
CSE5095-010: Blockchain
Technology

Lecture 16

Ghada Almashaqbeh
UConn - Fall 2020

Outline
● Anonymity and privacy in cryptocurrencies.

○ Background.

○ Centralized mixers.

○ Cryptography Review.

■ Commitments.

■ Zero knowledge proofs.

○ Decentralized mixers - Zerocoin.

○ Anonymous and private payments.

■ UTXO model - Zerocash.

■ Account model - Zether.

2

Anonymity and Privacy I
● Sensitive information in a cryptocurrency system:

○ Addresses of senders and recipients.

○ Transaction (currency) value.

○ Account balance (for these that use the account model).

○ Executed code (scripts or smart contracts).

○ Inputs and outputs of this executed code.

● Anonymity.

○ Hiding the addresses of senders and recipients.

● Privacy preserving:

○ Generally, it applies to the last four items in the above list.

33

Anonymity and Privacy II
● In some sources,

○ Hiding identities is also considered a privacy-preserving issue.

○ Hiding balances and transaction values are referred to as

confidentiality.

■ E.g., confidential transactions; those with encrypted currency

values.

● We will refer to these as:

○ Private payments. Currency transfer transactions that hide values and

balances.

○ Secure (or privacy-preserving) function evaluation. Computing over

private inputs, and possibly, producing private output.

○ Function privacy. Hiding the function (executed code) itself.

○ Anonymity. Hiding user identities.

44

Is Bitcoin Anonymous?
● Believed to be.

○ No real identities are required.

○ Users use random-looking keys as pseudonyms.

○ It is advised to generate a new key pair for each new transaction.

55
Source: https://shop.wikileaks.org/donate

https://shop.wikileaks.org/donate

No it is not ...
● The blockchain is public.

○ Transactions do not hide addresses of senders and recipients.

● Transactions linkability.

○ Track transaction flow to infer the real identities of the involved

parties.

■ Cluster Bitcoin addresses into entities, link them to identities

and/or Bitcoin addresses posted by their owners on forums,

blogs, etc., [Reid et al. 2014]

■ Link this flow to users’ IPs [Koshy et al. 2014].

● Here, the use of anonymous communication protocols

(e.g., Tor) could be useful. But anonymity is based on the

security guarantees of such protocols (recall exit and entry

points in Tor see the flow in the clear).
66

Is Bitcoin Private?
● Also NO.

○ Again, its blockchain is public.

○ Values of transactions are recorded in the clear.

○ Transaction scripts (locking and unlocking) are publicly known and

logged in the clear as well.

○ Scripts operate on public inputs and produce public outputs.

77

How about Ethereum?
● For Ethereum, same as Bitcoin, it is more about functionality extension

rather than privacy/anonymity.

● The account model requires different privacy/anonymity techniques

than those used in the UTXO model.

● Having arbitrary smart contracts deployed by users raises the

expectations.

○ Can these contracts operate on private inputs and produce private

outputs?

■ Can existing techniques (e.g., MPC) be used here?

○ Can we preserve the privacy of the code itself? (i.e., hide the

performed computation as well.)

88

Does Anonymity/Privacy Matter?
● Just like traditional banking systems, we desire to hide our payment

activity when needed/possible.

○ Blockchain records are public, anyone can access them at any time.

● Storing and processing sensitive data.

○ Blockchain-based applications for medical records, trading, auction,

voting, etc.

● Without anonymity/privacy, one my forgo the advantages of employing

a blockchain in such highly sensitive applications.

○ Front running in auctions, censorship in voting, etc.

● Sometimes in cryptocurrencies coins get tainted.

○ People reject coins that have some undesirable history.

99

Potential Solutions
● Mixing services (mainly in the context of Bitcoin).

○ Centralized.

○ Decentralized - Zerocoin.

● Anonymous/private cryptocurrencies.

○ UTXO model.

■ ZeroCash - an extension of Bitcoin.

○ Account model.

■ Zether - a token on top of Ethereum.

1010

Mixers

● Break transaction linkability.

○ Participants send their coins to some entity, the mixer (or tumbler).

○ The mixer shuffles these coins and return them to them back.

