■ Requires deploying additional protocols to produce such

proofs.

○ How to use this knowledge to select the round leader?

■ Similar approaches to proof-of-stake can be used.
14

Proof-of-Space/Storage
● Miners store files for others, prove periodically that they still hold

the file.

○ Examples: Spacemint, Spacemesh, Filecoin, Storj, PermaCoin.

● The larger the dedicated storage space, the higher the probability of

being selected as a leader.

● Usually create a storage market; beside collecting mining rewards,

miners are paid for the storage by the customers.

15

Proof-of-Storage Issues I
● Cryptographic proofs for storing files:

○ proof-of-space [Dziembowski et al., 2015],

○ proof-of-spacetime [Moran et al., 2016],

○ proof-of-retrievability [Miller et al., 2014].

● Mainly take the form of a challenge/response approach, which

needs to be implemented in a non-interactive way.

● Usually a miner will put some stake, like a penalty deposit, in order

to participate.

○ If not proofs are submitted, part of this deposit is revoked, this

besides not being paid by the customer (if such payments are

involved).

■ How to determine the value of the financial punishment?

16

Proof-of-Storage Issues II
● Several concerns:

○ Trade-off between computation/storage [Moran et al., 2016].

■ Either generate a file on the fly or have it already stored.

■ The construction is about a randomly generated file; is this

particularly useful?

○ Outsourcing; store files somewhere else and retrieve when

needed.

■ Adding timing bound on a miner’s response could be useful in

this case.

○ Claim to store several copies of a file.

■ For redundancy reasons, one may ask for storing several

copies of a file.

■ Proof-of-replication (a modified version of proof-of-storage) is

used to mitigate this issue, e.g., used in Filecoin. 17

Proof-of-Elapsed Time
● Relies on secure/trusted hardware

○ Also called secure enclaves or Trusted Execution Environments

(TEE), e.g., Intel SGX.

● Two main flavors:

○ Each miner requests a wait time from its enclave, the miner

with the shortest wait time will be the round leader.

○ A variant of useful proof-of-work.

■ The enclaves execute some useful computation.

■ Each instruction cycle is treated as a lottery ticket. If it wins,

the enclave owner, i.e., the miner, is authorized to mine a

new block.

● In both approaches an irrefutable proof must provided attesting that

a miner has indeed won the round.
18

Proof-of-Elapsed Time Issues
● Requires trusting the secure hadware manfuartcauer.

● Breaking one machine allows the attacker to always win the race

and be the leader of every round.

● An attacker may purchase several chips and run the mining on all of

them concurrently, use the results of the winning chip.

○ Called stale chip problem.

19

Byzantine Agreement Based I
● Or Byzantine Fault Tolerant (BFT)-based consensus.

● Goal: “Agree faster.”

○ Speeds up transaction confirmation, increases throughput, and

reduces the probability of forking the blockchain.

● Based on the classic Byzantine general problem in distributed

systems.

○ The failure of one or more components prevents the system

from reaching consensus.

● It was shown that a system of 3t+1 parties can tolerate up to t

failures, and hence, reach consensus.

● The Practical Byzantine Fault Tolerance (PBFT) algorithm [Castro et

al., 1999] was the first efficient solution that works in weakly

synchronous environments such as the Internet.
20

Byzantine Agreement Based II
● For each round, a committee will be elected to decide the next

mined block through a PBFT protocol.

● Committee election could be based on the previous algorithms we

studied:

○ Based on PoW, Byzcoin [Kogias et al., 2016].

■ Will explore it in details to get sense of how BFT-based

consensus works.

○ Based on PoS and VRFs, Algorand [Gilad et al., 2017].

● Experimental results showed that transactions are confirmed in less

than a minute in the above protocols.

21

Byzcoin I
● Perform a dynamic committee election based on PoW.

○ Decouples transaction verification from mining.

■ Maintains two parallel blockchains; one contains

microblocks (each contains a set of verified transactions),

the other contains keyblocks (groups several microblocks

together in the header and mined through PoW).

○ Once a transaction appears in a microblock, it is confirmed.

○ Keyblocks are used to elect the PBFT committee who will agree

on the microblocks.

■ Needed to prevent Sybil attacks in open-committee PBFT.

■ A sliding window based approach, the miners of the last n

keyblocks are the current committee members.

22

Byzcoin II
● Once a committee is defined, the miner of the latest keyblock will be

the new leader.

● Leader initiates a PBFT protocol to collectively agree (and sign) new

blocks (assuming the committee of size 3t+1):

○ Leader proposes a new microblock and announces it to the rest

of the committee. This is called a pre-prepare message.

○ Each committee member validates the block and broadcasts a

prepare message indicating accepting the block.

○ Once each member receives at least 2t + 1 prepare messages,

they acknowledge that by broadcasting a commit message.

● All responses are authenticated using collective signature, CoSi (or

basically multi-signature that allows several parties to sign a

message and produce a single signature instead of many).
23

Byzcoin Pictorially

24
*From [Kogias et al., 2016]

Mining rewards are distributed in

proportion to the number of shares.

BFT Consensus - Issues
● Network connectivity/synchrony assumptions.

● ⅓ of the mining power can be malicious.

○ Less than Bitcoin tolerance level.

● Scalability (i.e. number of miners).

25

Hybrid Mining Algorithms
● Combine several mining algorithms together to solve the limitations

of using a single algorithm.

● Examples:

○ As mentioned before, usually proof-of-stake and proof-of-work

are combined together. Proof-of-work is used to distribute the

currency in the system initially, and then the network continues

using proof-of-stake only.

○ Or use PoW or PoS to elect the committee in Byzantine

agreement based protocols.

26

References
● [O'Dwyer et al., 2014] O'Dwyer, Karl J., and David Malone. "Bitcoin mining and its energy footprint." (2014):

280-285.

● [Gilad et al., 2017] Gilad, Yossi, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. "Algorand:

Scaling byzantine agreements for cryptocurrencies." In In Proceedings of the 26th ACM Symposium on

Operating Systems Principles (SOSP). 2017.

● [Kiayias et al., 2017] Kiayias, Aggelos, Alexander Russell, Bernardo David, and Roman Oliynykov. "Ouroboros: A

provably secure proof-of-stake blockchain protocol." In Annual International Cryptology Conference, pp.

357-388. Springer, Cham, 2017.

● [Dziembowski et al., 2015] Dziembowski, Stefan, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak.

"Proofs of space." In Annual Cryptology Conference, pp. 585-605. Springer, Berlin, Heidelberg, 2015.

● [Moran et al., 2016] Moran, Tal, and Ilan Orlov. "Proofs of Space-Time and Rational Proofs of Storage." IACR

Cryptology ePrint Archive 2016 (2016): 35.

● [Miller et al., 2014] Miller, Andrew, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz. "Permacoin:

Repurposing bitcoin work for data preservation." In Security and Privacy (SP), 2014 IEEE Symposium on, pp.

475-490. IEEE, 2014.

● [Kogias et al., 2016] Kogias, Eleftherios Kokoris, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and

Bryan Ford. "Enhancing bitcoin security and performance with strong consistency via collective signing." In

USENIX Security 16, 2016.

● [Castro et al., 1999] Castro, Miguel, and Barbara Liskov. "Practical Byzantine fault tolerance." In OSDI, vol. 99,

no. 1999, pp. 173-186. 1999.

27

28

