
CSE5095-010: Blockchain 
Technology

Lecture 4

Ghada Almashaqbeh
UConn - Fall 2020



Outline
● More about Bitcoin:

○ Consensus.

○ Blockchain forking.

○ Bitcoin scripting language and transaction processing.

2



Consensus
● Miners hold, hopefully, consistent copies of the blockchain.

○ Only differ in the recent unconfirmed blocks.

● A miner votes for a block implicitly:

○ Accept it by including it in the chain and start working on top of it.

○ Reject it by ignoring the new block and continue working on the 

older blockchain or another newly announced block.

● Remember: Bitcoin network is not perfect, propagation delays, not all 

nodes hear all announced transactions, nodes may crash at any point of 

time, etc.

● Result: the blockchain may have multiple branches, i.e., forks.

3



Blockchain Forking

● Miners work on different branches

● Resolved by adopting the longest branch.

○ Since it means more work effort and larger history record.

Source: http://www.ybrikman.com/writing/2014/04/24/bitcoin-by-analogy/
4

http://www.ybrikman.com/writing/2014/04/24/bitcoin-by-analogy/


Forking Types - Soft Fork
● Temporary fork in the blockchain due to updating the consensus 

protocol to include additional rules on validating the blocks. 

○ Adding stricter rules to validate blocks/transactions. 

● Why called soft?

○ Blocks considered valid by an old version of the protocol are 

not all valid by the new version. 

○ However, blocks considered valid by the new version are all 

valid based on the old version. 

○ So it is still one blockchain!

● If the majority of the nodes switch to the new version of the 

protocol the old nodes will switch eventually as their branch is no 

longer the longest one.

5



Soft Fork - Pictorially

From https://www.investopedia.com/terms/s/soft-fork.asp 

6

https://www.investopedia.com/terms/s/soft-fork.asp


Forking Types - Hard Fork
● Permanent fork in the blockchain due to updating the consensus 

protocol. 

● Why it is called hard?

○ The old version considers all blocks that are valid according to 

the new version invalid. 

○ Thus, the two branches will not have any blocks/transactions 

in common. 

○ Results in two different blockchains. 

● So, a miner can be on one branch (or basically a blockchain) but 

not both. 

7



Hard Fork - Pictorially

8
From https://www.investopedia.com/terms/h/hard-fork.asp

https://www.investopedia.com/terms/h/hard-fork.asp


Bitcoin Scripting Language



Validating Transactions
● Involves validating/checking:

○ The format of a transaction (including that total value of output 

does not exceed total input value, 

○ and that the inputs can be spent to the outputs.

● The latter is done in a programmable way using Bitcoin scripting 

language.

○ This allows for greater flexibility and introduces the notion of 

programmable money.

10



Bitcoin Scripting Language
● Non Turing-complete, does not support loops.

○ Limited complexity and it has a predictable execution times.

○ Stack based.

● Kept simple for security reasons.

○ More complex scripting languages, or better saying 

Turing-complete, provide greater flexibility for the programmer 

to build complicated functionalities.

○ It is hard to get it right!! Write fully secure scripts or programs 

is not easy.

● Attackers are financially motivated to dig into these programs and 

find security bugs.

.

11



Script Construction
● Two parts: unlocking and locking scripts.

○ Locking: specify conditions that when met a given input (akak 

coins) can be spent.

○ Unlocking: a proof that the conditions have been met (i.e., 

provide inputs for the locking script to unlock it).

● Thus, a transaction has an unlocking script for each of it inputs that 

is processed alongside a locking script for the output of the 

referenced input transaction.

○ Recall that an input for a (new) transaction is an output of an 

unspent (previous) transaction.

○ The concatenated unlocking and locking scripts has to evaluate 

to TRUE in order to consider the transaction as valid.

12



Stack-based 
Scripting

● A clarifying example (and 

the figure) from 

“Mastering Bitcoin” 

book, Chapter 5. 

● Locking and Unlocking 

scripts will be written 

similarly.

13



Script Construction - An Example I
● Most popular transaction type in Bitcoin is pay ot public key hash.

○ Simply it means sending coins to some public key. 

14
Figure taken from “Mastering Bitcoin” book, Chapter 5. 



Script Construction - An Example II

15
Figure taken from “Mastering Bitcoin” book, Chapter 5. 



Bitcoin Standard Transactions
● Pay to public key hash.

○ Vast majority of Bitcoin transactions are of this type.

○ X pays Y a Z value of Bitcoins.

● Pay to public key.

○ Same as above but instead of using addresses (hashed public 

keys), use the public key it self.

○ Hashed public keys are more efficient as they are shorter.

● Data output.

○ Use OP_RETURN to store up to 40 byte data on the blockchain 

(e.g., document timestamping).

● Pay to script hash.

● Pay to multi-signature.

○ More about the above two in the next slides.
16



Pay to Script Hash (P2SH)
● Provides ways to implement advanced operations in Bitcoin beyond 

the standard currency transfer transactions.

● The address is the hash of some script, thus, these addresses start 

with 3 to differentiate them from normal addresses.

● To spend the currency locked under the script hash address you 

must present an unlocking script that makes this locking script 

evaluate to TRUE. 

○ If the result is indeed true the currency is transferred to the 

destination address you specify.

● The scripts that you can code are limited by the primitives/opcodes 

supported in Bitcoin Scripting language (check 

https://en.bitcoin.it/wiki/Script ).

17

https://en.bitcoin.it/wiki/Script


Pay to Multi-signature (P2MS)
● One of the very useful and widely implemented scripts in P2SH.

● The script requires signatures of a set of users to unlock the currency 

instead of one user signature. 

● Can be built also in a threshold based way, like 2 out of 3 signatures 

are enough to spend the currency.

● Mostly used to create escrows while trading using Bitcoin.

18



P2MS - An Example
● Locking, unlocking, and concatenated scripts for a 2 out of 3 multisig 

transaction (from “Mastering Bitcoin”, Chapter 5).

2 <Public Key A> <Public Key B> <Public Key C> 3 CHECKMULTISIG

<Signature B> <Signature C>

<Signature B> <Signature C> 2 <Public Key A> <Public Key B> <Public Key C> 3 CHECKMULTISIG

19



20