■ Each party gets same value back but from a different owner

(users use fresh addresses to receive these). 1111

Centralized Mixers

● Everything is controlled by a trusted party.

○ Parties sends their coins with a promise to return them back.

○ Huge trust risk, will the mixer return the coins back?

■ Several theft incidents over the past years.

● The mixer has a full record of which coins were sent to who.

○ It still have the transaction linkability information.

○ Will it delete this record and not reveal them later?

● Do we trust the mixer to randomly shuffle coins?

○ May send coins in a non-random manner allowing deanonymization.
1212

From Bitcoin wiki (https://en.bitcoin.it/wiki/Category:Mixing_Services)

https://en.bitcoin.it/wiki/Category:Mixing_Services

Mixcoin[Bonneau et al., 2014]

● Although anonymous cryptocurrencies were already out there, the goal

is to have something efficiency and fully compatible with Bitcoin.

● Add accountability to expose theft.

○ A mixer issues a warranty to return the coins.

■ If it does not, the user exposes this warranty, destroying the

reputation of the mixer.

○ The mixer creates an escrow address to which the funds will be

sent.

○ Later, it shuffles the escrows and send each user an equal amount

of funds back (to new fresh addresses).

● Calibrate incentives so that rational mixers will act honestly.

● Propose the use of a series of mixers to reduce the probability of local

records risk.
1313

Mixcoin[Bonneau et al., 2014]

● Still same security risks of a centralized mixer.

○ Theft.

■ Maybe it is worth it; destroy reputation but run away with a

huge wealth.

○ Delays.

■ Users have to wait for long time to get coins back (to have a

large anonymity set).

○ Local records exposure.

■ Mix networks (series of mixers) may not be always available.

1414

- Detour -
Commitments

Zero Knowledge Proofs

Commitments
● A commitment scheme consists of three algorithms:

○ Setup: takes a security parameter 𝞴 as input and outputs public

parameters pp.

○ Commit: takes inputs the public parameters pp, a message m, and

randomness r, and outputs commitment c.

● Opening a commitment c is simply revealing m and r, and then verifying

that commit(m; r) = c.

● Acts like a digital envelope; commit to m (like a guarantee that m exists)

but without revealing anything about m before the opening phase.

1616

Commitments - Properties
● Security properties:

○ Hiding: A commitment c does not reveal anything about m.

○ Binding: A commitment c to message m cannot be opened to a

different m’ ≠ m

● Homomorphic Commitments:

○ An additively homomorphic commitment scheme is a commitment

scheme such that given m
1

, m
2

, r
1
 , r

2
 we have:

commit(m
1

, r
1
) + commit(m

2
, r

2
) = commit(m

1
+m

2
; r

1
+ r

2
)

(Note: it could be the case that multiplying two commitments produces a

commitment to the addition of the two messages. The above is just a symbolic

way to represent the property.)

1717

Hash Commitments
● Relies on the security of a collision-resistant hash functions.

● Pick a salt s, then compute a commitment to m as (H is a collision

resistant hash function):

○ c = H(m||s)

● Hiding: inverting a hash is hard.

● Binding: opening a hash to another m’ ≠ m requires finding a collision.

1818

Pedersen Commitments
● Work in a cyclic group G = <g> (g is the generator) of order p in which

the Discrete Log Problem is hard.

○ Given a gx it is hard to find x.

● Choose two generators for the group; g, h

○ No one knows the discrete log of g with respect to h and vice versa.

● Commit to a message m:

○ Select a random r from {0, …, p-1}.

○ Compute c = gmhr

● Open a commitment:

○ Reveal m and r

1919

Pedersen Commitments - Security
● Hiding: hr is a random element in the group G and so is the commitment

gmhr

○ A random commitment value does not reveal anything about m

● Binding: reduced to DLP,

○ An attacker who can open a commitment to m’ ≠ m can be used to

construct an attacker to break DLP.

2020

Pedersen Commitments - Additively
Homomorphic

● Given c
1
 = gm1hr1 and c

2
 = gm2hr2

○ commit(m
1
+m

2
, r

1
+r

2
) = c

1
c

2
 = g(m1+m2)h(r1+r2)

● Very useful for tracking balances of accounts in a private way, or total of

inputs for a transaction.

