
CSE5095-010: Blockchain
Technology

Lecture 10

Ghada Almashaqbeh
UConn - Fall 2020

Outline
● Types of blockchains:

○ Permissionless public blockchains.

○ Permissionless private blockchains.

○ Permissioned blockchains.

○ Mutable blockchains.

2

Permissionless Public Blockchains
● Popular since it is the first type of blockchains to be used.

○ Examples: Blockchains of Bitcoin, Ethereum, etc.

● Permissioless; open to anyone to participate as a miner or as a client.

○ No real identities or any form of authentication/authorization are

required.

● Public; block content is public, everyone can see the sender/receiver

addresses, transaction value, etc.

● Open source code, anyone can download, inspect, and suggest

modifications.

● High overhead since all miners have to verify all transactions and blocks

in the system.

● Techniques used in maintaining and extending the blockchain may vary:

○ adopted mining algorithm, block generation rate, average block

size, types of transactions, etc. 3

Permissionless Private Blockchains I
● Still permissionless with open source code.

○ Anyone can join to mine or just use the service.

● Difference is that the blockchain content is confidential (like

encrypted).

○ Thus, inspecting a block content does not reveal anything unless

one knows the secret information used to seal the data.

○ Correctness/privacy is enforced using advanced cryptographic

primitives.

■ Zero knowledge proofs, ring signatures, homomorphic

commitment/encryption schemes, etc.

● Examples include blockchains of Zcash and Monero.

4

Permissionless Private Blockchains II
● Systems may not hide everything!

○ Provide three modes of operation: public, private with transaction

confidentiality only, private with both confidentiality and

anonymity.

○ Users get to choose which mode to use on per transaction basis.

● Use similar techniques of extending and maintaining the blockchain as

in permissionless public blockchains.

○ Respect privacy restrictions when applicable/possible.

5

Permissioned Blockchains I
● Sometimes called federated or enterprise blockchains.

● Joining the system is NOT open for anyone.

○ In particular the stakeholders or miners; only an approved set

of nodes.

○ Access for clients who want to use the service may vary;

■ Usually only authorized clients are allowed to use the

system.

● In such an environment, respecting information privacy and

regulation compliance is a key.

● Extending the blockchain usually done through a Byzantine fault

tolerant agreement protocol.

○ Also proof-of-elapsed time was developed to be used in such

permissioned setting.
6

Permissioned Blockchains II
● Write permission; only the approved set of nodes are allowed to

extend the blockchain.

● Read permissions may vary;

○ Public, anyone can access the stored records.

○ Permissioned, specific audience (e.g. all employees within one

organization).

● Main use cases center around Banking systems.

○ A group of financial institutions work collectively together and

share data/ensure accountability through the common

blockchain.

■ Main motivations are reducing cost and speeding up

service processing.

7

Permissioned Blockchains - Examples
● Several examples; Hyperledger Fabric, Corda, Quorum, etc.

● Most follow the general theme of Ethereum.

○ Utilize smart contracts to allow customized processing of data

and automating deals and financial agreements.

■ Quorum is an enterprise version of Ethereum which

replaces its proof-of-work with PBFT consensus.

○ Such contracts could be accompanied with legal prose to

enforce compliance.

■ Corda adopts this model. Each deal has a state object

composed of a smart contract and legal prose.

8

Permissioned Blockchains - Ordering
● Several systems separate transaction validation/execution from

ordering and have these tasks implemented by different nodes.

○ Corda involves a notary pool that decides the order of transactions

that consume that same state.

■ If a notary pool is composed of several entities, PBFT is used to

let them all agree on the same decision.

○ Hyperledger Fabric adopts the model of execute (or endorse),

order, and validate of transactions.

■ A group of nodes work together to reach a consensus of the

order of transactions.

○ Validating transactions is done independently by each node through

executing the smart contract code.

9

Permissioned Blockchains - Privacy
● Respecting data privacy can be enforced by partitioning the blockchain

state into several layers.

○ In Hyperledger Fabric these are called channels.

■ A channel is a blockchain on its own.

○ Each channel has its own ordering of transactions and may have

different set of members.

■ Thus, members see different data and views based on which

channel they belong to.

10

Mutable or Redactable Blockchains
● Developed to address criticism that immutability of the blockchain,

which is a security requirement, have several disadvantages

○ The right to be forgotten.

○ Remove inappropriate content.

○ Compress blocks in the blockchain.

■ Cut the stale history that is no longer needed.

○ Ability to allow editable storage for smart contracts.

■ Being able to patch security vulnerabilities without

deploying a new version of the contract.

11

Mutable Blockchains - An Example
● One scheme proposed in [Ateniese et al., 2017].

● It is based on using a hash function with a trapdoor that allows

finding collisions.

○ That is, this hash function has a secret key that can be used to

make an edited block have the same hash as the old block.

○ Recall that immutability is achieved because of the collision

resistance property of the used hash functions.

● By doing so, the specific blocks in the blockchain can be rewritten

without breaking the chain.

● Without the trapdoor, no edits can be made.

● Edits are public and auditable by other miners.

○ since they must approve the new blockchain and have access to

its old copies.
12

A Modified Chameleon Hash Function
● Consists of a tuple of four algorithms:

○ Key generation: generates a public key (used for hashing) and a

trapdoor key (used for finding collisions).

○ Hash: Uses the public key to hash a message m. Outputs the

hash h of m and some string w needed to verify the correctness

of the hash.

○ Verify: takes m, w, h, and the public key as inputs and return 1

or 0 based on whether the hash h is correct or not.

○ Find collision: takes the trapdoor key, m, h, w, and a new

message m’, and produces w’ such that Verify(pk, m’, h, w’) = 1.

■ The hash is not changed!

13

Who Can Edit
● Centralized setup.

○ One entity knows the trapdoor, and hence, can edit.

● Distributed setup:

○ Replace the trusted party with several parties.

○ Utilize multiparty computation protocols (MPC) to generate the

trapdoor key in a distributed way (utilize threshold secret

sharing)..

■ Each party will have a share of the key (some random

string).

○ Another MPC protocol allows using these shares, at least t of

them, to compute a collision.

14

References
● [Ateniese et al., 2017] Ateniese G, Magri B, Venturi D, Andrade E. Redactable blockchain–or–rewriting history in

bitcoin and friends. In 2017 IEEE European Symposium on Security and Privacy (EuroS&P) 2017 Apr 26 (pp.

111-126). IEEE.

15

16