○ I own x coins, stored in a hidden way on the blockchain

■ as a commitment: gxgr1

○ Bob sent me y coins, also in a hidden way as a commitment: gyhr2

○ The miners can update my account without revealing anything.

■ Simply multiply the two commitments together.

■ More like performing arithmetic operations on hidden (secret)

data.

2121

Zero Knowledge Proofs
● Second set of slides.

2222

Schnorr’s Protocol
● A proof of a knowledge of a discrete logarithm

○ Such as the secret key corresponding to some public key in EC.

● Work in a cyclic group G = <g> (g is the generator) of order p in which the

Discrete Log Problem is hard.

● To prove y = gx, prove knowing x as follows:

○ First round: prover chooses r in {1, …, p-1}, prover commits to r by

sending c = gr to the verifier.

○ Second round: verifier replies with a challenge t (selected at random

from {1, …, p-1}).

○ Third round: prover sends s = r + tx (mod p)

● Verifier accepts if gs ≡ cyt

● Usually called a Sigma protocol.

○ Since it consists of three rounds or moves: commit/challenge/respond
2323

Fiat-Shamir Heuristic
● Converts an interactive protocol into a non-interactive one.

○ The prover computes a proof, sends it to the verifier, and the

verifier checks the proof

■ One round of communication.

● Works in the random oracle model.

○ Instead of waiting for a random challenge from the verifier, the

prover computes it using a random oracle (usually using a hash

function modeled as a random oracle).

● For example, in Schnorr’s protocol:

○ Instead of having the verifier choose a random challenge t, the

prover computes t = H(g, y, c)

○ Then, the verifier sends both c and t to the prover to check.

2424

- Zerocoin -
A Decentralized Mixer

Zerocoin [Miers et al., 2013]

● An extension to Bitcoin to support anonymity, i.e., break the link

between the transactions.

● Turn a bitcoin into a zercoin.

○ This will create a pool of zercoins or an anonymity set.

○ This is called minting.

● Then a zercoin can be sent to a new address.

○ Go back to bitcoin.

○ This is called spending.

● Thus, it creates a decentralized mixer without any trusted entity.

○ Users have full control of their coins.

○ The larger the pool, aka anonymity set, the greater the anonymity

level.

2626

Zerocoin
● General idea:

○ Creates an anonymity set, a pool of hidden coins in the form of

commitments.

■ Clients mint anonymous coins.

■ The coin is simply a random serial number.

○ Spending a coin from that pool does not reveal the owner.

■ It reveals the coin’s serial number.

● Needed to prevent double spending.

■ Provides a NIZK proof that a coin with a specific serial number

belongs to the pool.

● Why is it anonymous?

○ NIZK does not provide any info beyond that there exists a zercoin with

a given serial number on the blockchain.

2727

Zerocoin Pictorially

2828

Zerocoin Protocol I
● Consists of three algorithms (other than setup):

○ Mint: create a zerocoin (i.e., a commitment to some random serial

number SN) along with a trapdoor to allow spending the coin later.

○ Spend: use the trapdoor to spend C, which reveals the SN of the coin

and produces a proof that C is a valid zercoin.

○ Verify: verify the proof and the validity of the commitment.

● Minting is sending some bitcoin amount to an escrow (basically an output).

○ The un/locking script relies on providing a valid spend proof.

● Thus, when spending a zercoin, the owner can grab any UTXO to get his/her

bitcoins back.

○ Just like what a mix service does, but in a distributed way.

2929

Zerocoin Protocol II
● Use an efficient RSA one way accumulator to create the anonymity set (or

zerocoins pool).

○ Accumulate all zerocoins C1, …, Cn into a small data structure called an

accumulator A.

○ During the accumulation process, a membership witness is produced

for each zerocoin.

● To spend a coin C, prove the knowledge of a witness such that C ∈ A and

that C opens to serial number SN.

3030

Zerocoin Protocol III
● Accumulator properties:

○ No trusted setup/parties. It can be publicly computed.

○ Bind the computing party to the values in the set.

○ Support efficient non-interactive zero knowledge proof systems.

● Utility of the accumulator.

○ Allows producing a logarithmic size proof instead of a linear one if an

OR statement is used.

■ Instead of satisfiability of a circuit that outputs 1 if C equals to C1

or C2 or C3 … or Cn

3131

Zerocoin
● Disadvantages:

○ Only hides the originator, but not the destination or the transfer

amount.

○ Computationally heavy.

■ A proof has a size of almost 45 KB and requires 450 ms to verify.

○ Not fully compatible with Bitcoin; it requires changes on its network

protocol.

3232

- Zerocash -
Private/Anonymous Payments

(UTXO Model)

Zerocash [Ben Sasson et al., 2014]

● An extension to Bitcoin to support anonymity and privacy.

○ It is a new cryptocurrency; builds on Bitcoin but requires major

changes to support its functionality.

● Addresses the drawbacks of Zerocoin.

○ Anonymity for destination addresses.

○ Private (or hidden) transfer amount.

○ Direct private transfers.

○ Proof size is less than 1 kB with a verification time of around 6 ms.

● Utilizes recent advances in zk-SNARKS (zero knowledge - Succinct

Non-interactive ARgument of Knowledge) to optimize proofs needed for

spending private coins.

3434

Zerocash Protocol I
● Consists of three main algorithms (apart from setup, create addresses, and

receive coins):

○ Mint. Mints a new zerocoin. A coin is a commitment to a random serial

number (and other related info). An equivalent bitcoin amount is added

to a backing pool of coins (like an escrow).

■ All coin commitments are tracked, or accumulated, using a Merkle

tree.

■ A mint is from a public coin to a private coin.

○ Pour. Spends zerocoins where the destination could be a private

output (coin commitments) or a public output (currency value

destination address are public).

○ Verify. Verify the validity of the transactions (mint/pour), which

involves verifying the attached zk-SNARK.

3535

Zerocash Protocol II
● A pour transaction must satisfy a pour statement in order to be valid.

○ The coin (or mint transaction) is well-formed.

○ Public keys and coins serial numbers are derived appropriately (using

some PRF constructions).

○ The sender knows the secret key of the public key owns the coin.

○ The coin commitment appears as a leaf node in the coins Merkle tree.

○ Total input values equals to total output values.

○ A valid signature over these values is provided

● Again, pouring or spending a coin reveals its serial number to prevent

double spending.

3636

Zerocash Anonymity/Privacy
● Sender or originator anonymity.

○ Similar to Zerocoin; a pool of coin commitments represents an

anonymity set for the sender.

● Destination or recipient anonymity.

○ A recipient address (for a private output) is not stored in the clear on

the blockchain. It is part of the coin commitment.

● Private transfer amount.

○ Similar to the recipient address, it is hidden inside the coin

commitment.

● To allow a recipient of a private coin to spend it, additional information are

sent encrypted to the recipient as part of the pour transaction.

○ Only the recipient can decrypt this ciphertext.

3737

Zerocash Efficiency
● Spending coins, i.e., pour transactions, requires a zk-SNARK proof.

● The previous NP statement (POUR) is represented as an arithmetic circuit.

○ A zk-SNARK is given for the satisfiability of this circuit.

● Performance optimizations can be achieved by carefully designing this

circuit to produce a small circuit.

○ All commitment schemes, PRFs, and hashes are instantiated using

SHA256.

○ Design an optimized circuit for SHA256 verification, and then use it in

building the POUR statement circuit.

3838

- Zether -
Private/Anonymous Payments

(Account Model)

Zether [Bünz et al., 2020]

● An extension to Ethereum to provide anonymous and confidential (or

private) payments.

○ Thus it works in the account-based model.

● Private payments rely on two building blocks.

○ ElGamal encryption.

■ Account balances are encrypted.

■ ElGamal is additively homomorphic, hence, adding/deducting

currency to/from an account can be done by operating on the

ciphertexts (the miners can do that).

○ ∑-Bullets.

■ An optimization of Bulletproofs, an efficient ZKP, to make them

more interoperable with Sigma protocols (3 move proof

protocols).

■ Used to prove currency spending transactions. 4040

Zether Protocol I
● Instantiated as a token on top of Ethereum.

○ Its token is denoted as ZTH.

○ It does not introduce any changes to Ethereum’s protocol.

● In the Zether smart contract, users can create accounts to hold private

balances.

○ Lock Ether in this account to get equivalent ZTH coins.

● All currency transfers must ensure that a MAX value of account balance is

not exceeded.

○ To prevent any overflow of private account balances.

● Beside private payments, anonymity can be supported in a similar manner

to previous schemes.

○ An anonymity set chosen by the sender, with a proof attesting that the

sender/receiver are members of this set.

4141

Zether Protocol II
● Five main algorithms (apart from setup, create addresses, etc.):

○ Fund. Used to fund a private account.

○ Transfer. Used to create a private transfer transaction (from a private

account to another).

○ Burn. Transfer the full amount of a private account balance to a public

account.

○ Lock/unlock. Locks an account to some address, which transfers the

ownership to that address (unlock nullifies that).

■ These are needed to allow interoperability with other smart

contracts.

● All these algorithms create transactions corresponding to the required

operations that will be processed by the Zether smart contract.

4242

Zether Protocol III
● Burn and transfer requires ZKPs over the private data.

○ Burn. Need to prove that

■ the issuer is indeed the owner of the account (knows the secret

key associated with the account public key),

■ and that revealed currency amount is equal to the account balance

(recall that that balance is encrypted).

○ Transfer. It provides two ciphertexts; one to subtract b coins from the

issuer’s account, and the other to add b coins to the recipient’s

account. Need to prove that

■ Both ciphertexts are well-formed and encrypt the same value.

■ The issuer’s balance can cover the transfer amount.

■ b is a positive value.

4343

Handling Concurrency
● Front running is a serious problem in this setup.

○ After producing some ZKP with respect to an account state, someone

may transfer currency to this account.

■ This will change the account state, and hence, invalidate the

pending ZKP.

○ This is called front running.

● Addressed by introducing the notion of pending transfers and epochs.

○ An epoch is k consecutive blocks.

○ All transfers to private accounts are put on hold until the end of the

epoch.

■ Will be rolled during the last block of the epoch.

○ Works under the assumption that any private transfer transaction

issued in an epoch will be processed in that epoch as well.

4444

Applications
● Usually requires interoperability with other smart contracts.

○ Like a voting contract for example.

● To prevent participants from changing their balances, an account can be

locked to the application smart contract.

○ In a sealed bid auction, the bid amount is sent to a private account,

then lock this account to the auction contract.

○ This prevents the bidder from spending the bid currency.

○ After opening the bids, the account will unlock the accounts of the lost

bids and transfer the winning bid amount to the seller.

● Other applications are provided, like stake voting and private payment

channels.

○ However, being restricted to private/anonymous payments (rather

than computations) limits the scope of applications.

4545

References
● [Reid et al. 2014] Reid, Fergal, and Martin Harrigan. "An analysis of anonymity in the

bitcoin system." In Security and privacy in social networks, 2013.

● [Koshy et al. 2014] Koshy, Philip, Diana Koshy, and Patrick McDaniel. "An analysis of

anonymity in bitcoin using p2p network traffic." In Financial Cryptography, 2014.

● [Bonneau et al., 2014] Bonneau, Joseph, Arvind Narayanan, Andrew Miller, Jeremy

Clark, Joshua A. Kroll, and Edward W. Felten. "Mixcoin: Anonymity for Bitcoin with

accountable mixes." In Financial Cryptography, 2014.

● [Miers et al., 2013] Miers, Ian, Christina Garman, Matthew Green, and Aviel D. Rubin.

"Zerocoin: Anonymous distributed e-cash from bitcoin." In IEEE S&P, 2013.

● [Ben Sasson et al., 2014] Sasson, Eli Ben, Alessandro Chiesa, Christina Garman,

Matthew Green, Ian Miers, Eran Tromer, and Madars Virza. "Zerocash: Decentralized

anonymous payments from bitcoin." In IEEE S&P, 2014.

● [Bünz et al., 2020] Bünz, Benedikt, Shashank Agrawal, Mahdi Zamani, and Dan Boneh.

"Zether: Towards privacy in a smart contract world." In Financial Cryptography, 2020.

46

47

